A Constructive Proof of Feuerbach's Theorem Using a Computer Algebra System

Michael Xue ${ }^{1}$

${ }^{1}$ Vroom Laboratory for Advanced Computing, mxue@ vroomlab.com
Feuerbach's Theorem states that the midpoints of the three sides, the base points of the three heights, and the midpoints of the line segments between the corners of a triangle and the intersection of the heights are on a circle. This talk offers a constructive proof. It is known that algebraic expression

$$
\begin{equation*}
x^{2}+y^{2}+d x+e y+f=0 \tag{1}
\end{equation*}
$$

represents a circle centered at $\left(-\frac{d}{2},-\frac{e}{2}\right)$ with radius

$$
\begin{equation*}
r^{2}=\frac{d^{2}+e^{2}-4 f}{4} \tag{2}
\end{equation*}
$$

provide (2) is positive. Three points among nine stated in the theorem are chosen to form a system of linear equations from (1). The values of d, e and f are determined by solving the equations. With the solution, (2) is shown to be positive which implies (1) indeed represents a circle. We then proceed to verify that the coordinates of the remain six points statisfy (1). Hence all nine points are on the same circle.

References

[1] B. Spain, Analytical Conics pp. 21-23 (2007).
[2] J. Gullberg, Mathematics From the Birth of Numbers p. 433 (1997).

