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In this paper the authors critically analyse popular way of graphic presentation
Taylor’s polynomials in context of function approximation. They discuss the dif-
ficulties of presentation the best local polynomial approximation of function by
Taylor’s polynomials. Proposed by the authors method of graphical presentation
based on table of function and Taylor’s polynomials values in neighbourhood of a
chosen point. For graphical presentation ListPlot and Plot functions with logarith-
mic scale in Mathematica System is used.

Introduction

Taylor’s theorem is one of the most classic results of university course in calculus
or mathematical analysis. For the case of one variable function y = f (x) and point
x = x0, Taylor’s polynomial of the n-th order is defined as:

Tn(x) = f (x0)+
f ′(x0)

1!
(x− x0)+

f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n

where a function f (x) have at a point x0 finite derivatives up to the n-th order
inclusively. Many academic books e.g. [1, 2, 3, 4] contain graphs presented Tay-
lor’s polynomials for some elementary functions. For example for f (x) = ex or
f (x) = sinx as is shown in Figures 1,2. Often these graphs are presented with com-
ments that it shows how well these polynomials approximate y = f (x) near a point
x = x0 when n increases.
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Figure 1: Taylor’s polynomials T1(x), T2(x), T3(x), T4(x) for function f (x) = ex at
point x0 = 0.
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Figure 2: Taylor’s polynomials T1(x), T3(x), . . . ,T13(x) for function f (x) = sinx at
point x0 = 0.
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1 Visualization of Taylor’s polynomials in context of func-
tion approximation

Visualization of Taylor’s polynomials is easy and comfortable using CAS packages
such as Mathematica, Maple, Derive or others. For a one variable function Math-
ematica package contains standard procedure Series[ f ,{x,x0,n}] which generates
Taylor’s polynomial of the n-th order for the function f (x) and point x = x0. Using
procedure Plot[{ f1, f2, . . . , fk},{x,xmin,xmax}] we can present graphs function f (x)
and some its Taylor’s polynomials as is shown in Figures 1, 2. But this kind of
presentation can be misleading for students in context of the function f (x) approx-
imation by Taylor’s polynomials if we do not emphasize the fact of local character
of this approximation. In Figures 3, 4 we see that graph of the function f (x) and
graphs of Taylor’s polynomials seem to overlap close point x = x0. On the base of
these Figures we cannot settle which Taylor’s polynomial better approximates the
function close to the point x0.
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Figure 3: function f (x) = ex and its Taylor’s polynomials T1(x), T2(x), T3(x), T4(x)
in the reduced right neighbourhood (0,0.01) of the point x0 = 0.
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Figure 4: function f (x) = sinx and its Taylor’s polynomials T1(x), T3(x), . . . ,T13(x)
in the reduced right neighbourhood (0,0.01) of the point x0 = 0.

In Figures 1, 2 we see that graph of the function f (x) and graphs of Taylor’s
polynomials seem to overlap close the point x0 = 0. Next, Taylor’s polynomials
separate from the graph of the f (x). Closer to the point x0 separates Taylor’s poly-
nomial of lower order, further from the point x0 separates Taylor’s polynomial of
higher order. Figures 1, 2 may suggest that overall Taylor’s polynomial of higher
order better approximates the function than Taylor’s polynomial of lower order.
But for example, for the function f (x) = ex, x0 = 0 and the point x =−4 it is easy
to check that:
T2(x) = 1+x+

1
2!

x2,T3(x) = 1+x+
1
2!

x2+
1
3!

x3, | f (−4)−T2(−4)|= |e−4−5|<
| f (−4)− T3(−4)| = |e−4 + 17/3|. So, T2(x) better approximates the function
f (x) = ex at the point x = −4 than T3(x). Similarly, for the function f (x) = sinx,
x0 = 0 and the point x = 5

4 π we have:
T3(x) = x− 1

3! x
3,T5(x) = x− 1

3! x
3+ 1

5! x
5, and | f (5

4 π)−T3(
5
4 π)| ≈ 5.46 < | f (5

4 π)−
T5(

5
4 π)| ≈ 7.88. So, T3(x) better approximates the function f (x) = sinx at the point

x = 5
4 π than T5(x). Generally, Taylor’s polynomial of higher order better approx-

imates the function than Taylor’s polynomial of lower order only locally in some
neighbourhood of the point x0.

2 Theorem of the best local polynomial approximation

This theorem and corollaries from it are inspired by theorem of the best local ap-
proximation presented in [5].

Let P(x) = p0 + p1(x− x0)+ p2(x− x0)
2 + . . .+ pm(x− x0)

m and Q(x) = q0 +
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q1(x− x0)+q2(x− x0)
2 + . . .+qk(x− x0)

k are different polynomials. Let r be the
smallest nonnegative integer among numbers i = 0,1,2, . . . which satisfy pi 6= qi (if
m > k then we put qk+1 = . . .= qm = 0, if m < k then we put pm+1 = . . .= pk = 0).

Assume that function f (x) has finite derivative of n order at point x0 and assume
r ≤ n.

Theorem. If pi =
f (i)(x0)

i! for all i < r and | f (r)(x0)
r! − pr| < | f (r)(x0)

r! − qr| then there
exists such neighbourhood S of point x0 such that

∧
x∈S

| f (x)−P(x)|< | f (x)−Q(x)|.

Proof. By Taylor’s theorem we have: f (x)−Tn(x) = (x− x0)
n
ω(x), where

ω(x) is a function continuous at x0 and ω(x0) = 0. Thus:

| f (x)−P(x)|

=
∣∣∣( f r(x0)

r!
− pr

)
(x− x0)

r +
f r+1(x0)

(r+1)!
(x− x0)

r+1 + · · ·+ f n(x0)

n!
(x− x0)

n

+(x− x0)
n
ω(x)− pr+1(x− x0)

r+1−·· ·− pm(x− x0)
m
∣∣∣,

| f (x)−Q(x)|

=
∣∣∣( f r(x0)

r!
−qr

)
(x− x0)

r +
f r+1(x0)

(r+1)!
(x− x0)

r+1 + · · ·+ f n(x0)

n!
(x− x0)

n

+(x− x0)
n
ω(x)−qr+1(x− x0)

r+1−·· ·−qk(x− x0)
k
∣∣∣.

Taking the factor (x− x0)
r out we have:

| f (x)−P(x)|

= |(x− x0)
r| ·
∣∣∣( f r(x0)

r!
− pr

)
+

f r+1(x0)

(r+1)!
(x− x0)+ · · ·+

f n(x0)

n!
(x− x0)

n−r

+(x− x0)
n−r

ω(x)− pr+1(x− x0)−·· ·− pm(x− x0)
m−r
∣∣∣.

| f (x)−Q(x)|

= |(x− x0)
r| ·
∣∣∣( f r(x0)

r!
−qr

)
+

f r+1(x0)

(r+1)!
(x− x0)+ · · ·+

f n(x0)

n!
(x− x0)

n−r

+(x− x0)
n−r

ω(x)−qr+1(x− x0)−·· ·−qk(x− x0)
k−r
∣∣∣.
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The above equalities are true if m > r and k > r. If m≤ r, then defining pm+1 =
pm+2 = . . .= 0 we have:

| f (x)−P(x)|

=
∣∣∣( f r(x0)

r!
− pr

)
(x− x0)

r +
f r+1(x0)

(r+1)!
(x− x0)

r+1 + · · ·+ f n(x0)

n!
(x− x0)

n

+(x− x0)
n
ω(x)

∣∣∣
= |(x− x0)

r| ·
∣∣∣( f r(x0)

r!
− pr

)
+

f r+1(x0)

(r+1)!
(x− x0)+ · · ·+

f n(x0)

n!
(x− x0)

n−r

+(x− x0)
n−r

ω(x)
∣∣∣

and if k ≤ r then defining qk+1 = qk+2 = . . .= 0 we have:

| f (x)−Q(x)|

=
∣∣∣( f r(x0)

r!
−qr

)
(x− x0)

r +
f r+1(x0)

(r+1)!
(x− x0)

r+1 + · · ·+ f n(x0)

n!
(x− x0)

n

+(x− x0)
n
ω(x)

∣∣∣
= |(x− x0)

r| ·
∣∣∣( f r(x0)

r!
−qr

)
+

f r+1(x0)

(r+1)!
(x− x0)+ · · ·+

f n(x0)

n!
(x− x0)

n−r

+(x− x0)
n−r

ω(x)
∣∣∣

(both numbers k and m cannot be at the same time less than r).
As x approaches to x0 we obtain:

lim
x→x0

∣∣∣( f r(x0)

r!
− pr

)
+

f r+1(x0)

(r+1)!
(x− x0)+ · · ·+

f n(x0)

n!
(x− x0)

n−r

+(x− x0)
n−r

ω(x)− pr+1(x− x0)−·· ·− pm(x− x0)
m−r
∣∣∣

=
∣∣∣ f r(x0)

r!
− pr

∣∣∣,
lim

x→x0

∣∣∣( f r(x0)

r!
−qr

)
+

f r+1(x0)

(r+1)!
(x− x0)+ · · ·+

f n(x0)

n!
(x− x0)

n−r

+(x− x0)
n−r

ω(x)−qr+1(x− x0)−·· ·−qk(x− x0)
k−r
∣∣∣

=
∣∣∣ f r(x0)

r!
−qr

∣∣∣.
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Because of our assumption
∣∣∣ f (r)(x0)

r! − pr

∣∣∣< ∣∣∣ f (r)(x0)
r! −qr

∣∣∣ and the last two limits we
conclude that there exists such neighbourhood S of point x0 such that

∧
x∈S

∣∣∣( f r(x0)

r!
− pr

)
+

f r+1(x0)

(r+1)!
(x− x0)+ · · ·+

f n(x0)

n!
(x− x0)

n−r

+(x− x0)
n−r

ω(x)− pr+1(x− x0)−·· ·− pm(x− x0)
m−r
∣∣∣

<
∣∣∣( f r(x0)

r!
−qr

)
+

f r+1(x0)

(r+1)!
(x− x0)+ · · ·+

f n(x0)

n!
(x− x0)

n−r

+(x− x0)
n−r

ω(x)−qr+1(x− x0)−·· ·−qk(x− x0)
k−r
∣∣∣

Multiplying both sides of the last inequality by |(x− x0)
r| we obtain that∧

x∈S

| f (x)−P(x)|< | f (x)−Q(x)|.

In cases m≤ r or k ≤ r the proof is analogous.

Corollary 1. Let Q(x) be a polynomial which satisfies: there exists i (i ≤ n)

such that qi 6=
f (i)(x0)

i!
(if m < n then we define qm+1 = qm+2 = . . . = qn = 0).

Then there exists such neighbourhood S of point x0 such that,
∧
x∈S

| f (x)−Tn(x)| <

| f (x)−Q(x)|. Particularly Q(x) can be any polynomial of order not greater than
n different than Tn(x).

Corollary 2. There exists such neighbourhood S of point x0 such that,∧
x∈S

| f (x)−Tn(x)| ≤ | f (x)−Tn−1(x)| ≤ . . .≤ | f (x)−T1(x)|,

where every inequality from the last sequence of inequalities becomes equality if
and only if when the two consecutive Taylor’s polynomial of f (x) in both sides of
the inequality are identical.

3 Visualization of the best locally approximation by Tay-
lor’s polynomials with Mathematica

Let us visualize Corollary 1 and 2 for reduced right neighbourhood (0,0.01) of the
point x0 = 0 using Wolfram Mathematica System [6, 7].

Example 1. For the Corollary 1 we define: f (x) = ex, x0 = 0, T2(x) = 1+x+ 1
2! x

2

and P(x) = 1+ x− 1
2! x

2 for x ∈ (0,0.01). By Taylor’s theorem we get:

ex−T2(x) = ex− (1+ x+
1
2!

x2) =
1
3!
(ex̃)x3 > 0
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and ex−P(x) = 1+ x+ 1
2! x

2 + 1
3!(e

x̃)x3− (1+ x− 1
2 x2) = x2 + 1

3!(e
x̃)x3 > 0 for

x̃ ∈ (0,x),x ∈ (0,0.01).
Hence, we have: | f (x)−T2(x)|− | f (x)−P(x)|= ex− (1+ x+ 1

2 x2)− ex +1+ x−
1
2 x2 =−x2 < 0
and finally

∧
x∈(0,0.001)

| f (x)−T2(x)|< | f (x)−P(x)|.

Let us visualize this inequality by creating a table of numerical values for both
sides of inequality with step 0.001.

x fHxL T2HxL PHxL  fHxL - T2HxL¤  fHxL - PHxL¤
0. 1. 1. 1. 0 0

0.001 1.001 1.001 1.001 1.667083416680558´ 10-10 1.000166708341668´ 10-6

0.002 1.002 1.002 1.002 1.334000266755581´ 10-9 4.001334000266756´ 10-6

0.003 1.003 1.003 1.003 4.503377026012934´ 10-9 9.004503377026013´ 10-6

0.004 1.00401 1.00401 1.00399 1.067734187235881´ 10-8 0.00001601067734187236

0.005 1.00501 1.00501 1.00499 2.085940106338357´ 10-8 0.00002502085940106338

0.006 1.00602 1.00602 1.00598 3.605406486485558´ 10-8 0.00003603605406486486

0.007 1.00702 1.00702 1.00698 5.726684855523160´ 10-8 0.00004905726684855523

0.008 1.00803 1.00803 1.00797 8.550427343117207´ 10-8 0.00006408550427343117

0.009 1.00904 1.00904 1.00896 1.217738678140626´ 10-7 0.00008112177386781406

0.01 1.01005 1.01005 1.00995 1.670841680575422´ 10-7 0.0001001670841680575

Table 1: the values of f (x), T2(x),P(x), | f (x)−T2(x)| and | f (x)−P(x)| with step
0.001

We see in Table 1 that for all considered points inequality is true. Based on the
Table1 we can prepare Figure 5 using logarithmic scale. Increasing WorkingPreci-
sion and Accuracy in Mathematica Plot function we can get the continous graphs
presented in Figure 6
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Figure 5: discrete graphs of | f (x)−T2(x)| and | f (x)−P(x)| in reduced right neigh-
bourhood (0,0.01) of the point x0 = 0 with logarithmic scale using Mathematica
Plot function.
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Figure 6: continuous graphs of | f (x)− T2(x)| and | f (x)−P(x)| in reduced right
neighbourhood (0,0.01) of the point x0 = 0 with logarithmic scale using Mathe-
matica Plot function.

In Figure 5 we see that the graphs of | f (x)−T2(x)| and | f (x)−P(x)| are sepa-
rated and that | f (x)−T2(x)|< | f (x)−P(x)| for x ∈ (0,0.01).

Example 2. For the Corollary 2 we define: f (x) = sinx,x0 = 0,
T3(x) = x− 1

3! x
3,

T7(x) = x− 1
3! x

3 + 1
5! x

5− 1
7! x

7,
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T11(x) = x− 1
3! x

3 + 1
5! x

5− 1
7! x

7 + 1
9! x

9− 1
11! x

11.
By Taylor’s theorem, for all x ∈ (0,0.01) we have:
f (x)−T3(x) = ( 1

4! sin x̃)x4 > 0,
f (x)−T7(x) = ( 1

8! sin ˜̃x)x8 > 0,

f (x)−T11(x) = (
1

12!
sin ˜̃̃x)x12 > 0,

where x̃, ˜̃x, ˜̃̃x ∈ (0,x).
Hence, for all x ∈ (0,0.01) we get:

| f (x)−T3(x)|− | f (x)−T7(x)|= f (x)−T3(x)− f (x)+T7(x) =
1
5!

x5− 1
7!

x7

=
1
7!

x5(42− x2) =
1
7!

x5(
√

42− x)(
√

42+ x)> 0,

| f (x)−T7(x)|− | f (x)−T11(x)|= f (x)−T7(x)− f (x)+T11(x) =
1
9!

x9− 1
11!

x11

=
1

11!
x9(110− x2) =

1
11!

x9(
√

110− x)(
√

110+ x)> 0.

So, finally
∧

x∈(0,0.01)

| f (x)−T3(x)|> | f (x)−T7(x)|> | f (x)−T11(x)|.

Let us visualize this double inequality by create a table of values for all sides
of inequality with step 0.001.

x fHxL T3HxL T7HxL T11HxL  fHxL - T3HxL¤  fHxL - T7HxL¤  fHxL - T11HxL¤
0.001 0.001 0.001 0.001 0.001 8.45678 ´ 10-18 2.75573 ´ 10-33 1.60590 ´ 10-49

0.002 0.002 0.002 0.002 0.002 2.66714 ´ 10-16 1.41093 ´ 10-30 1.31556 ´ 10-45

0.003 0.003 0.003 0.003 0.003 2.02529 ´ 10-15 5.42411 ´ 10-29 2.56033 ´ 10-43

0.004 0.00399999 0.00399999 0.00399999 0.00399999 8.53397 ´ 10-15 7.22398 ´ 10-28 1.07770 ´ 10-41

0.005 0.00499998 0.00499998 0.00499998 0.00499998 2.60417 ´ 10-14 5.38229 ´ 10-27 1.96033 ´ 10-40

0.006 0.00599996 0.00599996 0.00599996 0.00599996 6.47997 ´ 10-14 2.77714 ´ 10-26 2.09742 ´ 10-39

0.007 0.00699994 0.00699994 0.00699994 0.00699994 1.40058 ´ 10-13 1.11204 ´ 10-25 1.55594 ´ 10-38

0.008 0.00799991 0.00799991 0.00799991 0.00799991 2.73066 ´ 10-13 3.69868 ´ 10-25 8.82855 ´ 10-38

0.009 0.00899988 0.00899988 0.00899988 0.00899988 4.92073 ´ 10-13 1.06763 ´ 10-24 4.08199 ´ 10-37

0.01 0.00999983 0.00999983 0.00999983 0.00999983 8.33332 ´ 10-13 2.75573 ´ 10-24 1.60590 ´ 10-36

Table 2: the values of f (x),T3(x),T7(x),T11(x), | f (x)− T3(x)|, | f (x)− T7(x)| and
| f (x)−T11(x)| with step 0.001

We see in Table 2 that for all considered points double inequality is true. Based
on the Table 2 we can prepare Figure 7 using logarithmic scale.
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Figure 7: discrete graphs of | f (x)− T3(x)|, | f (x)− T7(x)| and | f (x)− T11(x)| in
reduced right neighbourhood (0,0.01) of the point x0 = 0 with logarithmic scale
using Mathematica ListPlot function.
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Figure 8: continous graphs of | f (x)−T3(x)|, | f (x)−T7(x)| and | f (x)−T11(x)| in
reduced right neighbourhood (0,0.4) of the point x0 = 0 with logarithmic scale
using Mathematica Plot function.

In Figures 6 and 7 we see that graphs of | f (x)− T3(x)|, | f (x)− T7(x)| and
| f (x)−T11(x)| are separated.

Summary

In this paper the authors discuss graphic presentation of Taylor’s polynomials in
context of local approximation of a function. In popular way of graphic presen-
tation Taylor’s polynomials, graph of the function f (x) and graphs of its Taylor’s
polynomials seem to overlap in a neighbourhood of the point x = x0. Using log-
arithmic scale to present graphs we can separate graphs of differences between
function and its Taylor’s polynomials. To prepare graphs Mathematica System was
used.
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