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Abstract

A common tool used in enumerating combinatorial objects is the gener-
ating function, which is an algebraic way of presenting all the enumerative
information in one glance. When the generating function is a polynomial
which can be factorized, the factorization may provide important infor-
mation about the objects themselves. Nowadays many mathematicians
use computer code to test their conjectures before attempting to prove
them in a rigorous form. While trying to find a closed formula for the
length function of a certain group of symmetries, we used a Sage code
to obtain a polynomial generating function. When we then used Mathe-
matica to factorize this polynomial, the results provided us with a very
significant insight: the formula we were looking for must consist of two
parts, corresponding to a specific known decomposition of the group into
cosets.

1 Complex reflection groups

Let S,, be the symmetric group on n letters 1,...,n. For o € S,, with o (i) = r;,
1 <i < n, we denote by ((a1,...,a,),(r1,...,r,) the n X n monomial matrix
with non-zero entries a; in the (i,7;)— positions. For p|m in N, we set:

G(r,p,n) ={((a1,...,an),0) € GL,(C) | a} = 1}.
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We denote an element of G(r,p,n) in a more concise manner:

(0.k) = aft -l

foroc=a;---a, and k = (k1,...,ky).

Example 1.1.
7= (312,(1,3,3)) = 311323

Various sets of generators have been defined for complex reflection groups
but (as far as we know), no length function has been formulated.

In a separate paper [1] we provide such a function for the case of G(r,r,n)
with a specific choice of generating set proposed by Shi. (See [2]).



1.1 Shi’s Generators for G(r,r,n)

For each i € {1,...,n — 1} let s; = (i,7+ 1) be the well-known adjacent trans-
positions generating .S, .
Define tq = (1771, nt!). In [2] the following theorem is proven.

Theorem 1.2. The set {to, $1,...,Sn—1} generates G(r,r,n).

After we found a length function for the elements of the group G(r,r,n),
we proceeded to seek a generating function. In order to be able to get a grasp
on the form that generating function should take, we composed a simple Sage
program which went over all the elements of G(r,r,n) for some small values of
r and n and calculated the length, using the length function we had discovered.
When we used the Mathematica program to factor the resulting polynomial,
we found out that in all the cases which had been checked, the factor [n],! =
1+q¢)(1+q+¢*)--(1+q+--+q" 1) appeared. Here are two examples of
the factorizations we have obtained:

Example 1.3.
Guaa(q) = [/ (1+2¢> +3¢> +4¢* +5¢° +7¢° +8¢" +10¢°® +12¢° + 7¢'° +3¢*").
Example 1.4.
Go6.3(0) = [8lg!(1+ ¢+ 2¢° +2¢° + 3¢" + 3¢° + 4¢° + 49" + 5¢° + 5¢° + 6¢'°).

Since [n]q! is the generating function of the length function of S,,, these and
other examples led us to the conclusion that the correct way of presenting the
length function for the elements of G(r,r, n) must be based on a decomposition
of G(r,r,n) into cosets of S,,.

In [1] we provide the following length function for G(r,r,n).

Theorem 1.5. Let 7 = ai* ---akr € G(r,7,n).
Write m = u - o where u € S, and o is the minimal length representative.
Then: U(m) = > |kj — ki| — noninv(k) + inv(u)

1<i<j<n
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