Generating Power Summation Formulas Using a Computer Algebra System

Michael Xue ${ }^{1}$

${ }^{1}$ Vroom Laboratory for Advanced Computing, USA, mxue@ vroomlab.com
Mathematical induction is often used in classroom to prove various Power Summation Formulas such as

$$
\begin{gather*}
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \tag{1}\\
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{2}\\
\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4} \tag{3}
\end{gather*}
$$

However, how the formulas are obtained in the first place is rarely discussed.
In this presentation, we will construct the Power Summation Formulas. Specifically, a recursive algorithm is derived and its implementation in Computer Algebra generates the formulas. A closer look at this algorithm also reveals the generated formulas can also be obtained by solving an initial-value problem of difference equation symbolically.

References

[1] J. Gullberg, Mathematics From the Birth of Numbers (1997).
[2] Omega: A Computer Algebra System Explorer, at http://www.omega-math.com

