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ABSTRACT. We show that the Einstein—Hilbert functional, as a
functional on the space of Reeb vector fields, detects the vanishing
Sasaki-Futaki invariant. In particular, this provides an obstruction
to the existence of a constant scalar curvature Sasakian metric. As
an application we prove that K-semistable polarized Sasaki man-
ifold has vanishing Sasaki-Futaki invariant. We then apply this
result to show that under the right conditions on the Sasaki join
manifolds of [7] a polarized Sasaki manifold is K-semistable if only
if it has constant scalar curvature.

1. INTRODUCTION

In the past ten years, Sasakian geometry has been in the middle
of intense activities both in geometry and theoretical physics due to
its role in the AdS/CFT correspondence [4, 22, 23]. It is, more pre-
cisely, a Sasaki-Einstein metric of positive scalar curvature that takes
part in this matter, but finding obstructions or sufficient conditions for
the existence of such a structure has led to an extensive exploration
of Sasakian geometry [4, [I7]. Via its transversal geometry, a Sasaki
manifold involves a Kahler structure and, as such, the search for a
Sasaki-Einstein metric is closely related to the search of a Kéahler—
Einstein metric on which there has been put a great deal of effort.
Sasaki-FEinstein geometry is a very restrictive version of a constant
scalar curvature Sasaki (cscS) metric, or even more generally an ex-
tremal Sasaki metric [5] and can be viewed as an odd dimensional ana-
logue of the more classical subject of constant scalar curvature Kahler
metrics, which has been actively studied since the pioneering works of
Calabi [I1]. Sasaki-Einstein metrics may occur when the first Chern
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2 The EH-functional and the SF—invariant

class ¢;(D) of the contact distribution D vanishes. Because of this co-
homological constraint and because the Kahler-Einstein equation turns
out to be a Monge-Ampere equation, the cscS or analogously constant
scalar curvature Kéahler (cscK) problem, is even more difficult.

One of the most famous obstructions to the existence of a cscK met-
ric is the Futaki invariant [16]. In this paper we show that the Sasaki
version of this invariant, namely the Sasaki-Futaki invariant or tranver-
sal Futaki invariant, defined in [5], [I7], is closely related to a modified
version of the Einstein—Hilbert functional

n+1
SE
n
Vi

(1) H(¢) =

where S¢ denotes the total transversal scalar curvature, V¢ the volume,
and 2n + 1 is the dimension of the Sasaki manifold. They are both
defined as functionals on the cone of compatible Reeb vector fields, the
Sasaki cone. The functional (|1} is convenient since it is invariant under
scaling of the Reeb vector field. The details are explained in §2)and §3]
This functional is a slight modification of the original Einstein—Hilbert
functional used in the resolution of the Yamabe problem [2].

Theorem 1.1. The set of critical points of the Finstein—Hilbert func-
tional is the union of the zeros of the Sasaki-Futaki invariant and of
the total transversal scalar curvature.

In particular, if a Reeb vector field admits a compatible cscS metric
then it is a critical point of the Einstein—Hilbert functional.

More precisely, Lemma |3.1| gives an explicit relation between the
derivative of H and the Sasaki-Futaki invariant.

Remark 1.2. The relation Ric(§,€&) = 2n which holds for any Sasaki
metric with Reeb vector field £ imposes that a Sasaki-Einstein metric
has scalar curvature 2n. Hence Sasaki-Einstein metric only lies in the
transversal subset of the Sasaki cone on which S = 4n'V. On that
subset the Einstein—Hilbert functional is some constant, depending on

n, times the volume functional which is convex, due to a result of
Martelli-Sparks—Yau [22].

Theorem|[I.TJcan be interpreted as an extension of a result of Martelli—
Sparks—Yau [22], 23] to the cscS problem. Theorem also generalizes
a result of the third author [20] to the non toric case. Note that, con-
trary to the Sasaki-Einstein case, there is no chance to prove that H
is (transversally) convex since, as first shown in [20], there are exam-
ples of multiple non-isometric cscS metrics in a given Sasaki cone (see
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also [7]). Indeed, here we give other explicit examples of this lack of
non-uniqueness.

One important asset of the Einstein—Hilbert functional is that it is
much easier to compute than the Sasaki-Futaki invariant. Indeed, it
allows us to give an explicit expression for the Sasaki—Futaki invariant
as a rational function when applied to the w-cone of the weighted S3-
join manifolds M, ;, w studied in [7], see Lemma [5.5( below. Moreover,
in the toric case, the total transversal scalar curvature is expressed as
an integral of a certain polytope and it turns out that the Einstein—
Hilbert functional coincides with the isoperimetric functional on poly-
topes tranverse to the moment cone [20]. In that case too, H is a
rational function.

Another obstruction to cscS metrics is the lack of K-semistability, de-
fined in the Sasakian context as the K-semistability of the associated
polarized cone (Y,&) by Collins and Székelyhidi in [I2]. By analogy
with the Kéhler case and in the light of the Donaldson—Tian—Yau con-
jecture [I5], 27, 29] it is natural to wonder if this condition is also suffi-
cient. We apply Theorem toward an affirmative answer by proving
the following theorem.

Theorem 1.3. If (Y,€) is K-semistable then the Sasaki—Futaki invari-
ant F¢ vanishes identically, and £ is a critical point of the Einstein-
Hilbert functional H(E). Alternatively, if £ is not a critical point of
H(¢) then (Y, &) is not K-semistable. In particular, if £ is not a criti-
cal point of the Einstein-Hilbert functional then (Y, &) is K-unstable.

Note that Donaldson’s proof [13] [14) [15] of the Donaldson—Tian—Yau
conjecture for compact toric surfaces readily implies that the Sasakian
K-semistability of Collins—Székelyhidi ensures the existence of a com-
patible cscS metric. Indeed, every transversal geometrical object is
translated as an object defined on a transversal labelled polytope [3] 20]
and the K-stability is also defined only using the labelled polytope
data [15].

As suggested by an example constructed in [I5], and contrary to
the toric Sasaki-Einstein problem, it is generally unlikely that a Reeb
vector field with vanishing Sasaki-Futaki invariant necessarily admits
a compatible cscS metric. However, when all elements of the Sasaki
cone can be represented by extremal Sasaki metrics, we have

Theorem 1.4. Suppose the Sasaki cone is exhausted by extremal Sasaksi
metrics and that the total transverse scalar curvature does not vanish.
Then the set of critical points of the Einstein-Hilbert functional is pre-
cisely the set of rays in the Sasaki cone with constant scalar curvature.
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In particular, in this case a Sasakian structure S = (£,n,P,g) has
constant scalar curvature if and only if (Y,&) is K-semistable.

We can apply this theorem directly to the S2 -join manifolds M;, , w =
M %, 3, S3, of [7]; however, as shown in Section we can obtain a
stronger result by direct computation. Recall that the join construc-
tion correspond to the product in the Sasaki category. The symmetries
of S3 are then transfered to the join in some sense and the S2—join
manifolds M), ;, w inherits an important two dimensional subcone tg,
called the w-cone, of the Sasaki cone t* associated to a two dimen-
sional Lie subalgebra t,, of the Lie algebra t of a maximal torus lying
in the automorphism group of a Sasakian structure.

In fact, using the relation between H and the Sasaki-Futaki invariant,
Lemma /5.5 expresses the latter in terms of a rational function obtained
explicitly from the S3-join construction. This allows us to determine
if a ray ve in the w-cone has constant scalar curvature regardless of
whether the transverse scalar curvature vanishes or not.

Theorem 1.5. Let M be a reqular Sasaki manifold with constant trans-
verse scalar curvature, and consider the Ss’v -join My, 1,.w- Its w-cone t{,
has a cscS ray t¢ if and only if the Sasaki-Futaki invariant F¢ vanishes
on the Lie algebra ty, @ C. Then for & € t}, the polarized affine cone
(Y, &) associated to M, 1, w is K-semistable if and only if the Sasakian
structure S = (£,1, P, g) on My, 1, w has constant scalar curvature (up
to isotopy).

In Section we give some examples of the manifolds M, j, w. In
particular, Example [5.9 gives infinitely many contact structures on the
two S3-bundles over a Riemann surface of genus greater than one which
have both vanishing transverse scalar curvature and Sasaki-Futaki in-
variant. The topology of the manifolds M, ;, w has been studied in
[7, 8). In particular, if M is simply connected so is M, 1, w and a
method for describing the cohomology ring is given, and is computed
in special cases. For example, the integral cohomology ring for Example
5.7 below is computed in [§] for the ¢; (D) = 0 case (I; = 1,1y = wi+ws).

Another application of Theorem is to ensure the existence of a
Reeb vector field for which the Sasaki-Futaki invariant vanishes iden-
tically in some case.

Theorem 1.6. Assume that the total transversal scalar curvature is
sign definite and bounded away from O on each transversal set of the
Sasaki cone, then there exists at least one Reeb vector field for which
the Sasaki—Futaki invariant vanishes identically.
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This hypothesis is fulfilled on contact toric manifolds of Reeb type
and when ¢;(D) = 0, but for these cases Theorem was already
known [17, 20, 22, 23).

Finally, we study the second variation of the Einstein-Hilbert func-
tional. This functional being invariant by rescaling cannot be convex in
the usual sense. Let us say that it is transversally convex (respectively
concave) at & if for every variation £ + ta in the Sasaki cone

d2
dt?
with equality if and only if a € RE. We get, as a consequence of a

theorem of Matsushima, that H is convex (transversally to rescaling)
near rays of Sasaki-n-Einstein metrics.

H({ +ta) >0 (resp. <0)

Theorem 1.7. Let (M, D, J, g,&) be either a cscS compact manifold
of negative transverse scalar curvature or a compact Sasaki-n—FEinstein
manifold of positive transverse scalar curvature. Then H is transver-

sally convex at & (or transversally concave in the negative cscS case
with n odd).

Remark 1.8. In the Sasaki-Einstein case, our result here can be com-
pared with the convexity results in [23].

In Section [2] we recall the basic notions of Sasaki geometry needed
later. In Section |3| we prove Lemma from which follows Theo-
rem and compute the second variation of H. In Section 4| we apply
Lemma [3.1]to prove Theorems[I.3|[T.4[1.6]1.7 In Section 5] we explicitly
compute the Einstein-Hilbert functional and thus the Sasaski-Futaki
invariant in terms of rational functions, Lemmas and [5.5], for the
S3 join construction of [7] which proves Theorem We then apply
our computations to several examples.

Acknowledgements. This work has benefited from a visit by the third
and fourth authors to the University of New Mexico to whom they thank
for support and hospitality. The authors also thank Vestislav Apostolov,
Tristan Collins, Gabor Székelyhidi, and Craig van Coevering for helpful
discussions.

2. BACKGROUND

2.1. The Sasaki cone. We give in this section the basic definitions
and facts we need for our purposes. We keep the notation of [4] and
we refer to it for an extensive study of Sasakian geometry.
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A Sasakian manifold of dimension 2n + 1 is a Riemannian mani-
fold (M, g) together with a co-oriented dimension 1 contact distribu-
tion D such that the cone metric ¢ induced by g on C(M), a con-
nected component of the annihilator, DY of D in T*M, is Kéhler
with respect to the symplectic structure w coming from the inclusion
C(M) C T*M. Note that we have an inclusion ¢, : M — C(M) deter-
mined by Sy(T*M)NC(M) ~ M where Sy(T*M) is the set of covectors
of norm 1. Usually, one identifies

1
(C(M) =M x Rsp, §=dr xdr +1%¢, w = édd%ﬂ)

by defining the map r : C(M) — Rso as 72 = 3,(y,¥) = grp) (s 1)
where y is the vector field induced by dilatation along the fibers in
CM)cCcT*M and 7 : T*M — M.

The integrable complex structure J on Y = C (M) determines a
CR-structure (D, J) on M as D = Tuy(M) N J(T1,(M)) and a Reeb
vector field £ = J y which pull back as a Killing vector field on (M, g)
transverse to the distribution D.

Let (M, g,&, D) be a Sasakian manifold of dimension 2n + 1, where
g denotes the Riemannian metric, £ the Reeb vector field and D the
contact structure. The Sasakian structure is also determined by the
CR-structure (D, J) together with the contact form n € Q'(M) so that
n&)=1,Ln=0,kern=D andﬂ

g=dn(, () +nen
where ® € I'(End(TM)) is defined as ®(£§) = 0 and ®|, = J.

The Reeb vector field ¢ lies in the Lie algebra ct(D,J) of CR-
diffeomorphism C'R(D, J). Recall that the space of Sasaki structures
sharing the same CR-structure, denoted Sas(D, J), is in bijection with
the cone of Reeb vector fields ¢t (D, J) = {X € c¢(D,J) | n(X) > 0}.
The map ¢t (D, J) — Sas(D, J) is given by

) ¢ <%D J) |

From [4] we know that ce* (D, J) is an open convex cone in ct(D, J),
invariant under the adjoint action of €R(D, J). Moreover, the following
result will be useful for our study.

Theorem 2.1. [5] Let M be a compact manifold of dimension 2n +
1 with a CR-structure (D,J) of Sasaki type. Then the Lie algebra

'In this equation we use the convention in [5] rather than [4] since it coincides
with the usual convention in Kahler geometry.
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ce(D, J) decomposes as ct(D,J) = t, + p, where t; is the Lie algebra
of a mazximal torus Ty of dimension k with 1 <k <n+1 andp is a
completely reducible t,—module. Furthermore, every X € ¢t (D, J) is
conjugate to a positive element in the Lie algebra ty.

The Sasaki cone is the set tf = t, N ™ (D, J). When seeking
extremal or csc Sasaki metrics one deforms the contact structure by
1 +— n—+d°p where the function ¢ is invariant under the maximal torus
T. Thus, the Sasaki cone is associated with an isotopy class of contact
structures of Sasaki type that is invariant under 7.

2.2. The Sasaki-Futaki invariant. One can consider the class Sas()
of Sasakian structures having the same Reeb vector field. Let L¢ be
the line bundle having & as a section. The inclusion L¢ < T'M induces
a sequence of bundle morphisms

0— Leg—=TM — Q¢ — 0.

For any CR-structure (D,J) in Sas(§), the restriction D — Q¢ is an
isomorphism and provides a complex structure J on Q¢. One can con-
sider the subclass of structures Sas(¢, J) making the following diagram
commutes.

TM — Q¢

.

TM — Q¢

With that comes a natural notion of transversal holomorphic vector
fields h(¢, J) see [5].

For a given Sasakian manifold, (M, g,&, D, J), the transversal Kahler
geometry refers to the geometry of (D, .J, g,). More precisely, M is fo-
liated by the Reeb flow. So there are local submersions 7, : U, — V,,
where U, and V,, are open subsets of M and C" respectively, such that
mhi = ®. In particular, dr, : (Dy, ,J) — (T'Vq,i) is an isomorphism
and the Sasaki metric is sent to a Kéahler structure on V,, with a con-
nection V1 and curvatures R}, Ricl, pl sl... Since, 7} VL and 75V}
coincide on U, N Ug, these objects patch together to define global ob-
jects on M, the transversal connection and curvatures V¥, RT, Ric?,
pT, sT... See [4,[IT] for more details. These tensors are basic, notably
the transversal Ricci form p! satisfies

pT(g’ ) =0, prT =0
and lies in the basic first Chern class 2mc? (Fe).
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Since the exterior derivative preserves this condition, the graded al-
gebra of basic forms is a sub-complex of the de Rham complex. More-
over, one can define the basic exterior derivative dp as the restriction
of the differential to these forms, its adjoint g and the basic Laplacian
Ap = dgdg + dgdp. The Hodge Theorem holds for the basic cohomol-
ogy in this context; for a Sasaki metric g there exist a unique basic
function 1, (of mean value 0) such that

p’ = piy + 100,

where p% is Ap—harmonic. Note that

where V¢ is the volume of (M, g), the volume form is dve = n A (dn)”
and S is the total transversal scalar curvature. The volume of the
Sasakian manifold (M, D, J, £) does not depend on the chosen structure
in Sas(§), see [4] and the total transversal scalar curvature does not
depend on the chosen structure in Sas(¢, J), see [17].

Recall from [5] that the Sasaki-Futaki invariant of the Reeb vector
field £ on M, is the map

defined by

(4) Fe(X) = /M Xpydu,

where h(&, J) is the Lie algebra of transversely holomorphic vector fields
which is infinite dimensional owing to arbitrary sections of the line
bundle L, generated by . However, since F¢(£) = 0 we can consider F¢
as a character on the finite dimensional Lie algebra (&, J)/T'(L¢). We

also mention that F¢ is independent of the representative in Sas(&, J)
and that F¢([X,Y]) = 0, see [5] [17],

3. THE EINSTEIN-HILBERT FUNCTIONAL

3.1. The first variation. We define the Einstein—Hilbert functional
SZL-H

5 H(¢) =

) © =

as a functional on the Sasaki cone. Note that H is homogeneous since
the rescaling & — ¢ gives

1
A" du, and ng,



C. Boyer, H. Huang, E. Legendre and C. Tgnnesen-Friedman 9

and as mentioned above is independent of the representative in Sas(¢, J).
The following lemma clarifies the link between the Einstein—Hilbert
functional and the Sasaki-Futaki invariant.

Lemma 3.1. Given a € Tet), we have

TH(a) - %Fg@m».

If S¢ = 0 then dS¢ = nF¢(®(a)).

As a consequence of Lemma[3.1] we see that the set of critical points of
H; is precisely the union of the zero sets of S¢ and F¢ which proves the
first statement of Theorem [I.Il The second statement of Theorem [l
follows from Proposition 5.2 of [5].

Proof of Lemma [3.] Given a path & in t such that & = &, we denote
TItZ—77 , &y =0 — P @1, and
(&)
gr = dne(Pe(-),-) + ne ® my
(6) dn(®i(-),) — dn(&) An
ey ey CREmen

Put @ = € = (£&)|,_, 50 1 = —n(a)y, d = —Pa©n and

d _dn(-, () A @) dd(n(&e)) A
Egt = (&) — (&) (€, - (€2 (-, @:(+))
_dm(&) An, e d(n(&)) A
n(&t 2 ( 7CI)t( )) + Qat(n(ft)) 77(615)3
)
. n(&)? e
Now, using the fact that n(&) = 1 (and, thus, d(n(&)) = 0), we get
(7)
g = —dn(-,(®a) @n(-)) = nla)dn(-, ®()) — (dnla) An)(-, B(-)) — 2n(a)n @ n
= —nla)g —nla)n@n+b

where

(8)

(5 @ ()

b(X,Y) := —n(Y)dn(X, ®a) + n(X)(®Y).n(a)
=n(Y)dn(®X, a) + n(X)dn(®Y, a).
Moreover, dvy = 41 A (dn)", thus

9) (%dvt)to = —(n+ 1)n(a)dv,,.
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The scalar curvature differs from the transversal scalar curvature by a
constant

(10) Sg =S5 —2n

following the formulas Ric(X, £) = 2nn(X) and Ric(Y, Z) = Ric' (Y, Z)—
29(Y,Z) for X e I'(T'M) and Y, Z € I'(D) see [4, Theorem 7.3.12]. As
computed in [2, p.63] we have

[ s = [ (Aergg+ 8(60) — 909, Riey))dvy =~ [ g(a. Ricy)av,

where 0 denotes the co-adjoint of the Levi-Civita connection on the
space of symmetric tensors. Since [,, d(8)dv, = 0 and [,, A(B)dv, = 0
for any tensor (3, combining with the last formula we have

/M Sgdvg = /M(n(a)(sg + g(n ®n, Ricy)) — g(b, Ricy))dv,
(1) - /M (n(a) (s, + 2n) — g(b, Ricy))dv,

= / n(a)SZd’Ug
M

for the second line we used the identity Ricy(&, &) = 2n recalled above
and, for the last line, the fact that g(b, Ric,) = 0 that we shall now
prove. Observe that b is symmetric and that at each point p € M,
b(&,€) =0, b(u,v) =0 if u,v € D,, while Ric(u,£) = 0 at p whenever
u € D, Writing b and Ric, with respect to an orthonormal basis
€ e, Jer, ... ey, Je, of T,M with e; € D, we see that

(12) gp(b, Ricy) = 0.
Remark 3.2. We have L, = 0. Indeed, L¢ 7, = 0 and thus
0= Lan + Le(—=n(a)n) = Lan — Le(n(a))n = Lan
since a € Tty (i.e [a,&] = 0), so
Le(n(a)) = &.(n(a)) = dn(&, a) + a.n(§) +n([a, &]) = dn(§, a) = 0.
Putting the variational formulas @D and together we get

a | |
 (Se) = /M (g + 5L diy)

(13) - /M (n(@)sTdv, — (n -+ 1)n(a)sTdv,)

= —n/ n(a)sgdvg.
M
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Hence, using and we have
d S¢ . .
(%H(ft))tzo = W ((n + 1)V§S§ — n85V5>
St Se
14 :—nn+1—€n(/ a(sT )dv)
(14) g (f, e (55 - ) e
S¢
——n(n+ 105 ([ n(@anvydy,
Ve \Ju

where Ap is the basic Laplacian and 1), is the unique (norrr_lahzed to
have mean value 0) basic function satisfying p” = p}; + i00v,. Note
that n(a) is basic by Remark We continue

/M (@) A sy, = /M g(dsn(a), di,)dv,
~ [ stana).av)in,

(V9%9,).n(a)dv,

s\s\

((Lan)(Vohg) — dn(a, V¥4, ))dvg

dn(a, V9,)dv,

(9(2(a), VIhy) — n(®(a))n(V74y))du,

| |
a\:\z\

9(®(a), VIhg)dvg

= —/M(IJ(a).wg dv,
= —F¢(®(a)).

Combining , and , we get Lemma . O

3.2. The second variation. To simplify the expression of the second
variation of the Einstein—Hilbert functional, we use the standard no-
tation for inner product on the space L*(M) of square integrable real
valued functions on M

(f.h) = /M fhdv, and |f]? = /M f2dv,
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and for vector field X € I'(T'M) or one form g € I'(T*M)

X2 = /M g(X, X)dv, and [|B]* = /M 9(3, B)dv,

Moreover we define the normalized transversal scalar curvature

which integrates to zero.

Lemma 3.3. For each a € Tgt) and variation & = € + ta, we have

& €)imo = i+ D)+ 1) SE (@) = nln + 1) n(a) P
v Vi
Sn
n(n+1)2= a)*s" dv,
w175 [ 0t
S”_1 9
+ n(n + 1)V”+2 (nV( n(a)) — S(n(a), 1)) .

Proof. Considering that expression

d

STL
M0 = nln Vg [ )T,

we have that
(16)
e .
() (S;?S - \S,iv) | w@stas,
- 3_?? /A477(a)2§Tdvg + \S/—EZZ /Mn(a)éTdvg

S? S S;V
§ 2 3

-5 nla — — —— | dv
-Vg/]\/[()<~§ V?) !

n

S¢
~ (41 | tapstau,
The formulas @D and can be used again here to see that

VS - SV = —nV/ )stdv, + (n+1)S/ n(a)dv,
M

= —nV/ )$ dv, + S/ n(a)dv,
M
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so that, summing the first and fourth terms of the right hand side of

gives
s s
—n? i (/J\/jn(a)§Tdvg) +nvn+1/M?7(a)dvg/M?7(a)§Tdvg
3 3

st oy SE 2
a1 gt [ nlde, [ st - S ([ nt@ie,
¢ M M £ M

For the third term of ([16]), that is \S/-—’il Joy n(a)$"dvg, we need to work

a little bit more. First, as before s, = sg — 2n so that, again by [2]
p.63],

(18) sg = 5, = A(tryg) + 6(0g9) — g(g, Ricy)

and, see (1), g = —n(a)g —n(a)n @n +b.
For the first term of (18), we compute that tr,g = —2(n + 1)n(a)
and we get

/ n(a)A(try,g)dv, = —2(n + 1)/ n(a)An(a)dv,

2+ 1) [ dnta) P,
M
For the second term of we need to understand a little bit better
the operator ¢ : SP(T*M) — SP=Y(T*M). It is defined as the co-adjoint
of the Levi-Civita connection seen as an operator on symmetric tensors.

One can check the following two rules for every symmetric p—tensor
B e SP(T*M), 1-form « € T(T*M) and function f € C*(M),

da®a) =26a)a.
Moreover, on 1-forms ¢ coincides with the codifferential, so that

/M n(@)6(5(3))dv, = / g(dn(a), 5(3))dv,.

M

Now, by checking that for each u,v € D, b(§,u) = —g(a, u), b(u,v) =0
and b(¢, &) = 0, we can rewrite

(21) b=—g(a,) ®n—n®g(a,-) - 2n(a)y*

Hence, using we have

(22) 6b = —2(5(n)g(a,-) +d(g(a,-))n) — 4n(a)d(n)n + 2n(V(n(a)))n.

(20)
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The following (pointwise) identity is consequence of Remark

(23) g(dn(a),n) = Len(a) = 0.

This last rule simplifies our problem a lot. Indeed, applying it with
formula , we have

g(dn(a),db) = —d(n)g(dn(a), g(a,-)) = =d(n)Lan(a)
and then

/M g(d(a), 8b)dv, = — / 5(n)Lan(a)de,

M

(24) =— /M g(n, dLan(a))dv,

= —/ LeLon(a)dvy =0
M

since LeLan(a) = LoLen(a) — Liggn(a) = 0 because Len(a) = 0 and
(€, a] = 0. The identity implies also that

(25) gldn(a),o(n ®@n)) = 26(n)g(dn(a),n) =0
which, combined with and that

/M n(a)g(dn(a),dg)dv, = % / g(dn(a)?,6g)dv,

M
1
(26) =3 / 9(Dd(n(a)?), 9)dvg
M
= -1 An(a)*dv, =0
2 Ju
gives the second term of as
(27)
| @i, = [ glanta.siis,
M M

_ /M g(dn(a), 5(~n(a)g — n(a)n @ n + b))dv,

= [ (atan(a).a(Vata).-) + n(T(n(@)alanta). m)d,
_ /M g(dn(a), g(Vn(a),-))dv,

= [ 1an(a)zie,
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Following the same lines than , the last term of , when inte-
grated with n(a) gives

(28) /Mn(a)2s§dvg.

In summary we have

29 [ w@sd, = [ (=20 + Dldn@) +n(as]) du,
Putting and in we get

(30)
-1 & S? 5.7 ? o T
n(n—f—l)@( (§6))1=o _V_?/MT](G) 5 dvg—i-V—?/Mn(a) 5,V
Sy s
_ s 2eT _ e 2
(4 g (06T = (2m 4 1) )]
Sgil T 2
o e (VAT () — S(n(a), 1)
13
S¢™ ¢ T
2 20
_ V?“ /Mn(a) dvg — (n+ 1)V—2/M77(a) $ dvg
Sn
— (2n+ 1) 5 |dn(a)|)®
Ve
Sg_l T 2
v (nV (5", n(a)) —S(n(a), 1))
3

In the case of a cscS metric Lemma [3.3| gives

Corollary 3.4. Suppose that (M, g, D, J,&) is a cscS structure with
constant transverse scalar curvature ng, Reeb vector field &, and contact

form n. For each a € T¢t) and variation & = £ + ta, we have

%MH(&) =n(n+1)(2n +1)(s,)" (Hd(n(a))Hf, - S—QIIU(a)\@)

n+1
Fa(n+1) (SQ:H ( /M n(a)dvg)2
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4. CRITICAL POINTS, STABILITY, AND LOCAL CONVEXITY

4.1. Sasakian K-stability. In [12], Collins and Székelyhidi intro-
duced the notion of K-semistability for a general Sasakian manifold
in terms of the K-semistability of the Kihler cone (Y = C(M),.J), as
an affine variety, with respect to the polarization given by the Reeb
vector field &. It turns out that this notion extends the orbifold K-
semistability of Ross and Thomas [25] to irregular Sasakian structures.

In this note, we use only the simplest aspects of this notion and the
proof we give of Theorem[I.3|follows the ideas of the proof of Theorem 6
n [12]. Consequently, we do not discuss the general notion of Sasakian
K-semistability and encourage the interested reader to consult [12] for
more details.

The starting ingredients are an affine variety Y with an action of a
torus T¢ whose maximal compact subtorus Ty Lie algebra t contains
the Reeb vector field £&. A Tg—equivariant test configuration for Y
is given by a a set of k Tg—homogeneous generators fi, ..., fi of the
coordinate ring of Y and k integers wy, . .., w,. The functions fi,..., fx
are used to embed Y in C* on which the integers wy, . .., w; determine
an C* action (via the weights). By taking the flat limit of the orbits of
Y to 0 € C we get a family of affine schemes

y — C.

There is then an action of C* on central fiber Y, generated by a €
Lie(Ty), where T¢, C Gl(k,C) is some torus containing T¢. The
Donaldson—Futaki invariant of such a test configuration is essentially
defined in [12] to be

(31) Fut(Yy €,a) = “£D, (

n

Sg SgDaV5
— | 4+ ——
V£ n(n + 1)V§

They define that (Y,¢) is K-semistable if for each T, such that £ €
Lie(Tgr) and any T¢ equivariant test configuration

(32) Fut(Yy, &, a) > 0.

The case of a product configuration is when ) =Y x C and the action
of C* on Y} is induced by a subgroup of T¢.

Proof of Theorems and[1.f} To prove Theorem we first note
that the linearity in a of the right hand side of implies that if
(Y, ¢) is K—semistable then Fut(Yp, £, a) = 0 for every product config-
uration. A straigthforward computation (done in [28, Lemma 2.15])
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shows that there exists a constant ¢, > 0 depending only on the di-
mension n such that Fut(Yp, €, a) = ¢, Fe(P(a)). So Lemma 3.1 gives

n(n +1)S¢
—————Fut(Y;
CnV? U ( Oagaa)

from which Theorem [L.3 follows.
Theorem follows directly from Theorem Corollary 1 of [12],
and Proposition 5.2 of [5]. O

dgH(CI,) =

4.2. Existence of critical points. We say that a set X is a transversal
subset of tf if ¥ C ¢ and that ¥ meets each ray passing through t in
a single point. In particular, a transversal subset of ;" is a codimension
one relatively compact subset of t;, whose closure does not contain 0.
For example, taking any codimension 1 vector subspace H C t; that
does not contain £ the set

Z§7H:tz_ﬂ{§+(l| CLEH}
is a transversal subset of t; .

Proof of Theorem[1.0. Assume that the total transversal scalar curva-
ture is sign definite and bounded in the sense that there exists an order
1 homogeneous function m : tf — R, bounded below by a positive
number on any a transversal subset of t;, and such that

(33) [Se| = me Ve VE €t

Another way to state this condition is that the set {£ € tf | Ve = S¢} is
relatively compact in t,. This condition is fulfilled in the toric case [20].

Assuming the bound and first that S > 0, we have
H(&) > my™Ve.

The right hand side is still a homogeneous function. Consider ¥, a
transversal subset of t, given by the projection of a codimension 1
subspace H transverse to £ in T¢t) (i.e ¥ = 3¢y as above). The
condition above implies that there exists m, > 0 such that

H(&) = m{ Ve 2 m "' Ve V§ € X,

Now, V¢ is a strictly convex function on X that tends to infinity on
the boundary 0% as it is proved in [23]. Thus, as a function on 3,
H reaches its minimum somewhere in (the relative interior of) ¥ that
point, say &,, is a minimum, thus a critical point, of H but S¢, # 0 by
hypothesis. Therefore F¢, = 0 thanks to Lemma The case S < 0
is similar and theorem [L.6] follows. 0
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4.3. Local convexity (concavity). It is well known [23] that the
volume functional is convex on the Sasaki cone. Since H is homoge-
nous, it cannot be convex in the usual sense but one can wonder if
it is transversally convex. For convenience we shall refer to transverse
convexity or transverse concavity by simply convexity or concavity. We
also know from [20] [7] that global convexity generally fails in the cscS
case. Hence, it is interesting to investigate when local convexity and/or
concavity can hold.

Lemma 4.1. Let (M*. D, J g,€) be a cscS compact manifold of
non-zero transversal scalar curvature, and T C CR(D, J) N Isom(g) be
the maximal compact torus whose Lie algebra is identified with ty.

(1) If the transverse scalar curvature is negative, the E-H functional
H is convex if n is even and concave if n is odd.

(2) If the transverse scalar curvature is positive and the first non-
zero eigenvalue of the Laplacian, restricted to the space of T—

T
. . . . S .
invariant functions is bounded below by 5-%=, then H is convex
near &.

Moreover, in both cases the cscS metric is isolated in the Sasaki cone.

Proof. Consider the formula for the second variation of H in the Corol-
lary Since n(a) is a Hamiltonian we can normalize it so that
J3y n(a)dvy = 0. Thus, the formula reduces to

(34)

T u 1)(2n+1)(s)" | ||d ; il ;
22, &) = n(n+1)2n+1)(sy)" | |l (n(a))l\g—m\ln(a)l\g :

There are two cases to consider.

Case 1. sg < 0: Then Equation implies that if n is even, H is
convex near &, whereas, if n is odd, H is concave near &.

Case 2. sz; > (. In this case using the well known inequality

ld(n(a)l = Mln(a)ll;

. S
we see that H is convex near £ as soon as A\; > @n—‘jrl) O

Proof of Theorem[1.7. For negative transverse scalar curvature, the the-
orem follows immediately from (1) of Lemma So we consider the
positive Sasaki-n-Einstein case. We give two proofs of this. First
we note that a well known result of Tanno says that for every pos-
itive Sasaki-n-Einstein metric there is a transverse homothety to a
Sasaki-Einstein metric with ng = 4n(n + 1) where the Lichnerowicz
bound A; > 2n + 1 holds (cf. [4, Corollary 11.3.11]). Thus, we have
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ST . . .
M >2n4+1 > 47;5::11) = 3.%5. Thus Lemma implies that H is

convex near a Sasaki-Einstein metric. But we know that H is invari-
ant under a transverse homothety. So it is convex for any positive
Sasaki-n-Einstein metric.

For the second proof we use the bound \; > % due to Matsushima
Theorem [24] which holds for any positive transverse Kéhler-Einstein
metric as described in Theorem 3.6.2 in [18]. The proof given there is
local differential geometric in nature and clearly applies to the quasi-
regular and irregular Sasakian structures. So the result follows from

(2) of Lemma [4.1] O
Example exhibits a (positive) cscS metric for which H”(€) < 0.
T

In particular, the bound \; > —2— does not hold for this variation.

2n+1

Example shows that local (;:)nvexity (concavity) fails for H when
S = 0 as one can expect. Indeed, the case S = 0 is a rather special type
of critical point of H as it appears in Theorem [I.1] It seems reasonable
to put that case aside and investigate local convexity/concavity near
rays of positive or negative cscS metrics. More generally, it is inter-
esting to contemplate whether the EH—functional is a Morse function
away from its zero set.

Example 5.9 shows that there are cscS metrics with transverse scalar
curvature identically zero. In this case the local convexity holds even

though H vanishes up to order six at the given point.

5. THE EINSTEIN-HILBERT FUNCTIONAL ON THE wW-CONE OF A
SASAKI JOIN

In this section we apply our results to the (ly,l2)-join M, 1, w =
M 1,1, 53 of a regular Sasaki manifold M of constant scalar curvature
with the weighted 3-sphere S2. These manifolds have recently been the
object of study by the first and last authors [6] [7, 8, @]. They include
an infinite number of homotopy types as well as an infinite number
of contact structures of Sasaki type occurring on the same manifold
6, [10).

5.1. A Sasaki Join. We present only a brief review and refer to Sec-
tion 3 of [7] for all the details. Let M be a regular Sasaki manifold
which is an S'-bundle over a compact CSC Kahler manifold N with
a primitive Kéhler class [wy] € H?*(N,Z). Let S3 be the weighted
3-sphere, that is, S® with its standard contact structure, but with a
weighted contact 1-form whose Reeb vector field generates rotations
with generally different weights wq, wy for the two complex coordinates
21, 79 of 83 C C2.
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Consider the join M), 1, w = M %, 5, S3,, where both w = (wy, ws)
and 1 = (l3,ly) are pairs of relatively prime positive integers. We
can assume that the weights (w,wsy) are ordered, namely they sat-
isfy w; > wy. Furthermore, M, ;, w is a smooth manifold if and only if
ged(ly, liwywy) = 1 which is equivalent to ged(ly, w;) = 1 for ¢ = 1, 2.
Henceforth, we shall assume these conditions.

The base orbifold N x CP![w] has a natural Kahler structure, namely
the product structure, and this induces a Sasakian structure S, ;, w =
(&1 dows Ty ows ©,y g) o0 My, 4, . The transverse complex structure J =
®lp, , ., is the lift of the product complex structure on N x CP'[w].
The Kéhler form on N x CP'[w] is wy, j, = Lhwy + lawy where wy is
the standard Kéahler form on CP![w] which satisfies [wy] = % where
wp is the standard volume form on CP'.

We remind the reader that by the w-Sasaki cone we mean the two
dimensional subcone of Sasaki cone induced by the Sasaki cone of S3,.
It is denoted by t{, and can be identified with the open first quadrant
in R?.

For a given n € Z\{0}, let L,, — N denote a holomorphic line bundle
with ¢;(L,) = [nwy] and let 1 — N be the trivial complex line bundle.
Then the total space of the projective bundle S, = P(1® L,) — N
is an admissible manifold as defined in [I]. Let D; and Dy denote the
divisors given by the zero section 1 & 0 and infinity section 0 & L,,
respectively, and let let PD(D;) denotes the Poincaré dual of D; for
i = 1,2. Then, for any real number r satisfying that 0 < |r| < 1
and rn > 0, the cohomology class 2 = %"T[WN] + 27 PD(D; + Dy) is a
Kéhler class. Any Kéahler class of this form (up to a rescaling) is called
an admissible Kahler class.

In each admissible class we can construct an explicit type of Kahler
metrics, called admissible Kdhler metrics [I] and this construction gen-
eralizes metrics on the orbifold case of the log pair (S, A) where A is
the branch divisor

(35) A=(1- i)Dl + (1 — —)Dy,

with ramification indices m;. For the details of this construction in the
notation of the current paper, we refer the reader to [7].

The connection between the Sasaki Join above and the admissible
manifolds/metrics is given by the theorem below.

Theorem 5.1. [7] Let My, 1, w = M %,4, S5 be the join as described
above with the induced contact structure Dy, 1, w. Let v = (vi,v2) be
a weight vector with relatively prime integer components and let &,
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be the corresponding Reeb vector field in the Sasaki cone tf, and let
s = ged(|wavy — wive|, l2). Then the quotient of My, 1, w by the flow of
the Reeb vector field &, is a projective algebraic orbifold written as a
the log pair (S,, A) where S, is the total space of the projective bundle
P(1® Ly,) over the Kihler manifold N with n = I, (“*2=42%) " A the
branch divisor

(36) A:(L—iﬁDy+ﬂ——Lﬂ%,

with ramification indices m; = vi% = yym and divisors Dy and D,
given by the zero section 10 and infinity section 0 @ L,,, respectively.
The fiber of the orbifold (S,,A) is the orbifold CPvy, va]|/Z,.

Moreover, the induced Kdhler structure (g, wp) on (S,, A) may be

chosen to be admissible, with Kahler class given by r = $22=12% " qnd
. w1v2+wav1
satisfies
T lg 7Tf,g B 7T:<,gB d i l2 7Tf,(.d . W:WB s
= = Ny = — = =w

AT muive MUy 4T muve MUV

where g* = dno (1® ®).

5.2. The Einstein-Hilbert Functional. We compute the Einstein-
Hilbert functional on the w-cone of the join My, 1, w = M *;, 4, S5 An
arbitrary element of t} takes the form &, = vy Hy + vy Hy where H; are
the restrictions to M, ;, w of the infinitesimal generators of the rotation
zi+— €92 on S3 and let @ = Hy. The scale invariance of H(¢) allows
us to write H(§y) = H(H; + bH>) where b = 2. For convenience we
shall write H(b) instead of H(H; + bH,) and H'(b) for dH¢(a). To
obtain an explicit expression for H(b) we need to compute the total
transverse scalar curvature S¢ and the volume V.. To simplify the
presentation, we will in the following calculations ignore any overall
positive rescale that does not depend on the choice of (vq,v9). We
begin with some preliminaries. Suppose we have a quasi-regular ray
in the w-cone given by a choice of co-prime v = (vy,v2) # (wy, ws).
According to Theorem above, we may assume that the transverse
Kéhler metric is admissible (for a full description of such metrics see

e.g. Sections 2.3 and 5 of [7]). The volume form is then given by
1
—————ny A (dny) ™

[y )

By Theorem [5.1] and Equation (42) in [7], we have (dy + 1)!dv,, =
(37)

dvgv =

= AT (DY = _ AT ((T‘l +3) W Ads A 9)
v v ML vy (mvlvg)dN“ v v N )
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where 7, is the natural projection from M %, 1, S3, to (S,,A) and 6
and 3 are defined as follows: The open dense set S,y = S, \ D; U
D, is a principal C*-bundle with a natural S'-action. We equip S,
with a Hermitian metric and then chose 6 as a connection one form of
the Hermitian metric with curvature df = 2nmwy. Using a Legendre
transformation of the Hermitian norm of the fiber, we then produce
3 : Spo — (—1,1), which may also be viewed as the moment map of
the natural circle action on .S,,.

By Theorem [5.1 and Equation (46) in [7], the transverse scalar cur-
vature is given by

2dNSNn7“ _ F”(g))
L+rs  p(3) )

where p(3) = (1 +73)%, sy, = A/n = ll(A—s), and F' is a smooth

(38) Scal’ = muvvymt Scalg = mu vy <

wW1vV2 —wWaV]
function satisfying

F(3)>0, —-1<j3<1,
(39) F(£1) =0,

Fl(=1) = 2p(=1)/my  F'(1) = —2p(1)/my.

Here 2dy A denotes the constant scalar curvature of wy, so for example
if N = CP% then A = dy + 1. More generally, if [wy] is monotone,
then A is the Fano indez. If N is a compact Riemann surface of genus
G then A =2(1-G).

Lemma 5.2. On the manifolds My, ;, w with b = vy/v1 # wa/wy - up
to an overall positive constant rescale that does not depend on (vy, vy)
- the Einstein-Hilbert functional takes the form

dy+1

) -

dn+2
b‘iN+2+(l2A—l1w2)wa bdN+1+(l1w1—l2A)w'2iN b—l1w§N+l> N

dy+1 dny+1,\94NT+1
(w1b7w2)<w1N+ bdN+27w2N+ b)

Furthermore, we have the boundary behavior

lim H(b) = +o0, lim H(b) = +o0.
b—0 b—+o00

Proof. Now from Equations and we have

szl,l2,w

— _ n'N « [ (2dnsn,r  F(3) 1 dv d
 (murv)IN fMllth v A Ty << 11V+;\; o P(ﬁ? > (7‘ +3) NwNN A d5 A 9) ’

Scal®dv,,
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and

ndn
dvy, = —————— v/\*( - N IN A d /\9).
/J\/[l Vgy (mvlv2)dN+1 / n Ty (T + 3) Wy 3

1,lo,w I1,lg,w

Applying Fubini’s Theorem we have

dn 2dysn,r  F'(3)
Scal” dv,, = n—/ / v ( NN > 1 43) N WIN Ad3 A,
/Ml M (mugug)dy " ( 1:577 T+7; p(3) ( 3TN

1:l2,w
and
d
/ iy, = Tt T / / | (P )N Ads A0,
Mll,lg,w (mvva) N Sn Lg

where L is a generic leaf of the foliation F¢. Now by (1) of Proposition
3.4 in [7] we have that

/ Ny =2m1/s = 2wm/ly
Le

and so without loss of generality we may say that
T
/ M, Scal” dvg,

n 1 2dn sn,, mr mF" _
= (mv1v2 )dN f—l < NH-]\;"@ o p(ﬁ)(ﬁ)> (’I" 1 +5)dN d5

Slo,w

= Gam)™ (f_ll 2dsn,m(r~ +3)"™ "t dy —r= [1 mE () da)

)i (25Nnm((7‘_1 + 1) — (p = 1)) — IV (mFY(1) — mF’(—l)))

( n
muviv2

— G (A2 4 D = (7 = )+ 2 (L 1) o+ (1= 1) )

n

dy dn+1 . dy dy+1
dx (le’Ul’Ug((wl’Uz)dN7(w2’l}1)dN)+ll(wlvgfwg’l}l)(’wlN’le +w2Nv1N )>

= 2dN+1(l_1) dNTT dy Tl
l2 I (wrva—wavy)vy Vv N

and

fMll

dv
o,w gv

- (ﬁ)dN (dN-i-l)(vlwz)dN"'l ((T_l + 1)dN+1 - (T_l - l)dN+1>)

((wiv2) N1 —(wgvy) N 1)
ANl dyF1-
1 U2

2dn+1 (l_l)dN

la (dN+1)(’LU11)27w2’Ul)U
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We set b = 2 + o> and arrive at the following (where, as mentioned
above, we ignore any overall positive rescale that does not depend on
the choice of (vy,v7)).

(40)
Scal™ dv,,

Jan,

(leb((wlb)dN —ng)—f—ll(wlb—wg)(w(le bdN+1+w(21N)>

lo,w

(wlbfwg)va+1bdN+1

(lgA(wailbdN +w;lN72w2bdN*1+ +w1ng72b2+w;lN71b)+l1(wab’iN+1+w;N)>

dn 1L
U1N+ pdN+1

fMll7

(w1 —ugy ™)

(41) o (wlb—wz)v(liN+2bdN+1

dv
Ly U0

d dy—1 _ da—1 d
(wledN—l—wlN wob?N 1+~~-+w1w2N b+w2N)

dN+2
,UlN"" pin+1

Remark 5.3. Even though the above calculations were done assuming
that (v1,v;) defined a quasi-regular ray, i.e. that b € Q* and that b #
w2, continuity and the Approximation Theorem, due to Rukimbira [26],
saying that the irregular rays (b non-rational) can be approximated by a
sequence of quasi-regular rays, tells us that and hold for all b €
R*, i.e. for all rays in the w-cone. We also note the obvious fact that
if A >0, i.e. the constant scalar curvature of (IV,wy) is non-negative,
then the total transverse scalar curvature [ Miy iy Scal® dv,, > 0 for all

b € R*. However, when A < 0 and I, is sufficiently large, then there
may exist up to two values of b € R* where | Y Scal® dvg, = 0

(and in-between those two values, | My cal” dv,, is negative).
1-42,W

1:l2,w
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Now we are ready to write down the Einstein-Hilbert functional for
the w-cone.

(42)
dy+2
T
H(b) — (fMllh,W Scal® dvg,,
( ) - dn+1
(fMlle,w dvgv)
_ _ _ _ dn+2
(L2 AN T AN N TP gb N T by N T BN T ) (Vb V) )Y
= - _ dn+1
(wabdN“-&-wa 1w2bdN+m+w1ng 1b2+ngb) N
which reduces to the given form when b # ws/w;. 0

5.3. Admissible CSC constructions. Before we consider the critical
points of H(b), we recall some observations from [7] concerning the
existence of admissible CSC metrics on My, 1, w = M %, 1, S5,. We refer
to sections 5.1 and 6.2 (in particular equation (67) and the comments
surrounding it) of [7], for the justification of the statement below.

Proposition 5.4. Consider a ray in the w-cone determined by a choice
of b > 0. Then the Sasakian structures of the ray has admissible CSC
metrics (up to isotopy) if and only if fosc(b) =0, where

—f(b)
4 ) = — 27
( 3) fCSC( ) (wlb— w2>3
and f(b) is a polynomial given as follows:
(44)
fO) = —(dy + Dluwi™2p2dnta

+ Wl T2 (AL + 1 (dy + 1) ws)

— wPwg b ((dy 4+ 1)(Aldy + 1)ls = L((dy + Dw; + (dy + 2)ws)))
+ w L INFLYAN T2 Ady (diy + 2)ls — (dy + 1)(2dy + 3)11(wy + ws))

— WP wIN TN (dy 4+ 1) (A(dy + 1)l — L((dy + 2)wy + (dy + 1D)w,))
+ Wl (AL + 1 (dy + 1)wy))

— (dN + 1)l1w§dN+3.

This polynomial has a root of order three at b = wy/wy when wy > wy
and order at least four when w; = wy = 1 (where the case of b =
wy/wy = 1 gives a product transverse CSC structure). Thus fesc(b) is
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a polynomial of order 2dyx + 1 with positive roots corresponding to the
rays in the w-cone that admit admissible CSC metrics.

5.4. Derivative of H(b). Using Lemma [5.2] we calculate the deriva-
tive of H(b):
(45)

H'(b)

d d d dy 94Nt
(1246w N bAN —wGN )+l (wib—wo) (wy N 6N 1wy ) (wib—ws) fosc (b)
bdN+2(wa+1bdN+l7ng+1)dN+2 )

We may rewrite as follows
(46)

H'(b)

— — _ _ dy+1
<12A(w(liN 1bdN+’w(1iN 2w2bdN71+---+w1w;N 2b2+’w;N 1b)+l1(w(liNbdN+1+w;N)> N fcsc(b)

d dN—1 dN—1 d
AN F2 (N bAN 4N T wgbdN L4 g w N T b N )N +2

This tells us that for A > 0, the critical points of H(b) correspond exactly
to the ray(s) with admissible cscS metrics. In this case notice also that the
sign of H'(b) equals the sign of fosc(b). For A < 0, H(b) may have critical
points that do not correspond to admissible cscS rays. See for instance
Example [5.8| below.

An important observation is now that if we compare with and

we see that

P dy+1
N+tlpdy+1 T
(vl b fMll - Scal dvgv) fesc(b)

H'(b) =

dn+2
AN+2pdp 1
bN 2 (N pdn dv
1 thalva 9v

dyn+1
ScalT d v b
fMll Ly D CA gy fesc(b)
dNT2
(or) i o)

My 1o ,w

Comparing this to Lemma and using the fact that H(b) is a rational
function with only isolated zeroes and that fogc as well as the Sasaki-
Futaki invariant varies smoothly in the Sasaki-cone, we conclude that, up
to a positive multiple , fosc(b) represents the value of the Sasaki-Futaki
invariant F¢ at £ given by (vq,v2) in a direction tranversal to the rays. Thus
Proposition tells us that in this case the vanishing of the Sasaki-Futaki
invariant implies the existence of cscS metrics for the given ray and thus in
cases where the w-cone is the entire Sasaki cone we have that the existence
of cscS metrics is equivalent to the vanishing of fose(b) and hence with the
vanishing of F¢. We have arrived at
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Lemma 5.5. On the manifolds M, i, w - up to an overall positive constant
rescale - the Sasaki-Futaki invariant takes the form

1
Fe(®(H2)) = mfcsc(b)
2

where fosc(b) is given by Equations and .

Note that this theorem together with Corollary 1 of [I2] proves Theorem
[L.5l of the Introduction. O
As a bonus Lemma and Proposition 5.2 of [5] gives

Corollary 5.6. If on M, 1, w with € t, the Sasaki-Futaki invariant Fy
vanishes on the subalgebra t ® C, then it vanishes identically.

5.5. Some Examples. In this section we give some examples which illus-
trate our methods when applied to the S3-join construction. In all the
examples we give here the w-cone is the full Sasaki cone, but we could eas-
ily give examples where the full Sasaki cone is bigger with our statements
only applying to the w-subcone.

Example 5.7. Let us now assume that N = CPQ#kCT2 for4a <k <8
(CP? blown up at k generic points). Then the w-cone is the full Sasaki
cone. Moreover, N has a KE metric with primitive Kéhler form wy and, by
a theorem of Kobayashi and Ochiai [19], A = 1. We know that in the Sasaki-
Einstein case, that is, ¢;(D) = 0, we must have [; = 1 and ly = w; + wy,
and that the functional H(&) is (transversally) convex. It is also probably
convex in some cases with ¢1(D) # 0 as well. However, if we set [; = 1,
wy = 3, we = 2, and [y = 29, for example, we have

(4-+58b+8762+96%)"
H(b) b3 (44+6b+9b2)*
H() = (4-+58b-+87b4-9b%)° (—48-+88b-+ 72002 — 124205 —459b* +243b°)
) = b4 (4+6b4-952)"
fosc(b) = 243b° — 459b* — 124263 + 72002 + 88b — 48

Since fesc(0) = —48 < 0, fosc(1/3) = 32/3 > 0, f(2/3) = —96 < 0,
and limy_, 4 o foso(b) = 400 we know that fosc has at least three distinct
positive roots and applying Descarte’s rule of signs to fogc we see it has at
most three positive roots ... so it has exactly three distinct positive roots.
Looking at H'(b) above (or simply using that its sign follows the sign of
feso(b) we observe that the root in the middle is a relative maximum of
fosc while the others are relative minima. At the maximum, obviously,
H"(b) < 0, while at the minima H”(b) > 0. So H(¢) fails to be convex in
this case. This lack of global convexity on manifolds of the form M;, ;, w
occurs in infinitely many cases; in particular, it occurs on M, (39) (Which
is a smooth manifold when ged(l2,6) = 1) for all lo > 29.
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Example 5.8. Assume now that dy = 1, and N = X5 is a genus two
compact Riemann surface with A = -2, =1, wy = 3, wy = 2, and [y is
any positive integer such that ged(le,6) = 1. In this case we have that

_ (3b2—2I2b+2)3
HO) = i -

2(3b%2—212b+2)2(9b3+(3l2+12)b%2—(12+12)b—4
H’(b) _ 2 2b4-2)%( b3-|(r3(b+22-§3 )b%—(12412)b—4)

fesc(b) = 2(96 + (3lp + 12)b% — (12 + I2)b — 4)

Further, one may verify that the extremal function, F..:(3), satisfying the
(admissible) extremal ODE (arising from setting Scalp of equal to an
affine function of 3) and the endpoint conditions of Equation is - up to
a positive rescale - equal to (1 — 32)g(3), where

9(3)
= (3b—2)(903 + 120% — 120 — 4)3% + 2(3b% — 2)(9b% + 24b + 4)3
+ 27b% + 12603 + 1200 + 84b + 8

— Iab(3b—2)%(1 — 3?).

For a given positive b # 2/3, the corresponding ray has an admissible ex-
tremal metric if and only if F..+(3), hence g(3), is positive for all —1 < 3 < 1.
Now let us look at what happens for a small value of ls and a large value
of l2:

e For l3 = 1, the manifold M ; (37) is the nontrivial S3-bundle over
Y. We have that the solution (b > 0) to fosc(b) =0 (i.e. the cscS
solution) is approximately b = 0.835 and in this case, this is the only

critical point of H(b) for b > 0. It is in fact a minimum.

e For I3 = 101, the manifold M; 101 (32) is a nontrivial lens space
bundle over ¥5. In this case we have three solutions. First there
is the solution to fosc(b) = 0 which is approximately b = 0.685
and gives a cscS Sasaki metric. At this value of b we still have
a local minimum of H(b) (and here H(b) is negative). However,
H(b) has two additional critical points which are not local extrema,
but inflection points, namely; b = m ~ 0.099 and b =

(H)H:Sw ~ 67.3. These are examples of critical points of H(b)
where the Sasaki-Futaki invariant does not vanish. One may check
that for either of these values g(3) fails to be positive for all —1 < 3 <
1 and thus the corresponding rays do not allow admissible extremal
metrics. These metrics are K-unstable by Theorem In this case
a computer analysis indicates that there are numbers b; =~ 0.295 and
by &~ 1.455 such that for by < b < by we have admissible extremal
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Sasaki metrics; whereas, for b outside this interval (either side),
positivity of g fails and there are no admissible extremal metrics in
these two components.

Example 5.9. Here we take N = ¥g to be a compact Riemann surface of
genus G > 1, so dy = 1. Take l2A = —2l1,/wiws where 3 is any positive
integer such that ged(le, wiwe) = 1. Since A = 2l3(1 — G), we see that
G=1+ %m . Now since [s is relatively prime to lywjws we must have
Il = 1 in which case M, ;, w is an S3-bundle over ¥g. Moreover, G must
take the form G = 1+ [;p]'py? where py, ps are distinct primes, rq,7y € Z7T
and w = (pi™',p3"). Note that M, is the trivial bundle Xg x S% if
I1(wy + wy) is even, and the non-trivial bundle ¥gxS? when I1(w; + ws) is
odd.
Then from Lemma [5.2] we find

(l1w1b2 + 19 Ab + l1w2)3

HO) = b + wr)?)

and
fcsc(b) = 211w%b3 — wl(lgA — 4[1w2)b2 + UJQ(ZQA — 4l1w1)b — 2[1’(0%

One can check that b = /ws/wy is a root of both fosc(b) and ljwib? +
lo Ab + lqws. In fact,

2
Liwib? + 5 Ab + lyws = lyun <b — ZQ> ,
1

so H(b) has a six-tuple root at b = \/wa/w;. Thus, we recover the cscS
metrics g on the manifolds g x S3 and $gxS® with constant transverse
scalar curvature sg = 0 described at the end of Section 5.5 in [6].
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