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To the memory of Anna Johnson Pell1 and R. L. Gordon,
for their inspiring Theorem of 1917!2

Teaching subresultant prs’s is an unpleasant experience because there is a mis-
understanding about the role of Sylvester’s two matrices and how they affect the
signs of the sequences. Almost all articles and texts on the subject perform op-
erations in Z[x] and use a form of pseudo-division that distorts the signs of the
polynomial remainders; hence, sentences like “forget about the signs” appear quite
often in the literature. In this talk we clarify the mystery about the signs and show
how to compute the subresultant prs’s in various ways — performing operations
even in Q[x]. Briefly stated, here is how.

Consider the polynomials f ,g ∈ Z[x] of degrees n,m, respectively, with n > m.
We call Euclidean prs the sequence of polynomial remainders obtained during the
execution of the Euclidean algorithm for polynomial gcd. If the polynomials in the
sequence are of degrees n = m+ 1,m,m− 1,m− 2, . . . ,0, the sequence is called
complete. Otherwise it is called incomplete.

The complete Euclidean prs of two polynomials can be computed either by do-
ing polynomial divisions over the integers/rationals or by evaluating determinants
of submatrices of sylvester1 — J.J. Sylvester’s matrix of 1840 [1], [12]. In the
latter case, the coefficients of each polynomial remainder are the above mentioned
determinants (or subresultants) and we are talking about the subresultant prs [6],
[7], [8], [10].

Caveat 1: As demonstrated by f = x8 + x6−3x4−3x3 +8x2 +2x−5 and g =
3x6+5x4−4x2−9x+21, the signs of the polynomials in an incomplete Euclidean
prs may differ from those of the corresponding subresultant prs [3].

Analogous to Euclidean prs’s are the Sturm sequences, which are obtained
by modifying Euclid’s algorithm; that is, at each step we take the negative of the
remainder obtained.

Like their cousins, complete Sturm sequences can be computed either by doing
polynomial divisions over the integers/rationals or by evaluating determinants of

1See the link http://en.wikipedia.org/wiki/Anna_Johnson_Pell_Wheeler for her bi-
ography.

2Discovered by Panagiotis S. Vigklas.
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submatrices of sylvester2 — J.J. Sylvester’s matrix of 1853 [13]. In the latter
case, the coefficients of each polynomial remainder are the modified subresultants
and we have the modified subresultant prs [5].

Caveat 2: As demonstrated by f = x5− 3x− 1 and g = 5x4− 3, the signs of
the polynomials in an incomplete Sturm sequence may differ from those of the
corresponding modified subresultant prs [5].

Recall that det(sylvester1) defines the resultant of two polynomials and that
in general det(sylvester1) 6= det(sylvester2). A detailed discussion on these
two matrices can be found elsewhere [4].

In 1900, E.B. Van Vleck, [14], computed complete Sturm sequences by trian-
gularizing sylvester2. Akritas extended Van Vleck’s triangularization method
for incomplete subresultant prs’s, [2], but in this case it was impossible to compute
the correct sign of the polynomials in the sequence. The solution [4] came with the
discovery, by Vigklas, of the Pell-Gordon theorem of 1917 [11].

In short, the Pell-Gordon theorem was a response to Van Vleck’s work and
is precisely the tool needed to compute the correct sign of the polynomials in an
incomplete Sturm sequence computed with the triangularization method [5]. The
only difference from what we are used today is the fact that Pell and Gordon do
their computations in Q[x]. Their theorem is stated below, whereas a detailed ex-
ample can be found elsewhere [5].

Theorem (Pell-Gordon, 1917): Let

A = a0xn +a1xn−1 + · · ·+an

and
B = b0xn +b1xn−1 + · · ·+bn

be two polynomials of the n-th degree. Modify the process of finding the highest
common factor of A and B by taking at each stage the negative of the remainder.
Let the i-th modified remainder be

R(i) = r(i)0 xmi + r(i)1 xmi−1 + · · ·+ r(i)mi

where (mi+1) is the degree of the preceeding remainder, and where the first (pi−1)
coefficients of R(i) are zero, and the pi-th coefficient ρi = r(i)pi−1 is different from

zero. Then for k = 0,1, . . . ,mi the coefficients r(i)k are given by3

r(i)k =
(−1)ui−1 (−1)ui−2 · · ·(−1)u1 (−1)vi−1

ρ
pi−1+1
i−1 ρ

pi−2+pi−1
i−2 · · ·ρ p1+p2

1 ρ
p1
0

·det(i,k) , (1)

3It is understood in (1) that ρ0 = b0, p0 = 0, and that ai = bi = 0 for i > n.
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where ui−1 = 1+2+ · · ·+ pi−1, vi−1 = p1 + p2 + · · ·+ pi−1 and

det(i,k) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 · · · · · · · · a2vi−1 a2vi−1+1+k
b0 b1 b2 · · · · · · · · b2vi−1 b2vi−1+1+k
0 a0 a1 · · · · · · · · a2vi−1−1 a2vi−1+k
0 b0 b1 · · · · · · · · b2vi−1−1 b2vi−1+k
· · · · · · · · · · · · ·
0 0 0 · · · a0 a1 · · · avi−1 avi−1+1+k
0 0 0 · · · b0 b1 · · · bvi−1 bvi−1+1+k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof: The proof by induction of this theorem depends on two Lemmas that can
be found in the original paper of Pell and Gordon.

As indicated elsewhere [5], we use a modification of formula (1) to compute
the coefficients of the Sturm sequence. In that case p0 = deg(A)− deg(B) = 1,
since B is the derivative of A and, hence, the modified formula is shown below
with the changes appearing in bold:

r(i)k =
(−1)ui−1 (−1)ui−2 · · ·(−1)u1 (−1)u0 (−1)vi−1

ρ
pi−1+pi−degDiffer
i−1 ρ

pi−2+pi−1
i−2 · · ·ρ p1+p2

1 ρ
p0+p1
0

· det(i,k)
ρ−1

, (2)

where ρ−1 = a0, the leading coefficient of A and degDiffer is the difference
between the expected degree mi and the actual degree of the remainder.

It should be noted that in our (general) case p0 = deg(A)−deg(B) and that the
division det(i,k)

ρ−1
is possible if the leading coefficient of A is the only element in the

first column of sylvester2. Moreover, if the leading coefficient of A is negative
we work with the polynomial negated and at the end we reverse the signs of all
polys in the sequence.

Using formula (2) above we were able to compute [5]:

• complete and incomplete Sturm sequences in Z[x] by doing divisions in Q[x];

• complete and incomplete modified subresultant prs’s by evaluating the sign
of the determinant of an appropriate submatrix of sylvester2 — one sign
computation for each polynomial.

We also wondered whether the Pell-Gordon theorem can help us compute sub-
resultant prs’s and we came up with the following rule.

The Sign/Value Rule for subresultant prs’s:
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To compute the exact sign of a polynomial and (possibly) adjust its value in a com-
plete or incomplete subresultant prs we evaluate the determinant of an appropriate
submatrix of sylvester1 — one determinant computation for each polynomial.

Three new methods were developed using the above rule [3]. They have been
implemented in Sympy and can be downloaded from http://inf-server.inf.

uth.gr/~akritas/publications/subresultants.py.

• In the first method, subresultants_prem2(f, g, x), we incorporate the
new pseudo remainder function,4 prem2(f, g, x), which uses the absolute
value of the leading coefficient of the divisor; that is, prem2 is based on
the identity |lc(g)|deg( f )−deg(g)+1 · f = q · g+ r. This way, we preserve the
“correct” sign sequence of the Euclidean prs, as discussed elsewhere [5].

• The second method, subresultants_PG(f, g, x), does divisions over
the rationals and uses the Pell-Gordon theorem to convert the coefficients of
the polynomial remainders to integers. Here we have an implicit interplay
between the two Sylvester matrices, sylvester1 and sylvester2.

• Finally, in the third method, subresultants_triang(f, g, x), we see
— for the first time in the literature — an explicit interplay between the
two Sylvester matrices, sylvester1 and sylvester2. While we triangu-
larize the latter to obtain polynomial-candidates for the subresultant prs, we
evaluate determinants of submatrices of the former in order to make the can-
didates actual members of the prs by adjusting, if needed, their coefficients
accordingly — both in value and sign!

Note that, for all three methods, the cost of computing a single subresultant per
remainder is negligible if a probabilistic algorithm is available for computing large
determinants — as is the case in the free computer algebra system Xcas. Moreover,
as mentioned in [3], this cost can be further decreased if in the Sign/Value Rule —
instead of sylvester1 — we use submatrices of other, equivalent, matrices with
smaller dimensions [9].
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