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Let us consider solving the nonlinear underdetermined system of equa-
tions:

f : X → Rm, where X ⊆ Rn, n ≥ m . (1)

Interval methods (see, e.g., [6]) have proven to be useful, in particular, in
solving nonlinear systems of type (1). One of their advantages is allowing
not only to locate all solutions of underdetermined systems; i.e., the whole
solution manifold can be enclosed by a set of boxes (typically we compute
two sets: of verified and possible solutions, cf., e.g., [9]).

Due to the nature of interval arithmetic, it is pretty important, what
formulae we compute in it. The simplest example is [x, x] − [x, x], which,
according to the rules of interval arithmetic is equal to [x− x, x− x] and it
is in general different from zero.

It might be unlikely that we found a x − x in our formulae, but also
x2 + x, x · (x+ 1) and (x+ 1

2)
2 − 1

2 , obviously equivalent for real numbers,
may have different results for an interval argument.

Hence, combining interval methods with some symbolic transformations
might be very worthwhile.

Benhamou et alii were, to the best knowledge of the author, the first
ones to propose preprocessing equations systems under consideration using
the Gröbner basis theory [2], [3]. Computing the Gröbner basis of a set of
polynomials, corresponding to the equation system, in lexicographic order
x1 ≺ x2 ≺ · · · ≺ xn, results in a system in triangular form:

p1(x1, x2, . . . , xn) = 0
. . .
pn−1(x1, x2) = 0
pn(x1) = 0

.

Obviously, variables in the above ordering can be permuted, resulting in a
different transformed system, but also in a triangular form.

The transformation thus allows us to reduce solving the whole system to
subsequent solving of univariate equations: pn(x1) = 0, p2(x1, x2) = 0, for
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solutions x∗1 of the previous equation, etc. The procedure, according to the
quoted papers is efficient. A similar idea has been applied by the author for
solving optimization problems; see [7].

In all above cases, the system of transformed conditions gets reduced to
the triangular form. It is not so for an underdetermined system of equations,
where we only get the following transformed system:

p1(x1, . . . , xn−m+1, . . . , xn) = 0,
. . .
pm−1(x1, . . . , xn−m+1, xn−m+2) = 0,
pm(x1, . . . , xn−m+1) = 0

.

Here, we need to start with solving a multivariate underdetermined equation
pm(x1, . . . , xn−m+1) = 0. Let us denote the solution manifold of this equa-
tion M = {(x1, . . . , xn−m+1) | pm(x1, . . . , xn−m+1) = 0}. We obtain M as a
set of boxes enclosing its segments (cf., e.g., [9]).

For all these boxes, we can proceed with solving univariate equations to
find the solution of the initial system (1), as in the well-determined case.

Computing M is obviously, much more demanding and cumbersome than
solving a univariate equation, but still it is an improvement: instead of
solving a system ofm equations in n variables, we need to enclose the solution
manifold of a single equation in (n−m+ 1) variables.

What is more, next steps, in which we compute feasible values of xn−m+2,
xn−m+3, . . . , xn can be parallelized in a pretty scalable manner: M is prob-
ably enclosed by a large number of boxes and computations for each of these
boxes are independent on computations on the others.

To the best knowledge of the author, this approach has not been consid-
ered or tested for underdetermined systems of equations and this paper is
going to fill this gap.

The solver used by the author is HIBA_USNE [5], written by himself
and described, i.a., in [9], [10]. For symbolic preprocessing, CoCoALib [1] is
applied.
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