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Abstract. The main purpose of this work is to generalize the S3
w Sasaki join con-

struction M ?l S
3
w described in the authors’ 2016 paper when the Sasakian structure

on M is regular, to the general case where the Sasakian structure is only quasi-regular.
This gives one of the main results, Theorem 3.2, which describes an inductive proce-
dure for constructing Sasakian metrics of constant scalar curvature. In the Gorenstein
case (c1(D) = 0) we construct a polynomial whose coeffients are linear in the com-
ponents of w and whose unique root in the interval (1,∞) completely determines the
Sasaki-Einstein metric. In the more general case we apply our results to prove that
there exists infinitely many smooth 7-manifolds each of which admit infinitely many in-
equivalent contact structures of Sasaki type admitting constant scalar curvature Sasaki
metrics (see Corollary 6.15). We also discuss the relationship with a recent paper of
Apostolov and Calderbank as well as the relation with K-stability.

Introduction

It is often said that Sasaki geometry is the odd dimensional version of Kähler geome-
try; nevertheless, there are substantial differences. The most obvious difference concerns
products. The product of Kähler manifolds (orbifolds) is Kähler. This simple formula-
tion does not occur in Sasaki geometry for dimensional reasons. The closest analogue
is the so-called Sasaki join operation which amounts to a product of the correspond-
ing transverse Kähler structures and which by now has been developed in some detail
[BG00b, BGO07, BG08, HS15, BTF16, BHLTF18]. However, the Sasaki join is much
richer as we shall now discuss. The Kähler and Sasaki cones are analogous in the sense
that they provide a family of Kähler (Sasaki) structures that are associated to a fixed
underlying complex, (respectively, CR) structure. They are, however, very different in
nature. The Kähler cone is a cone in the vector space of 2-dimensional de Rham coho-
mology classes; whereas, the Sasaki cone consists of nowhere vanishing Killing vector
fields. Now consider the following examples. First, let (N,ωN) be a Kähler-Einstein
manifold or orbifold and consider the product with the standard complex projective
line (CP1, ωFS) with its Fubini-Study metric. Then there is a choice of positive integers
l1, l2 such that (N × CP1, l1ωN + l2ωFS) is Kähler-Einstein. A similar analogue holds
for the Sasaki join M ?l S

3. Now if we replace (CP1, ωFS) by a weighted projective line
(CP1[w], ωext) with an extremal Kähler orbifold metric, there is no pair of integers l1, l2
nor deformation in the Kähler cone that produces a Kähler-Einstein orbifold metric
on the product N × CP1[w]. However, as shown explicitly in [BTF16] when M is a
regular Sasaki-Einstein manifold, for each weight vector w = (w1, w2) there are positive
integers l1, l2 such that the corresponding Sasaki join M ?l S

3
w admits a Sasaki-Einstein

metric in the Sasaki cone. The purpose of this paper is to generalize the study of the
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S3
w join construction in [BTF16] to the case where M in Ml,w = M ?l S

3
w is an arbitrary

quasi-regular Sasaki manifold or orbifold. This has important consequences for GIT
stability in the Sasaki category that does not hold in the Kähler category. Namely, in
a certain sense the S3

w Sasaki join operation preserves K-stability for all weight vectors
w. This amounts to the join of an unstable, but relatively K-stable manifold, producing
a K-stable Sasaki manifold.

The complexity of the multiplicative structure described above, the l-monoid, adds
to the complexity of the moduli space of Sasakian structures which increases drastically
with dimension. In dimension 3 things are well understood and there is a classifcation
of Sasakian structures [Bel01, BG08]. In dimension 5 it is already much more complex.
See Chapter 10 of [BG08] and Section 6 of [Boy19] for a recent update. There is,
however, a classification of simply connected compact 5-manifolds due to Smale and
Barden, not all of which admit Sasakian structures. Precisely which ones do and which
don’t is still an open question. Reducibility essentially begins in dimension 5 where the
so-called cone decomposable Sasakian structures are lens space bundles over Riemann
surfaces [BTF14a, BHLTF18]. See Corollary 3.5 below. In dimension 7 things become
yet even more complex, since there are many irreducible Sasaki 5-manifolds. Given this
situation it seems prudent to understand which Sasakian structures can be built up
from lower dimensional ones and how stability propagates. This is precisely what the
join accomplishes.

Acknowledgements. We thank Vestislav Apostolov and David Calderbank for many
very helpful discussions and their interest in our work. We also thank the anonymous
referees for their careful reading of our manuscript, and especially for catching an error
in an earlier version of Proposition 2.20 and for clarifications in Section 5.

1. Brief Review of Sasaki Geometry

Recall that a Sasakian structure on a contact manifold M2n+1 of dimension 2n + 1
is a special type of contact metric structure S = (ξ, η,Φ, g) with underlying almost CR
structure (D, J) where η is a contact form such that D = ker η, ξ is its Reeb vector
field, J = Φ|D, and g = dη ◦ (1 × Φ) + η ⊗ η is a Riemannian metric. S is a Sasakian
structure if ξ is a Killing vector field and the almost CR structure is integrable, i.e.
(D, J) is a CR structure. We refer to [BG08] for the fundamentals of Sasaki geometry.
We call (D, J) a CR structure of Sasaki type, and D a contact structure of Sasaki type.
We shall always assume that the Sasaki manifold M2n+1 is compact and connected.

1.1. The Sasaki Cone. Within a fixed contact CR structure (D, J) there is a conical
family of Sasakian structures known as the Sasaki cone. We are also interested in a
variation within this family. To describe the Sasaki cone we fix a Sasakian structure
So = (ξo, ηo,Φo, go) on M whose underlying CR structure is (D, J) and let t denote the
Lie algebra of a maximal torus T in the automorphism group of So. The (unreduced)
Sasaki cone [BGS08] is defined by

(1) t+(D, J) = {ξ ∈ t | ηo(ξ) > 0 everywhere on M},
which is a cone of dimension k ≥ 1 in t. The reduced Sasaki cone κ(D, J) is t+(D, J)/W
where W is the Weyl group of the maximal compact subgroup of CR(D, J) which, as
mentioned previously, is the moduli space of Sasakian structures with underlying CR
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structure (D, J). However, it is more convenient to work with the unreduced Sasaki
cone t+(D, J). It is also clear from the definition that t+(D, J) is a cone under the
transverse scaling defined by

(2) S = (ξ, η,Φ, g) 7→ Sa = (a−1ξ, aη, ga), ga = ag + (a2 − a)η ⊗ η, a ∈ R+.

So t+(D, J) is a cone and since the Reeb vector field ξ is Killing dim t+(D, J) ≥ 1. More-
over, it follows from contact geometry that dim t+(D, J) ≤ n+1. When dim t+(D, J) =
n + 1 we have a toric contact manifold of Reeb type studied in [BM93, BG00a, Ler02,
Ler04, Leg11a, Leg16]. In this case there is a strong connection between the geometry
and topology of (M,S) and the combinatorics of t+(D, J). Much can also be said in
the complexity 1 case (dim t+(D, J) = n) [AH06].

We often have need to deform the contact structure D 7→ Dϕ by a contact isotopy
η 7→ η + dcϕ where ϕ ∈ C∞(M)T is a smooth function invariant under the torus T.
We note that the Sasaki cone t+(D, J) is invariant under such contact isotopies, that
is, t+(Dϕ, Jϕ) = t+(D, J). For each ϕ ∈ C∞(M)T, Dϕ −→ TM gives a splitting of the
exact sequence

0 −→ Lξo −→ TM −→ Q −→ 0

with Jϕ = Φ|Dϕ . Furthermore, each choice of Reeb vector field ξ ∈ t+(D, J) gives rise
to an infinite dimensional contractible space S(M, ξ) of Sasakian structures [BG08]. We
shall often make such a choice S = (ξ, η,Φ, g) ∈ S(M, ξ) and identify it with the element
ξ ∈ t+(D, J).

2. The S3-Join Construction

The join construction is the Sasaki analogue for products in Kähler geometry. It
was first described in the context of Sasaki-Einstein manifolds [BG00b], but then de-
veloped more generally in [BGO07], see also Section 7.6.2. of [BG08]. Its relation
to the de Rham decomposition Theorem and reducibility questions [HS15] were stud-
ied in [BHLTF18]. We consider the set SO (respectively, SM) of all Sasaki orbifolds
(manifolds), respectively. SO is the object set of a groupoid whose morphisms are orb-
ifold diffeomorphisms. Moreover, SO is graded by dimension and has an additional
multiplicative structure described in Section 2.4 of [BHLTF18] which we call the Sasaki
l-monoid. The positive irreducible generators in dimension 3 are of the form ?lS

3
w where

the weight vector w = (w0, w∞) has relatively prime components. We apply this to the
submodule SM which is not an ideal in general. However, as we shall see ?lS

3
w does give

a map SM → SM when certain conditions hold. We have used the join construction
[BTF14a, BTF15, BTF16] to produce new cscS metrics from known cscS metrics. In
most cases (see [BTF19] for an exception) in constructing the join M ?l S

3
w we have

assumed that the Sasakian structure on M is regular. This is a restrictive assumption
which is not necessary. We only need the Sasakian structure S to be quasiregular in
which case it is described by an S1 orbibundle M −→ N which has order ΥS . The
procedure as outlined for example in [BTF16] essentially works in the more general
quasiregular case; however, one needs to proceed with a bit more care at several stages,
in particular, in handling the smoothness conditions. Before discussing these conditions
we briefly discuss the orbibundle M −→ N . We assume that N is a normal (compact)
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projective algebraic variety with a fixed orbifold structure which we write as the pair
(N,∆N) where ∆N is a sum of irreducible branch divisors, viz.

∆N =
k∑
j=1

(
1− 1

mj

)
Dj

where k = dim Div(N), the group of Weil divisors on N , mj are the ramification indices,
and Dj ∈ Div(N). The algebraic singular locus is also given an orbifold structure. They
are finite cyclic quotient singularities.

By Theorem 4.3.15 of [BG08] the isomorphism classes of S1 orbibundles over (N,∆N)
are uniquely determined by their orbifold first Chern class denoted by corb1 (M/N) ∈
H2(N,Q). Furthermore, when M has a Sasakian structure, corb1 (M/N) is an orbifold
Kähler class with Kähler form denoted by ωN .

Definition 2.1. We say that a compact Sasaki manifold M = (M,S) with S quasi-
regular is Sasaki primitive or just primitive if there is no nontrivial finite cyclic Sasaki
cover M̃ of M . By a finite cyclic Sasaki cover we mean a Sasaki manifold (M̃, S̃) such
that M = M̃/G with G a finite cyclic subgroup of the circle group induced by the Reeb
vector field ξ. Here S is the Sasakian structure on the quotient M that is naturally
induced from S̃.

Remark 2.2. It is well known that a compact regular Sasaki manifold (M,S) is prim-
itive if and only if the induced Kähler class [ωN ] is a primitive element of H2(N,Z).
Moreover, there is a family {(Mn,Sn)}n∈Z+ of Sasaki manifolds with (M1,S1) = (M,S)
associated to the primitive Kähler class [ωN ] whose members have Kähler class n[ωN ]
and Mn = M/Zn where Zn acts freely on M and there is a short exact sequence

0 −→ π1(M) −→ π1(Mn) −→ Zn −→ 1.

However, an analogous result does not hold for quasi-regular Sasaki manifolds unless
gcd(n,ΥN) = 1 where ΥN is the order of the orbifold N . This is easily seen by the
following example. Consider (N,∆) with N smooth and choose a primitive Kähler class
[ωN ] ∈ H2

orb(N,Z). Then ΥN [ωN ] is a primitive Kähler class in H2(N,Z) and as such
the total space of the corresponding S1 bundle over N has a regular primitive Sasakian
structure, but ΥN [ωN ] is clearly not primitive as an orbifold Kähler class.

2.1. The Construction. We now turn to the S3
w join construction. Let M be a

compact quasi-regular Sasaki manifold whose S1 action generated by its Reeb vec-
tor field is denoted by A(θ, x). The assumption for the rest of the paper is that
corb1 (M/N) = [ωN ] ∈ H2(N,Q) is a primitive orbifold Kähler class, where ωN de-
notes the transverse Kähler form on N . Likewise, corb1 (S3

w/CP1[w]) = [ωw] = [ ωFS
w0w∞

],
where ωFS is the Kähler form of the standard Fubini-Study metric on CP1 such that
[ωFS] ∈ H2(CP1,Z) is primitive and ωw is the transverse extremal Kähler form on
CP1[w] of the canonical extremal Sasaki structure on S3

w.
For any pair of relatively prime positive integers l0, l∞ we define the S3

w join with M
as the quotient Ml,w of

(3) S1 −→M × S3 −→Ml,w
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where the S1 action is given by

(4) (x; z1, z2) 7→ (A(l∞θ, x); e−il
0w0θz1, e

−il0w∞θz2)

with |z1|2 + |z2|2 = 1. The join is then constructed from the following commutative
diagram

(5)

M × S3
w

↘ πLyπ2 Ml,w

↙ π1

(N,∆N)× CP1[w]

where the π2 is the product of the projections of the standard Sasakian projections
πM : M → (N,∆N) and S3

w → CP1[w]. The circle action (4) on M × S3 is generated
by the vector field

(6) Ll,w =
1

2l0
ξM −

1

2l∞
ξw,

and its quotient orbifold Ml,w, which is called the l = (l0, l∞)-join of M and S3
w and

denoted by Ml,w = M ?l S
3
w, has a naturally induced quasi-regular Sasakian structure

Sl,w with contact 1-form ηl,w and Reeb vector field

(7) ξl,w =
1

2l0
ξM +

1

2l∞
ξw.

On the join Ml,w = M ?l S
3
w there is a direct sum decomposition of the tangent bundle

[HS15, BHLTF18]

(8) TMl,w = D1 ⊕D2 ⊕ Lξ
which for i = 1, 2 gives rise to two foliations Ei = Di ⊕ Lξ of Ml,w whose leaves are
totally geodesic Sasaki submanifolds isomorphic, up to transverse scaling, as Sasakian
structures to M and S3

w, respectively. Note that the intersection E1 ∩E2 is just Fξ, and
both the transverse metric gT and the contact bundle Dl,w = ker ηl,w split as direct
sums. The natural numbers l0, l∞, w0, w∞ are generally contact invariants. Since the
CR-structure (Dl,w, Jw) is the horizontal lift of the complex structure on N × CP1[w],
this splits as well. The choice of w determines the transverse complex structure J .

2.2. Some Elementary Topology. Generally, the join is an orbifold; however, from
Proposition 7.6.6 in [BG08] we have

Lemma 2.3. If (M,S) is a quasi-regular Sasaki manifold of order ΥS , then the join
Ml,w = M ?l S

3
w is smooth if and only if

(9) gcd(l∞ΥS , l
0w0w∞) = 1

where the order ΥS is precisely the order ΥN of the quotient orbifold N , i.e. ΥS = ΥN .

From the long exact homotopy sequence of the fibration (3) and the well known
Hurewicz Theorem we deduce

Proposition 2.4. Let M be a simply connected quasi-regular Sasaki manifold with
π2(M) = Zk. Then
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(1) Ml,w is simply connected;
(2) π2(Ml,w) = Zk+1;
(3) H2(Ml,w,Z) = Zk+1.

The join construction provides a family of contact structures of Sasaki type on a
family of smooth manifolds whose cohomology ring can, in principle, be computed if
one knows the cohomology ring of M .

2.3. The w-Sasaki Cone t+w. The Sasakian structures that are most accessible through
this construction are the elements of the 2-dimensional subcone t+w of the Sasaki cone
t+l,w known as the w-subcone. If N has no Hamiltonian symmetries then t+ = t+w. On

M × S3 we have the Lie algebra tM ⊕ t2 which induces the Lie algebra isomorphism

(10) tM,l,w ≈ (tM ⊕ t2)/{Ll,w}
on Ml,w where {Ll,w} denotes the one dimensional ideal generated by the vector field
Ll,w. The Lie algebra tM can be written as tM = {ξM}+ hM where hM is the horizontal
lift to M of a maximal commutative Lie algebra of Hamilonian vector fields on N .
Likewise t2 = {ξw}+hw where hw is the horizontal lift of the 1-dimensional Lie algebra
generated by a Killing vector field on CP1[w]. Now the foliations Ei on Ml,w give rise
to Lie algebra monomorphisms

ιM : tM −→ tM,l,w, ι2 : t2 −→ tM,l,w

such that ιM(tM) ∩ ι2(t2) = {ξl,w}. This together with (10) gives

Lemma 2.5. There is an isomorphism of Abelian Lie algebras

tM,l,w = {ξl,w}+ hM + hw.

We put tw = ι2(t2) and this identifies the Sasaki cone t+2 of S3 with the 2 dimensional
subcone t+w of t+M,l,w. Similarly, the Sasaki cone of M is identified with a subcone t+M of

t+M,l,w. These two subcones intersect along the ray rl,w generated by ξl,w.
It is not difficult to show that

Lemma 2.6. The w-subcone t+w is invariant under the adjoint action of Aut0(Ml,w) on
its Lie algebra.

2.4. The Quotient Orbifolds. We are interested in Sasakian structures S in the
w-subcone t+w, in particular quasi-regular Sasakian structures, that is, Reeb vector
fields ξv that lie on the integer lattice Λw ⊂ t+w. They are completely determined
by the pair (v0, v∞) of relatively prime positive integers. This pair then determines the
branch divisors D0, D∞ which are the zero sections and infinity sections of an orbibun-
dle (Sn,∆m,N) −→ (N,∆N) with ramification indices m = (m0,m∞) = (mv0,mv∞)
through the equations s = gcd(l∞, w0v∞ − w∞v0) and l∞ = ms. Before giving the
generalization of Theorem 3.8 of [BTF16] we describe, following [GK07], what is meant
by the orbibundle

πorb : (Sn,∆m,N) −→ (N,∆N).

First note that for n ∈ Z, by Sn we mean the (total space of) the projective bundle
P(1 ⊕ Ln) −→ (N,∆N), where Ln −→ (N,∆N) is an orbi-line bundle such that
corb1 (Ln) = n[ωN ]. Set theoretically πorb is a holomorphic map π : Sn −→ N of normal
reduced complex spaces, but in the orbifold category πorb pullsback the branch divisor



THE S3
w SASAKI JOIN CONSTRUCTION 7

∆N to Sn giving the orbifold structure on Sn with branch divisor ∆m,N = ∆m+π−1(∆N)
such that the generic1 fibers of πorb have the orbifold structure CP1[v]/Zm = (CP1,∆m).
We have the commutative diagram

(11)

(Sn,∆m,N)
πorb

−→ (N,∆N)y y
(Sn, ∅)

π
−→ (N, ∅)

where (N, ∅) is a normal projective algebraic variety N whose algebraic singularities
are finite cyclic quotient singularities. So (N, ∅) is itself an orbifold. The vertical maps
are set theoretically the identity; however, in the orbifold category they are non-trivial
Galois coverings with trivial Galois group. This means that there is a non-trivial Galois
covering on the level of the local uniformizing neighborhoods with a non-trivial local
Galois group. Recall that a Riemannian metric and hence a Kähler metric (form) on a
complex orbifold is a sequence of Kähler metrics on the local uniformizing neighborhoods
that are invariant under the local uniformizing groups and that patch together by the
injection maps (cf [BG08], Definition 4.2.11).

We are now ready for the generalization of Theorem 3.8 of [BTF16] to the case that
M is quasi-regular.

Theorem 2.7. Let (M,S) be a quasi-regular Sasakian structure and Ml,w = M?lS
3
w the

S3
w join of M . Then the quotient of Ml,w by the S1 action generated by a quasi-regular

Reeb vector field ξv ∈ t+w is the orbifold (Sn,∆m + π−1(∆N)) where Sn is the total space
of the projective orbibundle

(Sn,∆m + π−1(∆N))
πorb

−→ (N,∆N)

with generic fibers CP1(v)/Zm where

m =
l∞

s
, n = l0

(w0v∞ − w∞v0)

s
, s = gcd(l∞, |w0v∞ − w∞v0|)

and ∆m is a branch divisor consisting of the zero D0 and infinity D∞ sections of
P(1⊕ Ln) with ramification indices m = (m0,m∞) = m(v0, v∞). Moreover, corb1 (Ln) =
n[ωN ] = ncorb1 (M/N).

Proof. The proof given in Sections 3.3-3.5 of [BTF16] works equally well when the
Sasakian structure on M is quasi-regular with only minor changes. The essential dif-
ference is that residual circle action denoted by S1

θ/Zl2 in [BTF16] is now only locally
free. As in [BTF16] the commutative diagram (5) gives the commutative diagram

(12)

M × L(l∞; l0w0, l0w∞)
↘ πLyπT2 Ml,w

↙ πv
Ml,w/S

1
φ

1By generic fiber we mean the fiber over a point in the orbifold regular locus of N .
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where L(l∞; l0w0, l0w∞) is a lens space. The action of T2 = S1
φ × (S1

θ/Zl∞) on M ×
L(l∞; l0w0, l0w∞) is given by

(13) (u; z1, z2) 7→ (A(θ, u); [ei(v
0φ− l

0w0

l∞ θ)z1, e
i(v∞φ− l

0w∞
l∞ θ)z2]),

where now the action A on M is only locally free. This has two main consequences.
First, Ml,w is a Sasaki orbifold unless Equation (9) holds in which case Ml,w will be
a smooth Sasaki manifold. Second, and more importantly, the quotient Ml,w/S

1
θ/Zl2

can have an additional branch divisor which is the inverse image π−1(∆N). This gives
branch divisors on (Sn,∆N,m) as

(14) ∆N,m = (1− 1

m0
)D0 + (1− 1

m∞
)D∞ +

k∑
j=1

(
1− 1

mj

)
π−1(Dj).

As is well understood this shifts the orbifold first Chern class. Other than this, the
argument is the same. So the result follows as in [BTF16]. �

Remark 2.8. Note that for m and n as in Theorem 2.7 we have gcd(m,n) = 1. This is
due to the fact that gcd(l0, l∞) = 1, any factor of m is a factor of l∞, and, by definition

of s, gcd(m, w
0v∞−w∞v0

s
) = 1.

Generally we have

Lemma 2.9. Let Ml,w be the S3
w-join with a quasiregular Sasaki manifold M −→ N of

order ΥN . Let Sv = (ξv, ηv,Φ, gv) be a quasiregular Sasakian structure in the w cone
t+w. The order Υ of Sv is the product mv0v∞ΥN .

Proof. The local uniformizing groups of the orbifold are just the isotropy subgroups
of the T2 action (13), and by definition the order of an orbifold is the least common
multiple of the orders of the isotropy groups. The orbifold in question is the quotient
of M × L(l∞; l0w0, l0w∞) by the T2 action (13) which is free on the dense open subset

Z =
(
M \ π−1

M ◦ π
−1(∆N)

)
×
(
L(l∞; l0w0, l0w∞) \ {[z1 = 0] ∪ [z2 = 0]}

)
where |z1|2 + |z2|2 = 1 is understood. Let x ∈ N be a point with isotropy group Zr and
y ∈ [z2 = 0]. Then the isotropy group at (x, y) is Zr × Zm0 . Similarly, if y ∈ [z1 = 0]
the isotropy group at (x, y) is Zr × Zm∞ . Running through the orbifold singular set of
N gives the order ΥN lcm(m0,m∞) = ΥNmv

0v∞. �

2.5. The Transverse Kähler Structure. It turns out that as in Section 6.1 of
[BTF16] we can lift the Kähler data on the orbifolds (Sn,∆m,N) to the transverse
Kähler data on a quasi-regular Sasaki manifold. Since quasi-regular Reeb fields are
dense in t+w we can extend this transverse data to the entire w-cone and as in [BTF16]
(27) gives a smooth family of Sasakian structures on the join Ml,w. In the following we
shall describe the details.

2.5.1. Generalized orbifold Calabi construction. The generalized Calabi construction
was presented in [ACGTF04, Section 2.5] and further discussed in [ACGTF11, Sec-
tion 2.3]. Here we make a modest generalization, allowing for the base space to be a
normal projective algebraic variety with cyclic orbifold singularities. We first discussed
this type of generalization in [BTF19] for the purpose of constructing certain explicit
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Sasaki-Einstein metrics on a class of 7-manifolds, but here we will not restrict the base
to be a Hirzebruch orbifold.

The ingredients in the construction are as follows:

• [Base] A Kähler orbifold (N,∆N) equipped with a Kähler orbifold metric, gbase,
whose Kähler form, ωbase = 2πωN , satisfies that [ωN ] is a primitive orbifold
Kähler class.
• [Fiber] A weighted projective line (CP1

m0,m∞ = CP1
v0,v∞/Zm, gm, ωm) with orb-

ifold Kähler structure (gm, ωm) and rational Delzant polytope [−1, 1] ⊆ R∗ and
momentum map z : CP1

m0,m∞ → [−1, 1]. Here (m0,m∞) = m(v0, v∞) and v0, v∞

are coprime.
• A principal S1 orbi-bundle, Pn → (N,∆N), with a principal connection of cur-

vature nωbase ∈ Ω1,1((N,∆N),R), where S1 acts on CP1
m0,m∞ , n ∈ Z \ {0}, and

gcd(n,m) = 1. Note that n ∈ spanZ{v0, v∞} (since v0, v∞ are coprime), so
mn ∈ spanZ{m0,m∞}.
• A constant 0 < |r| < 1 with the same sign as n [ensuring that the (1, 1)-form

(1/r + z)nωbase is positive for z ∈ [−1, 1]].

From this data we may define the orbifold

(Sn,∆m,N) = Pn ×S1 CP1
m0,m∞ = M̊ ×C∗ CP1

m0,m∞ → (N,∆N),

where S̊n = Pn ×S1 (z−1(−1, 1)). Since the curvature 2-form of Pn has type (1, 1), S̊n is

a holomorphic principal C∗ bundle with connection θ ∈ Ω1(S̊n,R) and (Sn,∆m,N) is a
complex orbifold.

On S̊n we define Kähler structures of the form

(15)

g = (1/r + z)n (πorb)∗gbase +
1

Θ(z)
dz2 + Θ(z)θ2

ω = (1/r + z)n (πorb)∗ωbase + dz ∧ θ
dθ = n (πorb)∗ωbase,

where 1
Θ(z)

= d2U
dz2

and U is the symplectic potential [Gui94] of the chosen toric Kähler

structure gm on CP1
m0,m∞ .

The generalized Calabi construction arises from seeing (15) as a blueprint for the con-
struction of various orbifold Kähler metrics on (Sn,∆m,N) by choosing various smooth
functions Θ(z) on (−1, 1) satisfying that

• [boundary values] the following endpoint conditions are satisfied

(16) Θ(±1) = 0 and Θ ′(−1) = 2/m∞ and Θ ′(1) = −2/m0;

• [positivity] the function Θ(z) is positive for z ∈ (−1, 1).

Metrics constructed this way are called compatible Kähler metrics with compatible
Kähler classes parametrized by r. If gbase has constant curvature we call the compatible
metrics/classes admissible. Moving forward we will assume to be in that case.

Note that due to [ACG06] (see also (46) of [BTF16]), we have that if gbase = 2πgN
has complex dimension dN and constant scalar curvature 2dNAN , then on S̊n the scalar
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curvature of the admissible metric in (15) is given by

(17) Scal =
2dNANr

n(1 + rz)
− F ′′(z)

(1 + rz)dN
,

where F (z) = (1 + rz)dNΘ(z). [Note that “AN” plays the same role as “A” introduced
in Section 6.2 of [BTF16].]

Remark 2.10. Note that the Calabi toric metrics in [Leg11b] are special cases of the
above ansatz. Such orbifold constructions also appear explicitly in Sections 3.5 and
4.4.2 of [ACGL20].

On each uniformizing cover of (Sn,∆m,N) we have (following Section 1.3 of [ACGTF08])
that

φ∗[ω] = 2π
n

r
φ∗(πorb)∗[ωN ] + 2π(φ∗PD(D0) + φ∗PD(D∞)).

Since φ∗PD(D0)− φ∗PD(D∞) = nφ∗(πorb)∗[ωN ], this may be written as

φ∗[ω] = 2π(
n

r
+ n)φ∗(πorb)∗[ωN ] + 4πφ∗PD(D∞)

or

(18) [ω] = 4π

(
n(1 + r)

2r
(πorb)∗[ωN ] + PD(D∞)

)
.

2.5.2. The transverse Kähler structure. First note that a primitive orbifold class [ωN ]
is obtained from a primitive integer class [ωN ]I , viz

(19) [ωN ] =
[ωN ]I
ΥN

.

Lemma 2.11. The induced primitive orbifold Kähler form ωn,m,N on the orbifold (Sn,∆N,m)
satisfies

[ωn,m,N ] =
l0w0v∞(πorb)∗[ωN ]I + sΥNPD(D∞)

gcd(sΥN , w0v∞l0)mv0v∞ΥN

where [ωN ]I is a primitive integer class.

Proof. The analogue of Diagram (35) in [BTF16] is

(20)

M × L(l∞; l0w0, l0w∞)yπL
Ml,w

↙ pw ↘ pv

(N,∆N)× CP1[w] (Sn,∆m,N)

pr1 ↘ ↙ πorb

(N,∆N)

where pw, pv, pr1, π
orb are the obvious projections. The fibers of the map πorb are

orbifolds of the form CP1[v]/Zm. As is [BTF16] and by using the diagram (20) we
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have that there is a generator γ ∈ H2(Ml,w,Z) such that (pr1 ◦ pw)∗[ωN ] = l∞γ and
(pr2 ◦ pw)∗[ωw] = −l0γ. Now (again, similarly to [BTF16]), using Lemma 2.16 together
with the fact that

corb1 ((N,∆N)× CP1[w]) = pr∗1c
orb
1 (N,∆N) + |w|pr∗2[ωw],

and that, as the diagram (20) suggests, both pull-backs to Ml,w of the orbifold Chern
class corb1 (N,∆N) should agree, we arrive at the equation

1

m0
p∗vPD(D0) +

1

m∞
p∗vPD(D∞) = −l0|w|γ.

On each uniformizing cover we also have that

ϕ∗PD(D0)− ϕ∗PD(D∞) = nϕ∗(πorbv )∗[ωN ]

and hence using (πorb ◦ pv)∗[ωN ] = (pr1 ◦ pw)∗[ωN ] = l∞γ we end up with the system

p∗vPD(D0)− p∗vPD(D∞) = l∞nγ,(21)

1

m0
p∗vPD(D0) +

1

m∞
p∗vPD(D∞) = −l0|w|γ.(22)

As in [BTF16] the solution to this system is

p∗vPD(D∞) = −mw0v∞l0γ(23)

p∗vPD(D0) = −mw∞v0l0γ(24)

We keep diagram (20) in mind. Now the induced orbifold Kähler class on (Sn,∆N,m) is
in the kernel of p∗v, and as in the proof of Lemma 3.10 in [BTF16] both {(πorb)∗[ωN ], PD(D0)}
and {(πorb)∗[ωN ], PD(D∞)} span ker(pv ◦ πL)∗. Now we can write a primitive orbifold
Kähler form ωn,m,N as a primitive integer Kähler form divided by the order Υ of the
orbifold. So on (Sn,∆N,m) using Lemma 2.9 we write

[ωn,m,N ] =
k1(πorb)∗[ωN ]I + k2PD(D∞)

mv0v∞ΥN

for some positive integers k1, k2. Since [ωn,m,N ] is in the kernel of p∗v we have

k1ΥN l
∞ − k2mw

0v∞l0 = 0.

This determines k1/k2 = mw0v∞l0/(l∞ΥN) = mw0v∞l0/(msΥN) = w0v∞l0/(sΥN).
Ensuring primitivity then gives the result. �

Lemma 2.12. The induced primitive orbifold Kähler form ωn,m,N on the orbifold (Sn,∆N,m)
satisfies

[ωn,m,N ] =
s

4π gcd(sΥN , w0v∞l0)mv0v∞
[ω],

where [ω] is the admissible Kähler class from (18) with r = w0v∞−w∞v0
w0v∞+w∞v0

.
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Proof. From (18) and (19) we have that

[ω] = 4π
(
n(1+r)

2r
(πorb)∗[ωN ]I

ΥN
+ PD(D∞)

)
= 4π

sΥN

(
sn(1+r)

2r
(πorb)∗[ωN ]I + sΥNPD(D∞)

)
= 4π

sΥN

(
l0(w0v∞−w∞v0)(1+r)

2r
(πorb)∗[ωN ]I + sΥNPD(D∞)

)
.

This is a multiple of [ωn,m,N ] iff r = w0v∞−w∞v0
w0v∞+w∞v0

and with this value for r, we get

[ω] = 4π
sΥN

(
l0(w0v∞−w∞v0)(1+r)

2r
(πorb)∗[ωN ]I + sΥNPD(D∞)

)
= 4π

sΥN

(
l0w0v∞(πorb)∗[ωN ]I + sΥNPD(D∞)

)
= 4π gcd(sΥN ,w

0v∞l0)mv0v∞

s

(l0w0v∞(πorb)∗[ωN ]I+sΥNPD(D∞))
gcd(sΥN ,w0v∞l0)mv0v∞ΥN

= 4π gcd(sΥN ,w
0v∞l0)mv0v∞

s
[ωn,m,N ].

The result now follows. �

Note that since ωn,m,N is the induced primitive orbifold Kähler form on (Sn,∆N,m),
we could write

[ωn,m,N ] =
[ωn,m,N ]I
mv0v∞ΥN

,

where

[ωn,m,N ]I =
l0w0v∞(πorb)∗[ωN ]I + sΥNPD(D∞)

gcd(sΥN , w0v∞l0)
.

Using this notation we can formulate the equation in Lemma 2.12 as

[ωn,m,N ]I =
sΥN

4π gcd(sΥN , w0v∞l0)
[ω].

Lemma 2.12 tells us that the class of the induced primitive orbifold Kähler form
ωn,m,N on the orbifold (Sn,∆N,m) is a constant multiple of the admissible Kähler class
[ω] with the prescribed value of r. Since (πorb)∗ωn,m,N is in turn a constant multiple of
dηv, this means that for the admissible Kähler form, we may say that (up to isotopy)

(25) p∗vω = bdηv

for some positive constant b. To determine the value of b we can follow the proof
of Proposition 6.2 of [BTF16]. Since our notation here is slightly different we will
summarize the argument in broad strokes:

As in [BTF16] we have the moment map of the lifted circle action of the moment
map z, z̃ : Ml,w → [−1, 1] and

(26) dηv|D =
w0v∞ − w∞v0

2v0v∞
(z̃ + r−1)dηw|D.

Moreover, identifying N with the zero section of Sn, ω|N = 2πn(z̃ + r−1)ωN . Now
comparing coefficients of the pullback of ωN on both sides of equation (25) and using
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equation (26) with the commutative diagram (20) (giving that the two pull-backs of ωN
should agree), we get the equation

2πn = b
w0v∞ − w∞v0

2v0v∞
l0.

Using the value of n from Theorem 2.7 we arrive at b = 4πmv0v∞

l∞
and thus we have that

- up to isotopy - the transverse Kähler structure (gT , ωT ) satisfies

ωT = dηv =
l∞

4π

p∗vω

mv0v∞

and

gT =
l∞

4π

p∗vg

mv0v∞
.

Thus, similarly to Section 6 of [BTF16] we can lift the admissible data to Ml,w and
we have the following theorem:

Theorem 2.13. The transverse Kähler metric and Kähler form are (possibly up to
isotopy) given by

gT =
l∞

4π

(2πl0(w0v∞ − w∞v0)

l∞v0v∞
(r−1 + z̃)(πorb ◦ pv)∗gN +

dz̃2

Θ̃(z̃)
+ Θ̃(z̃)θ̃2

)
ωT =

l∞

4π

(2πl0(w0v∞ − w∞v0)

l∞v0v∞
(r−1 + z̃)(πorb ◦ pv)∗ωN + dz̃ ∧ θ̃

)
(27)

where

r =
w0v∞ − w∞v0

w0v∞ + w∞v0
, Θ̃ = mv0v∞p∗vΘ, θ̃ =

p∗vθ

mv0v∞
,

and that Θ̃ satisfies the boundary conditions Θ̃(±1) = 0, Θ̃′(−1) = 2v0 and Θ̃′(1) =
−2v∞.

The quasi-regular transverse Kähler structure extends smoothly to the full w Sasaki
cone t+w and converges to the Kähler forms of the reducible Sasakian structure [BHLTF18]
as v→ w.

It is clear from the explicit forms (27) that they extend smoothly to the full w Sasaki
cone t+w. And since

l∞

4π

2πl0(w0v∞ − w∞v0)

l∞v0v∞
r−1 −→ l0

we see that as v → w, the Sasakian structure converges to the reducible Sasakian
structure defined by the join. So the transverse Kähler structure in Theorem 2.13
extends smoothly to the full w Sasaki cone t+w and converges to the Kähler forms of the
reducible Sasakian structure [BHLTF18] as v→ w.

By combining Lemma 2.12 and Theorem 2.13, we have that

ωT = dηv =
l∞

4πmv0v∞
4π gcd(sΥN , w

0v∞l0)mv0v∞

s
p∗vωn,m,N ,

which gives the corollary below.

Corollary 2.14. The transverse Kähler structure (27) satisfies

(28) ωT = dηv = m gcd(sΥN , w
0v∞l0)p∗vωn,m,N .
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Remark 2.15. We see, as discussed in Remark 2.2, the quotient orbifold (Sn,∆m,N)
of the primitive Sasakian structure on Ml,w is not necesarily primitive.

2.6. Extremal, CSC, and KE admissible metrics on (Sn,∆m,N). Completely sim-
ilar to Sections 5.1-5.3 of [BTF16] (which is turn is based on the admissible construction
of Apostolov, Calderbank, Gauduchon, and Tønnesen-Friedman [ACG06, ACGTF04,
ACGTF08]) we may now impose geometric conditions on the metric g in (15). Using
F (z) = (1 + rz)dNΘ(z) as in (17) above, we then have

• g is an extremal Kähler metric with Scal = −(αz + β) if and only if

F ′′(z) = (1 + rz)dN−1

(
2dNANr

n
+ (αz + β)(1 + rz)

)
.

By integration, there is a unique solution Fext(z) (the extremal polynomial) to this
boundary value problem, where the constants α and β are such that the endpoint
conditions of (16) are satisfied. Further, Fext(z) corresponds to a genuine orbifold
Kähler metric on (Sn,∆m,N) if Fext(z) > 0 for −1 < z < 1. As in Section 5.2 of
[BTF16] and the references therein, we can see that this is the case if AN ≥ 0.
• The extremal polynomial Fext(z) above corresponds to a CSC Kähler metric

with Scal = −β if and only if (α = 0 which is equivalent to)

(29)
2AN

(
(1 + r)dN+1 − (1− r)dN+1

)
nr(dN + 1)

+
β
(
(1 + r)dN+2 − (1− r)dN+2

)
r2(dN + 1)(dN + 2)

+ 2c = 0,

where

β =
−2(dN + 1)r

(
m∞(1 + r)dN (n+m0AN)−m0(1− r)dN (−n+m∞AN)

)
nm0m∞ ((1 + r)dN+1 − (1− r)dN+1)

and2

c =
2 (1− r2)

dN (nm∞(1− r) + nm0(1 + r)− 2m0m∞AN)

nm0m∞ ((1 + r)dN+1 − (1− r)dN+1)
.

[Note that in this case, Fext(z) > 0 for −1 < z < 1 is automatic.]
• Finally, the extremal polynomial Fext(z) above corresponds to a KE Kähler

metric if and only if (N,ωN , gN) is KE with index IN (note AN = IN) and

(30)

∫ 1

−1

(
(1− z)/m∞ − (1 + z)/m0

)
(1 + rz)dNdz = 0

and

2rIN/n = (1 + r)/m∞ + (1− r)/m0.

[Again, in this case, Fext(z) > 0 for −1 < z < 1 is automatic.]

2There is an inconsequencial r missing in the last term in the numerator of Equation (48) in [BTF16]
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2.7. The Orbifold First Chern Class. We also have the analogue of Lemma 3.9 of
[BTF16] when N is an orbifold, viz.

Lemma 2.16. For the projective orbibundle

(Sn,∆m,N)
πorb

−→ (N,∆N)

we have

corb1 (Sn,∆m,N) = (πorbm )∗corb1 (N,∆N) +
1

m0
PD(D0) +

1

m∞
PD(D∞).

Proof. For the orbifold (N,∆N) the orbifold canonical divisor Korb
N satisfies

Korb
N = ϕ∗KN +

∑
j

(
1− 1

mj

)
ϕ∗Dj

where ϕ is local uniformizing map whose notation we often omit. Taking the Poincaré
dual and using c1(N) = −c1(KN) then gives

(31) corb1 (N,∆N) = ϕ∗c1(N) +
∑
j

( 1

mj

− 1
)
ϕ∗PD(Dj).

Now for a projective bundle P(1⊕Ln)
π
−→N we know from Leray-Hirsch that the coho-

mology H∗(P(1⊕Ln),Z) is a free module over H∗(N,Z) with basis {1, x} where x is the
cohomology class in H2(P(1⊕Ln),Z) whose restriction to a fiber ≈ CP1 freely generates
the cohomology of CP1. It is the first Chern class of the dual of the tautological bundle
[BT82]. So the vertical bundle V(N) has first Chern class PD(D0) + PD(D∞) which
implies

c1(P(1⊕ Ln)) = π∗c1(N) + PD(D0) + PD(D∞).

This together with (31) gives the result. �

Remark 2.17. A choice of quasi-regular Reeb vector field ξv ∈ t+w completely deter-
mines the quotient orbifold structure (Sn,∆m,N). With the join parameters l = (l0, l∞)
and w = (w0, w∞) fixed, the Reeb vector field ξv uniquely determines the integers
n,m, s by the expressions in Theorem 2.7. Note that both m and s are divisors of l∞.

Remark 2.18. From the join construction we get a projective orbibundle

P(1⊕ Ln) = (Sn,∆N,m)
π
−→(N,∆N)

with generic fibers of the form CP1[v]/Zm. However, now since (N,∆N) is also an
orbifold we have singular fibers along the branch divisors Dj of N and the order of the
orbifold singularity is given by the ramification index mj. So along Dj the fibers of π
have the form CP1[v]/(Zm×Zmj), and along intersections Di∩Dj with i 6= j the fibers
take the form CP1[v]/(Zm × Zmi × Zmj), etc.

Remark 2.19. In the regular case where ΥN = 1 we have

[ωn,m,N ] =
l0v∞w0(πorbv )∗[ωN ] + sPD(D∞)

gcd(s, w0v∞l0)mv0v∞

as expected from Lemma 3.11 in [BTF16] and the assumption of primitivity.
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Example 2.1. If we assume as in [BTF19] that (N,∆N) is KE with corb1 (N,∆N) =
IN [ωN ] and l0, l∞ are chosen such that

(32) l0 =
IN

gcd(w0 + w∞, IN)
, l∞ =

w0 + w∞

gcd(w0 + w∞, IN)
,

then from Lemma 2.16 we calculate that

corb1 (Sn,∆m,N) = (πorb)∗corb1 (N,∆N) +
1

m0
PD(D0) +

1

m∞
PD(D∞)

=
v∞(INmv

0 + n)(πorb)∗[ωN ] + (v0 + v∞)PD(D∞)

mv0v∞

=
(l∞INv

0v∞ + l0v∞(w0v∞ − w∞v0))(πorbm )∗[ωN ] + s(v0 + v∞)PD(D∞)

smv0v∞

=
((w0 + w∞)v0v∞ + v∞(w0v∞ − w∞v0))l0(πorb)∗[ωN ] + s(v0 + v∞)PD(D∞)

smv0v∞

=
(v0 + v∞)

(
w0v∞l0(πorb)∗[ωN ]I + sΥNPD(D∞)

)
smv0v∞ΥN

=
(v0 + v∞

s

)
gcd(l0w0v∞, sΥN)[ωn,m,N ]

which implies that the Fano index of [ωn,m,N ] is

I(Sn,∆m,N ) =
(v0 + v∞

s

)
gcd(l0w0v∞, sΥN).

Now it follows from first principles that the index I(Sn,∆m,N ) must be an integer. But we
can show this directly in our case. First note that since s divides |w| = w0 +w∞ when
c1(Dl,w) = 0 and it also divides (w0v∞−w∞v0), it is a factor of v0(w0 +w∞)+(w0v∞−
w∞v0) = w0(v0 + v∞). Similarly, it is a factor of v∞(w0 + w∞) − (w0v∞ − w∞v0) =
w∞(v0 + v∞). So, since gcd(w0, w∞) = 1, it must be a factor of (v0 + v∞). A similar
analysis shows that gcd(l0w0v∞, s) = 1. So the index reduces to

(33) I(Sn,∆m,N ) =
(v0 + v∞

s

)
gcd(l0w0v∞,ΥN).

As a concrete example, using (33), the index of the quotient Kähler-Einstein orbifold
coming from the quasi-regular Sasaki-Einstein metric on Y 13,8 is determined to be Iv2 =
12 as in agreement with the first example of Example 5.3 of [BTF19]. Continuing with
this example we can now consider the quasi-regular Sasaki-Einstein metric of the join

Y 13,8 ?4,15 S
3
34,11

and from the data given in [BTF19], (33) tells us that now the index of the quotient is
Iv3 = 28.

There are obstructions to the regularity of Reeb vector fields:

Proposition 2.20. Let Ml,w be a Sasaki join manifold with l∞ > 2 and c1(Dl,w) = 0.
Then the w cone t+w does not contain a regular Reeb vector field.
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Proof. Assume that ξv ∈ t+w is a regular Reeb vector field. Such a ξv is regular if and
only if v = (1, 1) and m = 1. But this implies that 2 < l∞ = s = gcd(s, w0 − w∞)
so s divides w0 − w∞. But also since c1(Dl,w) = 0 equations (32) hold. So s divides
|w| = w0 + w∞. But since s > 2 either s or s

2
must divide both w0 and w∞, and this

gives a contradiction since gcd(w0, w∞) = 1. �

2.8. A Categorical Approach. For a fixed quasiregular Sasaki manifold (M,S) we
consider the set of CR orbifolds of Sasaki type

(34) {{(Ml,w,Dl,w, Jw)}(l,w)∈(Z+)2×(Z+)2}
given by the join construction. Each element (Ml,w,Dl,w, Jw) consists of a real 2-
parameter family of Sasakian structures parameterized by the w Sasaki cone t+w which
is completely characterized by its dense subset of quasiregular Reeb vector fields ξm.
The set of all such Sasakian structures

{Sl,w,m}(l,w,m)∈(Z+)2×(Z+)2×(Z+)2

are the object set Gl,w,m of a groupoid whose morphisms are equivalences, that is,
orbifold diffeomorphisms f : Ml,w −→Ml′,w′ such that

(35) f∗Dl,w = Dl′,w′ , f∗ ◦ Jw = Jw′ ◦ f∗
and f ∗Sl′w′,m′ = Sl,w,m. Note that the isotropy subgroup of G1 at Sl,w,m is just the Sasaki
automorphism group Aut(Sl,w,m). We work with the full subgroupoid G = (G0,G1)
whose object set G0 satisfies the condition that the components of l and w are relatively
prime.

Similarly, consider the set of projective algebraic ruled Kähler orbifolds of the form

(36) {Zn,m = (Sn,∆m + π−1(∆N), ωn,m,N)}(n,m)∈Z×(Z+)2

that satisfy [ωn,m,N ] ∈ H2
orb(Zn,m,Z) and gcd(m0,m∞, |n|) = 1 where N is fixed. These

form the object set Q0 of a groupoid Q = {Qn,m} whose morphisms are orbifold biholo-
morphisms intertwining the Kähler structures.

Proposition 2.21. There is a full functor F : G −→ Q.

Proof. We construct such a functor F : G −→ Q. Theorems 2.7 and 2.13 shows that each
object Sl,w,m of G uniquely describes a projective algebraic ruled Kähler orbifold of the
form (Sn,∆m +π−1(∆N), ωn,m,N) which satisfy the relations of Theorem 2.7. Moreover,
morphisms of G satisfy Equations (35), so they induce morphisms of Q. Since morphisms
of Q are orbifold biholomorphisms intertwining the Kähler structures, they also induce
morphisms of G. Then Proposition 4.22 of [BHLTF18] shows that this is invertible on
the objects in the image of F . That is, F induces a surjective functor

HomG(A,B) −→ HomQ(F(A),F(B))

so it is full. �

Remark 2.22. We could also consider groupoids which include equivalences at the
level of the orbibundle M → N , but we do not do so here.

Remark 2.23. Note that different orbifold structures on the same Sn do not necessarily
correspond to the same join Ml,w. They can correspond to spaces that are not even
homotopy equivalent.
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Example 2.2. We give an example of the equivalence of non-trivial equivalences. The
involution (z1, z2) 7→ (z2, z1) on S3 induces a diffeomorphism ι⊥G : Ml,w −→ Ml,w⊥

sending Sl,w,m to Sl,w⊥,m⊥ where w⊥ = (w∞, w0) and m⊥ = (m∞,m0). This gives a
nontrivial involution ι⊥G in G1. Similarly, we have an involution ι⊥Q ∈ Q1 given by the
fiber inversion map which interchanges the branch divisors (D0,m0) and (D∞,m∞) and
sends (Sn,∆m +π−1(∆N), ωn,m,N) to (S−n,∆m⊥ +π−1(∆N), ω−n,m⊥,N). Using (35) and
the relations of Theorem 2.7 we see that F (ι⊥G ) = ι⊥Q .

To each element Sl,w,m ∈ G0 we can associate the first Chern class c1(Dl,w) of the
contact bundle which is an invariant under morphisms G1. Similarly, to each element
Zn,m ∈ Q0 we associate corb1 (Sn,∆m,N) which also is invariant under the morphisms Q1.
Furthermore, the functor F induces a map

(37) F ∗corb1 (Sn,∆m,N) = c1(Dl,w).

Example 2.3. The Y p,qs and Hirzebruch orbifolds. Here we take M = S3 with its
standard SE metric. As shown in Example 6.8 of [BTF16] this corresponds to the join
M ?l S

3
w with

(38) l = (gcd(p+ q, p− q), p), w =
1

gcd(p+ q, p− q)
(
p+ q, p− q

)
.

Here we take p > 0 and −p < q < p where q = 0 corresponds to w = (1, 1). The
condition gcd(l0, l∞) = 1 corresponds to gcd(p, |q|) = 1 when q 6= 0 and p = 1 if
q = 0. Choose a quasiregular Reeb vector field ξv ∈ t+w. Then Theorem 2.7 gives
F (Y p,q, ξv) = (Sn,∆m) where Sn is the ruled surface over CP1 with orbifold fibers
CP1[w]/Zm satisfying m = mv and

n = l0
p(m∞ −m0) + q(m0 +m∞)

p
, gcd(m0,m∞, n) = 1.

Note that n is an integer since p = ms and s divides (p+q)v∞−(p−q)v0. By Proposition
2.21 this gives a left invertible functor from the groupoid G whose objects are (Y p,q, ξm)
to the groupoid Q whose objects are Hirzebruch orbifolds (Sn,∆m) with Kähler form
corb1 (Sn,∆m). The equivalence ι⊥G on G sending the triple (p, q,m) to (p,−q,m⊥) maps

to the equivalence ι⊥Q on Q sending (n,m) to (−n,m⊥).

3. Extremal, CSC, and KE admissible metrics on the S3
w-join

An important property of the S3
w join construction is that one can apply the admissible

constructions from Section 2.6 to give explicit constructions of existence theorems for
extremal and constant scalar curvature Sasaki metrics. This was presented in a recent
survey [BTF15] as well as our original papers [BTF14a, BTF16] when M is regular;
however, as discussed above in Theorem 2.7 the quasi-regular case goes through without
much change.

In particular, the lifted admissible quasi-regular structure in Theorem 2.13

• has a lifted extremal polynomial F̃ext(z̃) = mv0v∞p∗v(Fext(z)) whose positivity
(or not) for −1 < z̃ < 1 will determine whether the corresponding expression
(27) gives a genuine quasi-regular admissible extremal Sasaki metric within the
isotopy class.
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• Setting b = v∞/v0, (27) with Θ̃(z̃) = F̃ext (̃z)

(1+rz̃)dN
gives a genuine CSC Sasaki metric

if and only if b is a root of f where

(39)
f(b) = (w0)2(dN+1)b2dN+3(AN l

∞ + l0(dN + 1)w∞ − b(dN + 1)l0w0)

− (w0)dN+2(w∞)dN bdN+3(dN + 1)(AN(dN + 1)l∞ − l0((dN + 1)w0 + (dN + 2)w∞))

+ (w0)dN+1(w∞)dN+1bdN+2(2ANdN(dN + 2)l∞ − (dN + 1)(2dN + 3)l0(w0 + w∞))

− (w0)dN (w∞)dN+2bdN+1(dN + 1)(AN(dN + 1)l∞ − l0((dN + 2)w0 + (dN + 1)w∞))

+ (w∞)2(dN+1)(b(AN l
∞ + l0(dN + 1)w0)− (dN + 1)l0w∞).

• Assume further that M is an S1 orbibundle over a compact positive Kähler-
Einstein orbifold N with Kähler class [ωN ] ∈ H2

orb(N,Z) and that the relatively
prime positive integers (l0, l∞) are the relative Fano indices given explicitly by

l0 =
IN

gcd(w0 + w∞, IN)
, l∞ =

w0 + w∞

gcd(w0 + w∞, IN)
,

where IN denotes the orbifold Fano index of N . Then (27) with Θ̃(z̃) = F̃ext (̃z)

(1+rz̃)dN

is an η-Einstein Sasaki metric if and only if

(40)

∫ 1

−1

((1− b)− (1 + b)z) ((b+ t) + (b− t)z)dNdz = 0,

where t = w∞/w0 is assumed to satisfy 0 < t < 1 and (as above) b = v∞/v0.
Naturally, in this case, b is also a root of f in (39).

Remark 3.1. The analysis on pages 1053-1054 of [BTF16] shows that in the orbifold
category there are infinitely many quasi-regular Sasaki-η-Einstein manifolds of the form
M?lS

3
w. The condition that the join M?lS

3
w be smooth is given by (9), and the condition

for a Sasaki-Einstein structure is that the components l0, l∞ of l are the relative Fano
indices given in Theorem 3.3. So such an Ml,w with quasiregular Sasakian structure S
is smooth if and only if

(41) gcd(ΥS , l
0w0w∞) = 1

where ΥS = ΥN denotes the order of the Sasaki manifold (M,S).

In Section 4 we will explore some remarkable polynomials arising from (40).

3.1. The Apostolov-Calderbank CR-twist and irregular solutions. In a recent
paper of V. Apostolov and D. M. J. Calderbank [AC21] the notion of a CR-twist was
introduced. See Definition 4 in [AC21]. This casts an illuminating light on the w-cone
for the join M ?l S

3
w. Indeed, following Section 4.5 of [AC21]3 and bearing in mind

equation (26) we see in broad strokes the following:

3We would also like to thank Vestislav Apostolov for a very helpful e-mail conversation.
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For a fixed CR-structure, the orbifold-Kähler quotient of each quasi-regular ray given
by a pair of co-prime (v0, v∞) is actually a CR-twist by a positive Killing potential f
of the product Kähler quotient of the join with respect to the original ray (given by
(w0, w∞)). Up to homothety, f = z̃+1/r, where we now view z̃ as the lift of the moment
map of (CP1[w], ωw) to the product. As we know from Section 2.5,

1/r =
w0v∞ + w∞v0

w0v∞ − w∞v0
=
w0b+ w∞

w0b− w∞
,

where b = v∞/v0 as above. Allowing b to be irrational, corresponds to letting 1/r be
irrational and thus the - locally defined - Kähler quotients of irregular rays corresponding
to b ∈ R+ \Q+ are also captured as CR-twists by f = z̃ + 1/r.

Following [AC21], the construction of the quasi-regular admissible extremal Sasaki
metrics from above may now be seen as arising as follows. By Theorem 1 in [AC21] and
the fact that all the Reeb vector fields in the w-cone commute with ξw, the Reeb vector
field ξv determined by f = z̃+ 1/r is extremal if and only if ξw is so-called (ξv, dN + 3)-
extremal (which in turn means that the quotient product metric is (f, dN+3)-extremal).
The latter condition does not hold if we use the canonical Sasaki Extremal structure on
S3
w, but one can change the profile function from the one of the original extremal Kähler

structure (ωw, gw) to one (Ã from (17) in [AC21]) that does satisfy that the resulting
product metric on N × CP1[w] is (f, dN + 3)-extremal. The only “catch”, is that this
new profile function may not be positive everywhere. Ignoring this worry for a moment,
we now have changed the CR-structure of the original join but we remain in the same
isotopy class (with the usual “symplectic to complex” viewpoint shift) and the resulting

Sasaki structure at ξv looks like (27) with Θ̃(z̃) = F̃ext (̃z)

(1+rz̃)dN
. Now the positivity condition

of the aforementioned profile function (the Ã) is equivalent to the positivity condition
of F̃ext(z̃).

One great advantage of keeping the change of the CR-structure at the ξw-ray site
and then “do a twist” to ξv, is that it becomes very clear why we may extend our
constructions of extremal admissible Sasaki metrics to b ∈ R+ \ Q+ (as we did in

[BTF16]). It simply corresponds to allowing the number b̃0 := 1/r to be in R+ \ Q+

and constructing (z̃ + b̃0, dN + 3)-extremal quasi-regular Kähler metrics on the product
N × CP1[w]. The profile function Ã from (17) of [AC21], clearly varies smoothly with

b̃0 and, in turn, so the resulting admissible extremal metric at ξv, with corresponding

Θ̃(z̃) = F̃ext (̃z)

(1+rz̃)dN
, will vary smoothly with (v0, v∞). In particular, when b = v∞/v0 and

b is a root of f in (39) then for b ∈ Q+ we have a quasi-regular Sasaki CSC metric,
whereas when b ∈ R+ \ Q+, we have an irregular Sasaki CSC metric. Likewise, if b
is a root of f in (40), and the other conditions in the bullet point containing (40) are
satisfied, then for b ∈ Q+ we have a quasi-regular η-Einstein Sasaki metric, whereas
when b ∈ R+ \Q+, we have an irregular η-Einstein Sasaki metric.

3.2. Constant Scalar Curvature. Summarizing our results we see that by following
the same arguments as in Section 6.2 of [BTF16] we have orbifold versions of Theorems
1.1 through 1.4. of [BTF16]:

Theorem 3.2. Let Ml,w = M ?lS
3
w be the S3

w-join with a quasi-regular Sasaki manifold
(orbifold) M which is an S1 orbibundle over a compact Kähler orbifold N with constant
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scalar curvature sN . Then for each vector w = (w0, w∞) ∈ Z+×Z+ with relatively prime
components satisfying w0 > w∞ there exists a Reeb vector field ξv in the 2-dimensional
w-Sasaki cone on Ml,w such that the corresponding ray of Sasakian structures Sa =
(a−1ξv, aηv,Φ, ga) has constant scalar curvature. Moreover, if sN ≥ 0, then the w-
Sasaki cone t+w is exhausted by extremal Sasaki metrics. If sN > 0 and l∞ is sufficiently
large then the w-cone has at least 3 cscS rays.

Theorem 3.3. Let Ml,w = M ?lS
3
w be the S3

w-join with a quasi-regular Sasaki manifold
(orbifold) M which is an S1 orbibundle over a compact positive Kähler-Einstein orbifold
N with primitive Kähler class [ωN ] ∈ H2

orb(N,Z). Assume that the relatively prime
positive integers (l0, l∞) are the relative Fano indices given explicitly by

l0 =
IN

gcd(w0 + w∞, IN)
, l∞ =

w0 + w∞

gcd(w0 + w∞, IN)
,

where IN denotes the orbifold Fano index of N . Then for each vector w = (w0, w∞) ∈
Z+×Z+ with relatively prime components satisfying w0 > w∞ there exists a Reeb vector
field ξv in the 2-dimensional w-Sasaki cone t+w on Ml,w such that the corresponding
Sasakian structure Sv = (ξv, ηv,Φ, g) is Sasaki-Einstein. Moreover, this ray is the only
admissible CSC ray in the Sasaki cone.

Remark 3.4. The constant scalar curvature ray in Theorems 3.2 and 3.3 can be either
quasi-regular or irregular. In the former case the procedure can be iterated.

In dimension 5 we have

Corollary 3.5. A cone decomposable compact Sasaki 5-manifold M5 is diffeomorphic
to a lens space bundle over a Riemann surface of genus g. Moreover, if g > 0 it admits
a cscS ray in its Sasaki cone; whereas, if g = 0 choosing the unique ray of Sasakian
structures with constant Φ sectional curvature on M3 (where M5 = M3 ?l S

3
w) gives a

constant scalar curvature Sasaki metric on M5.

Proof. By definition M5 is the join M3 ?l S
3
w where M3 is a Sasaki 3-manifold. By

[Gei97] M3 is diffeomorphic to one of the three 3-manifolds

Γ\S3, Γ\H3, Γ\S̃L(2,R)

where S̃L(2,R) is the universal cover of SL(2,R), H3 is the Heisenberg group, and Γ
is a discrete group of isometries with respect to the Sasaki metric. These are all S1

Seifert bundles over a Riemann surface of genus g where g = 0 in the first case, g = 1
in the second, and g > 1 in the third. By [Bel01] for cases 2 and 3 there is a contact
isotopy to a Sasaki metric of constant Φ sectional curvature. Whereas, if g = 0 there is
a unique ray of constant Φ sectional curvature in the Sasaki cone. The corollary then
follows from Theorem 3.2 and [BTF14a]. �

Remark 3.6. The analogue of this corollary is definitely false in higher dimensions.

Remark 3.7. It should be noted that the methods of [AC21] also has the advantage of
being able to go beyond the w-cone (within the full Sasaki-cone), for the join M3 ?l S

3
w,

whenever the set of Killing potentials of (N,ωN , γN) is non-empty. This could be useful
in, for example, exploring illuminating examples for the open questions in [BHLTF21].
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4. The S-η-E Polynomials

We now consider the S-η-E condition and equation (40) more closely. We choose a
Sasakian structure Sv in the w-cone of Ml,w with Reeb field ξv. Following the analysis
on pages 1053-1054 [BTF16] we define b = v∞

v0
= ktw and tw = w∞

w0 together with the
polynomials of degree d := dN

(42) p±(k) =

∫ 1

−1

(1± z)
(
(k + 1) + (k − 1)z

)d
dz.

Then equation (40) is equivalent with b = p−(k)
p+(k)

and tw = p−(k)
kp+(k)

. We can easily compute

the polynomials p±(k) explicitly.

Lemma 4.1. The polynomials p±(k) defined in (42) satisfy

p−(k) =
2d+2

(d+ 1)(d+ 2)

d∑
j=0

(d+ 1− j)kj, p+(k) =
2d+2

(d+ 1)(d+ 2)

d∑
j=0

(j + 1)kj,

and

(43)
p−(k)

p+(k)
=
d+ 1 + dk + · · ·+ 2kd−1 + kd

1 + 2k + · · ·+ (d+ 1)kd
.

Proof. Performing the integration in (42) explicitly we find

p+(k) =
2d+2

(d+ 1)(d+ 2)

(d+ 1)kd+2 − (d+ 2)kd+1 + 1

(k − 1)2
,

p−(k) =
2d+2

(d+ 1)(d+ 2)

kd+2 − (d+ 2)k + d+ 1

(k − 1)2
,

from which the expressions for p±(k) are easily verified. �

We can use transverse scaling to reduce our discussion to the 1 dimensional space of
rays Rw of t+w which is uniquely determined by its slope. We can thus ignore the factor

2d

(d+1)(d+2)
in front of the sums in p±(k).

Then as in [BTF16] we have

Theorem 4.2. Consider Sasaki join manifolds Ml,w with w0 > w∞ relatively prime
positive integers and assume c1(Dl,w) = 0. Then for each pair (w0, w∞) of rela-
tively prime positive integers with w0 > w∞ there exists a unique S-η-E ray rv where
v = (v0, v∞) = (p+(k), p−(k)) which corresponds to the unique root k ∈ (1,∞) of the
polynomial

(44) Pw(k) = w∞(d+ 1)kd+1 +
d∑
j=0

(
|w|j − w0(d+ 1)

)
kj.

Furthermore, the S-η-E ray is quasi-regular if and only k ∈ (1,∞) ∩Q.

Proof. Given the relatively prime integers w0 > w∞ it follows as in Section 6.2 of
[BTF16] that there is a unique S-η-E ray corresponding to k ∈ (1,∞) such that

(45) w∞kp+(k) = w0p−(k).
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It follows easily from Lemma 4.1 that the solutions of (45) correspond precisely to roots
of the polynomial Pw. This correspondence is that the ray rv with v = (p+(k), p−(k))
corresponds to the root k ∈ (1,∞). That there exists a root k ∈ (1,∞) follows since

Pw(1) = −(d+ 1)(d+ 2)

2
(w0 − w∞) < 0

and limk→∞ Pw(k) = +∞. Moreover, this root is unique since roots of Pw in (1,∞)
correspond to S-η-E rays which by [MSY08] are unique.

Since v = (v0, v∞) parameterizes the w cone t+w on Ml,w, we see that a Reeb vector
field ξv is quasi-regular if and only if v lies on the integral lattice (Z+)2 ⊂ (R+)2.
Otherwise ξv will be irregular. Since we use the convention w0 > w∞ this translates to:
ξv is quasiregular if and only if k ∈ (1,∞) ∩Q. �

Remark 4.3. From the discussion in Section 3.1 in [BTF16] it follows that the Goren-
stein condition c1(Dl,w) = 0 is equivalent to the conditions at the beginning of Theorem
3.3 and thus Theorem 4.2 should be seen as a more explicit exposition of the Sasaki
η-Einstein solutions implied by Theorem 3.3. It is straightforward to generalize these
results to the Q-Gorenstein case when c1(Dl,w) is a torsion class.

Remark 4.4. The unique almost regular ray ((v0, v∞) = (1, 1), i.e., b = 1) is never
S-η-E (since Pw(1) 6= 0).

Remark 4.5. Note that if k ∈ Z+, w satisfies

(46) w = (w0, w∞) =
( kp+(k)

(gcd(p−(k), kp+(k))
,

p−(k)

(gcd(p−(k), kp+(k))

)
.

We can give a slightly different way of treating quasi-regular S-η-E rays. Note that
if k = p

q
is any rational number and we define

F (p, q) = (d+ 1)qd + dqd−1p+ · · ·+ 2qpd−1 + pd

then we have

(47)
p−(k)

p+(k)
=
F (p, q)

F (q, p)
.

We define the map κ : (1,∞) ∩Q −→ Rw ≈ R+ by

(48) κ(k) =
d+ 1 + dk + · · ·+ 2kd−1 + kd

1 + 2k + · · ·+ dkd−1 + (d+ 1)kd
=
v∞

v0
.

We can identify (1,∞) ∩ Q with the set R of pairs (p, q) of relatively prime positive
integers with p > q. We have an injective map κ : R −→ R defined by

(49) κ(p, q) = (
F (q, p)

C
,
F (p, q)

C
) = (v0, v∞)

where C = gcd(F (q, p), F (p, q)). Then we have

Corollary 4.6. A quasi-regular ray rv defined by v ∈ R is S-η-E if and only if v ∈ image
of κ and satisfies the constraint

(50)
w∞

w0
=
qF (p, q)

pF (q, p)
=
qv∞

pv0
.



24 CHARLES BOYER AND CHRISTINA TØNNESEN-FRIEDMAN

5. Relation with K-stability

The purpose of this section is to show that in a well defined sense the S3
w join operation

preserves certain K-stability properties. For quasi-regular Sasaki metrics such stability
properties are equivalent to the stability properties of certain Kähler orbifolds which
was investigated in detail in [RT11]. However, to treat the general Sasaki metrics one
needs to work on the affine cone. For any contact manifold M we consider the cone
C(M) = M × R+. Choosing a 1-form η in the contact structure of M we form an
exact symplectic structure on C(M) by defining ω = d(r2η) where r ∈ R+. The pair
(C(M), ω) is called the symplectization of the (strict) contact structure (M, η). Using
the Liouville vector field Ψ = r∂r we define a natural almost complex structure I on
C(M) by

IX = ΦX + η(X)Ψ, IΨ = −ξ
where X is a vector field on M , and the Reeb field ξ is understood to be lifted to C(M).
Without further ado we shall identify M with M × {r = 1} ⊂ C(M). By adding the
cone point we obtain an affine variety Y = C(M) ∪ {0} which is invariant under the
complexification TC of the torus action Tk. This was done by Collins and Székelyhidi
[CS18] and it is this approach that we follow here. We begin by defining two important
functionals, the total volume and the total transverse scalar curvature, viz.

(51) Vξ =

∫
M

dvg, Sξ =

∫
M

sTdvg

where sT denotes the transverse scalar curvature of the Sasakian structure S = (ξ, η,Φ, g).
We define the Donaldson-Futaki invariant on the polarized affine cone (Y, ξ) by

(52) Fut(Y, ξ, a) :=
Vξ

n
Da

(
Sξ
Vξ

)
+

SξDaVξ

n(n+ 1)Vξ

.

To proceed further we need the definition of a special type of degeneration known as a
test configuration due to Donaldson [Don02] in the Kähler case and Collins-Székelyhidi
[CS18] in the Sasaki case:

Definition 5.1. Let (Y, ξ) be a polarized affine variety with an action of a torus TC∗

for which the Lie algebra t of a maximal compact subtorus TR contains the Reeb vector
field ξ. A TC-equivariant test configuration for (Y, ξ) is given by a set of k TC-invariant
generators f1, . . . , fk of the coordinate ring H of Y and k integers w1, . . . , wk (weights).
The functions f1, . . . , fk are used to embed Y in Ck on which the weights w1, . . . , wk
determine a C∗ action. By taking the flat limit of the orbits of Y to 0 ∈ C we get a
family of affine schemes Y −→ C. There is then an action of C∗ on the ‘central fiber’
Y0, generated by a ∈ t′, the Lie algebra of some torus T ′C ⊂ GL(k,C) containing TC.

We now obtain the correct notions of K-stability following [Tia97, Don02, CS18, CS19]

Definition 5.2. We say that the polarized affine variety (Y, ξ) is K-semistable if for
each TC such that ξ ∈ t the Lie algebra of TR and any TC-equivariant test configuration
we have

(53) Fut(Y, ξ, a) ≥ 0
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where a ∈ t′ is the infinitesimal generator of the induced S1 action on the central fiber
Y0. The polarized variety (Y, ξ) is said to be K-polystable if equality holds only for the
product configuration Y = Y × C.

The general Yau-Tian-Donaldson conjecture in the Sasaki case, which says that cscS
metrics corresponds to some kind of K-stability on the affine cone, is still open. It has
has been affirmed in one direction by Collins and Székelyhidi.

Theorem 5.3 ([CS18]). Let (M,S) be a Sasaki manifold of constant scalar curvature.
Then its polarized affine cone (Y, ξ) is K-semistable.

Since there is a one to one correspondence between a Sasaki manifold and its polarized
affine variety, we can also refer to this as the K-semistability of the corresponding Sasaki
manifold. We now have an immediate corollary of Theorems 3.2 and 5.3:

Corollary 5.4. Let M be a quasi-regular Sasaki manifold with constant scalar curva-
ture, let Yl,w denote the affine cone of the S3

w join Ml,w = M ?l S
3
w. Then there exists

a K-semistable polarization ξ of Yl,w, or equivalently a K-semistable Sasakian structure
(ξ, η,Φ, g) on Ml,w.

In the Q-Gorenstein case, i.e. c1(Y ) is a torsion class, it is well known that the
existence of Sasaki-Einstein metrics of M is equivalent to the existence of Ricci flat
Kähler metrics on the affine cone C(M) = M ×R+, and it is convenient to include the
“cone point” and define Y = C(M)∪{0}. As before the pair (Y, ξ) is a polarized affine
variety, and we can also assume that ξ belongs to the Lie algebra t of a maximal torus
T. However, in this case we have a nowhere vanishing section Ω of the canonical line
bundle Λn+1,0(C(M)) that satisfies

£ξΩ = i(n+ 1)mΩ

for some m ∈ Z+. Collins and Székelyhidi call this pair (Y, ξ) a normalized Fano cone
singularity, and they restrict their test configurations to those with normal central fibers.

Definition 5.5. A normalized Fano cone singularity (Y, ξ) is called a T-equivariantly
K-stable Reeb polarization if for all test configurations with normal central fiber (Y0, ξ)
equation (53) holds with equality only if (Y, ξ) is isomorphic to (Y0, ξ).

This gives the Sasaki version of the famous Chen-Donaldson-Sun theorem.

Theorem 5.6 ([CS19]). Let (M,S) be a Sasaki manifold with c1(D) a torsion class.
Then (M,S) admits a Sasaki-Einstein metric if and only if its polarized affine cone
(Y, ξ) is T-equivariantly K-stable.

Combining this theorem with Theorem 3.3 gives

Corollary 5.7. The S3
w-join, Ml,w = M ?l S

3
w, described in Theorem 3.3 admits a

T-equivariantly K-stable Reeb polarization.

Remark 5.8. By relaxing the primitivity assumption in Theorem 3.3 this corollary
easily generalizes to the Q-Gorenstein case with c1(D) a torsion class.

Remark 5.9. In both Corollaries 5.4 and 5.7 the K-(semi)stable Sasakian structures
on Ml,w could be irregular.
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6. Applications

It is the purpose of this section to apply our main Theorems 3.2 and 3.3 to give
explicit examples of cone decomposable Sasakian structures that admit constant scalar
curvature or S-η-E metrics. As shown by Corollary 3.5 cone decomposability is well
understood in dimension 5, so we concentrate here on dimension 7 and higher. We shall
only give explicit examples in dimension 7, since the complexity increases greatly with
dimension.

6.1. Toric Examples. Recall that toric contact structures of Reeb type have families
of Sasakian structures [BG00a, Ler02]. It is easy to see that the S3

w join of a toric
contact structure of Reeb type is a toric contact structure of Reeb type. In dimension
5 all toric contact structures of Reeb type on S3 bundles over S2 can be realized as
joins and have been studied in [Leg11a, BP14]. Examples in dimension 7 can easily be
constructed for example Y p,q ?l S

3
w as in [BTF19]. This is a special case of the iterated

S3 joins which are treated in [BTF20a].

6.2. Complexity One Examples in Dimension 7. Here we consider the S3
w join

with a complexity one Sasaki 5-manifold recently studied in [CS19]. It is the link Lp,q
of the Brieskorn varieties

(54) fp,q = zp0 + zq1 + z2
2 + z2

3 = 0

of degree d = 2pq with its naturally induced Sasakian structure with Reeb vector field
ξ0. We denote this join by Mp,q,l,w. Topologically the 5-manifolds Lp,q are precisely the
k-fold connected sums k(S2×S3) with k = gcd(p, q)−1 and k = 0 means the five sphere
S5. So from Proposition 2.4 we see that the 7-manifold Mp,q,l,w is simply connected with
π2(Mp,q,w) = H2(Mp,q,l,w,Z) = Zk.

The weight vector of the naturally induced Reeb vector field ξ0 is (2q, 2p, pq, pq). The
Sasaki cone t+(Lp,q) of the link Lp,q is 2 dimensional and was computed in [CS19, BvC18]
using the Hilbert series of the coordinate ring on the polarized affine variety (Yp,q, ξ0) =
(C[z0, z1, z2, z3]/(fp,q), ξ0). It is given by

(55) t+(Lp,q) = {ξ = aξ0 + bζ | a > 0, −ad
2
< b <

ad

2
}

where ζ ∈ t has weight (1,−1) with respect to (u = z2+iz3, v = z2−iz3) and 0 elsewhere.
In all cases there is a unique ray that minimizes the volume on the planar slice fixed by
a which corresponds to b = 0. Moreover, a Theorem of Collins and Székelyhidi [CS19]
says that this ray is cscS, hence S-η-E, if and only if 2p > q and 2q > p, or the quadric4

p = q = 2. The Fano index Ip,q of this ray is

(56) Ip,q = 2q + 2p+ pq + pq − d = 2(p+ q).

Thus, as in Equation (9) of [BTF16] we have

Lemma 6.1. There is a generator γ ∈ H2(Mp,q,l,w,Z) such that

c1(Dp,q,l,w) = (2l∞(p+ q)− l0|w|)γ.
Moreover, the second Stiefel-Whitney class is w2(Mp,q,l,w) = l0|w|γ mod 2.

4We exclude the case p = q = 2 in what follows. This gives the homogeneous Einstein metric on
S2 × S3, hence, it is regular and thus treated in [BTF16].
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Remark 6.2. For those contact structures Dp,q,l,w such that 2(p + q)l∞ > l0w0 the
entire w Sasaki cone t+w consists of positive Sasakian structures. When this inequality
does not hold type changing occurs. See Proposition 4.2 of [BTF20b].

We can now apply Theorem 3.2 to give a cscS metric in the w Sasaki cone t+w of the
join Mp,q,l,w. But first we construct the S1 quotient N of Lp,q as a log pair.

Lemma 6.3. Let k = gcd(p, q)− 1, then the quotient orbifold (N,∆) generated by the
Reeb vector field ξ0 is (N,∆p,q) where N is the weighted projective hypersurface embedded
in CP3[2, 2, k + 1, k + 1] as zk+1

0 + zk+1
1 + z2

2 + z2
3 = 0 and ∆p,q is the branch divisor

∆p,q = (1− 1

p
)(z0 = 0) + (1− 1

q
)(z1 = 0).

Moreover, there are algebraic quotient singularities with isotropy Zk+1 occuring at the
intersection of the irreducible components of ∆p,q, namely the two points [0, 0, 1,±i] ∈
N , and Z2 quotient singularities at the points at the k + 1 points [1, e

iπ(2m+1)
k+1 , 0, 0],

m = 0, . . . , k.

Proof. There are three cases to consider, p, q both odd, p, q both even, and p, q have
different parity. In the last two cases, the weights have a common factor of 4 and 2,
respectively which should be factored out of the weights and the degree. Once this is
done the proof uses standard techniques described in Chapter 4 of [BG08], in particular
Lemma 5.4.10. First we define a new weight vector w̄ as described in Definition 4.5.7 of
[BG08] which by a result of Delorme (Proposition 4.5.10 in [BG08]) gives an isomorphism
CP3[w] ≈ CP3[w̄] as algebraic varieties. For example if p and q are both odd we have
from Definition 4.5.7 that

w̄ = (2, 2, gcd(p, q), gcd(p, q)) = (2, 2, k + 1, k + 1)

and then Lemma 5.4.10 determines the hypersurface. The other two cases are similar
once the factorization described above is done. The second statement then follows since
the hypersurface inherits the algebraic quotient singularities of CP3[2, 2, k+1, k+1]. �

This gives

Theorem 6.4. If 2p > q and 2q > p then for each of the relatively prime pairs (l0, l∞)
and (w0, w∞) there exists a ray of constant scalar curvature Sasakian structures in t+w
on the 7 dimensional Sasaki orbifolds Mp,q,l,w, and the entire w cone t+w is exhausted
by extremal Sasaki metrics. Moreover, if l∞ is large enough there are at least 3 cscS
metrics in t+w. Mp,q,l,w is a smooth manifold if and only if gcd(2l∞pq, l0w0w∞) = 1.

Remark 6.5. It is interesting to note that the last statement of the Theorem together
with Lemma 6.1 imply that if Mp,q,l,w is smooth it must be a spin manifold. All the
non-spin cases are orbifolds.

Excluding the homogeneous quadric p = q = 2, Collins and Székelyhidi [CS19] prove
that the link Lp,q has an SE metric if and only if 2p > q and 2q > p. The slice that
gives the possible SE metric is determined by c1(Fξ) = 4[dη]B.

Applying Theorem 3.3 gives SE metrics on the S3
w joins Mp,q,l,w = Lp,q?lS

3
w where the

components of l are the relative Fano indices. Since these indices are fixed we relabel
the join as Mp,q,w. We have from Theorem 3.3 and Theorem 1.2 of [CS19]
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Theorem 6.6. If 2q > p and 2p > q there is an SE metric of complexity one in the w
Sasaki cone t+w of the join

Mp,q,w = k(S2 × S3) ?l S
3
w

where

l0 =
2(p+ q)

gcd(2(p+ q), |w|)
, l∞ =

|w|
gcd(2(p+ q), |w|)

.

The converse of this theorem is not known at this time.
From Proposition 2.4 we see that the 7-manifolds Mp,q,w = k(S2×S3)?lS

3
w are simply

connected with π2(Mp,q,w) = Zk+1.

6.3. Complexity Two Examples in Dimension 7. In this case t+w is the full Sasaki
cone, i.e. the dimension of the Sasaki cone is two. Since any Sasakian structure on M
is quasi-regular, there are many cases. Here it suffices to consider a simple example.
Consider the Brieskorn-Pham link Lk,p defined by

(57) zk0 + zk1 + zk+1
2 + zp3 = 0

of degree pk(k + 1) and weight vector w = ((k + 1)p, (k + 1)p, kp, k(k + 1)). The index
of the natural quotient is

(58) Ik,p = |w| − d = 2pk + 2p+ k − (p− 1)k2.

These hypersurfaces give infinitely many negative Sasakian structures, finitely many
positive Sasakian structures, and one null Sasakian structure. First we only consider
k, p > 1 since if k or p is one we obtain the standard 5 sphere. For simplicity we
consider the case that p is relatively prime to both k and k + 1 in which case Lk,p is
diffeomorphic to S5 (see Example 10.3.12 in [BG08]). This eliminates the null case
which has (k, p) = (3, 12). It is easy to see that S5 admits no null (Corollary 10.3.9 in
[BG08]) nor indefinite Sasakian structures. We also note that k = 2 is a special case of
the complexity one hypersurfaces considered in Section 6.2. So here we consider k ≥ 3.
It is easy to see that the induced Sasakian structure is negative if

k > 3, p > 3, k = 3, p > 12, k ≥ 6, p = 2, 3, or k = 5, p = 3

and positive otherwise. So the only positive Sasakian structures on the hypersurfaces
Lk,p ≈ S5 with gcd(k, p) = gcd(k + 1, p) = 1 are L3,5, L3,7, L3,11, L4,3 all of which admit
SE metrics, hence cscS metrics, which can be seen from [BGK05, BG08]. All negative
Sasakian structures on links of weighted hypersurface singularities admit S-η-E metrics,
hence cscS metrics, by the transverse Aubin-Yau Theorem [EKA90]. Summarizing we
have

Theorem 6.7. For all k, p such that p is relatively prime to k and k + 1, and rela-
tively prime pairs (l0, l∞) and (w0, w∞), there exists a ray of constant scalar curvature
Sasakian structures in t+w on the 7 dimensional Sasaki orbifolds Mk,p,l,w, and the entire
w cone t+w is exhausted by extremal Sasaki metrics. Moreover, if l∞ is large enough
there are at least 3 cscS metrics in t+w. Mk,p,l,w is a smooth manifold if and only if
gcd(lcm(k, k + 1, p)l∞, w0w∞l0) = 1.

Remark 6.8. Again as in Remark 6.5 if Mk,p,l,w is smooth it must be a spin manifold.
All non-spin cases are orbifolds.
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We now have the analogue of Example 6.1 and Lemma 6.3

Lemma 6.9. If gcd(k, p) = gcd(k+1, p) = 1, then the quotient orbifold (N,∆k,p) gener-
ated by the natural Reeb vector field ξ0 on the link Lk,p is the log pair (CP2[k, 1, 1],∆k,p)
with the branch divisor

∆k,p = (1− 1

k + 1
)(z2 = 0) + (1− 1

p
)(z3 = 0).

Moreover, there is an algebraic quotient singularity with isotropy Zk occuring at the

intersection of the irreducible components of ∆k,p, namely the points [1, e
iπ(2m+1)

k , 0, 0],
m = 0, . . . , k − 1.

Proof. The proof is similar to that of Lemma 6.3 and left as an exercise. �

Note that the order of the link Lk,p is lcm(k, k + 1, p).

6.4. Topology of the Joins. Clearly, we can apply our Theorems 3.2 and 3.3 to
obtain many new cscS and SE metrics. A particularly interesting case is when M is a
Sasaki homotopy sphere as studied, for example, in [BGN03, BGK05, GK07]. It is well
known that there are precisely 28 oriented diffeomorphism types of homotopy spheres
in dimension 7 and these all bound a parallelizable manifold. If we take the S3

w join
of these we obtain a simply connected Sasaki 9-manifold with π2 = Z that bounds a
parallelizable manifold. What are the possible diffeomorphism types? There are only
2 diffeomorphism types of homotopy spheres that bound a parallelizable manifold in
dimension 9. Similarly there are many more oriented diffeomorphism types in dimension
11 than in dimension 9. Although it is beyond the scope of the present work, it would be
very interesting to understand how the join operation relates to these diffeomorphism
types.

We have already some elementary results in Proposition 2.4. Here we adopt the
method described in [BTF16] to the general quasi-regular situation. The fibration (3)
and Diagram (5) together with the torus bundle with total space M × S3

w gives the
commutative diagram of fibrations

(59)

M × S3
w −→ Ml,w −→ BS1y=

yπ
yψ

M × S3
w −→ B(N,∆)× BCP1[w] −→ BS1 × BS1

where BG is the classifying space of a group G or Haefliger’s classifying space [Hae84]
of an orbifold if G is an orbifold. The map ψ of Diagram (59) is that induced by the

inclusion eiθ 7→ (eil
∞θ, e−il

0θ). Note that the lower fibration is a product of fibrations.
The orbifold cohomology of CP1[w] was computed in [BTF16]

Hr
orb(CP1[w],Z) = Hr(BCP1[w],Z) =


Z for r = 0, 2,

Zw0w∞ for r > 2 even,

0 for r odd.

The method then consists of computing the differentials of the fibration

(60) M −→ B(N,∆) −→ BS1
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and using the commutative diagram (59) to obtain the cohomology ring of Ml,w. This
method dates back to [WZ90] for the manifold case and was generalized to the S3

w-join
for M = S2n+1 with its standard constant curvature metric in [BTF16], and in [BTF19]
when M is a Y p,q with a quasi-regular SE metric. In both cases the torsion group
Zw0w∞(l0)2 occurs in H4(Ml,w,Z).

Proposition 6.10. Let Ml,w = M ?l S
3
w and assume that M has dimension greater

than 3, is simply connected and that b3(M) = 0. Then H4(Ml,w,Z) contains the torsion
group Zw0w∞(l0)2.

Proof. Consider the differentials in the Leray-Serre spectral sequence of the bottom
fibration of (59) which is a product. For the S3 fibration we have d4(α) = w0w∞s2

2

where α is the orientation class of S3 and s2 is the generating class of the second
BS1. Now for the M fibration Proposition 2.4, b3(M) = 0 and the Universal Coeffients
Theorem imply that H3(M,Z) = 0. It follows that in the spectral sequence of the
fibration (60) s2

1 survives to E∞. By naturality the differentials in the bottom product
fibrations of Diagram (59) pullback to the differentials of the top fibration, and since
the diagram commutes we have d4(α) = w0w∞(l0)2s2. This class survives to E∞ of the
top fibration, thus, producing the torsion group in H4. �

Further details depend on the differentials in the spectral sequence of the fibration
(60).

Example 6.1. A particular case of interest in Lemma 6.3 is when gcd(p, q) = 1 or
equivalently k = 0 which gives M = S5. However, we only need the manifold M to be
homeomorphic to S5. In what follows we assume that Ml,w = S5 ?l S

3
w. We have

Lemma 6.11. H3(Ml,w,Z) = 0 and Ml,w has the rational cohomology ring of S2× S5.

Proof. From the Leray-Serre spectral sequence of the fibration

S3 × S5 −→Ml,w −→ BS1

we see that Er,s
2 = Er,s

4 . We let α be the orientation class of S3, then, over Q , there are
two possibilities for d4, either d4(α) = s2 or d4(α) = 0 where s is the 2-class of BS1. If
the latter holds then the 3-class α will survive to E∞, and there is only one such class.
But by the Leray-Serre Theorem this converges to the cohomology of Ml,w which has a
Sasaki metric. This implies that the rank of H3(Ml,w,Q) must be even which gives a
contradiction. Thus, we must have d4(α) = s2, and this implies that H3(Ml,w,Q) = 0.
But from Proposition 2.4 we have H2(Ml,w,Z) = Z, so H3 vanishes over Z as well by
the Universal Coefficients Theorem. Then by naturality we have d4(α⊗ sj) = sj+1. So
for E2r,0 only E2,0 survives to E∞. The only classes that survive to E∞ are the 2-class
s on the base, the 5-class β from the fiber, and the 7-class β ⊗ s. �

We now have

Proposition 6.12. Consider the join Ml,w = S5 ?l S
3
w and assume also that Ml,w is a

smooth manifold. Then the cohomology ring of Ml,w is

Z[x, y]/(w0w∞(l0)2x2, x3, x2y, y2)

where x is a 2-class and y is a 5-class.
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Proof. As with Theorem 4.5 of [BTF16] we use naturality applied to the commutative
diagram (59). In fact the result agrees with Theorem 4.5 although no assumption of
regularity of the Reeb vector on S5 is made. However, here we need to impose the
smoothness condition; whereas, it is automatic in Theorem 4.5 of [BTF16]. As in
Theorem 6.4 Ml,w is smooth if and only if gcd(2pql∞, w0w∞l0) = 1. Now we know
from Proposition 2.4 and Poincaré duality that H6(Ml,w,Z) = 0 and H5(Ml,w,Z) = Z.
Moreover, from Lemma 6.11 H3(Ml,w,Z) = 0 and from Proposition 6.10 H4(Ml,w,Z)
contains the torsion group Zw0w∞(l0)2 . One easily sees from the Leray-Serre spectral
sequence of the upper fibration in Diagram 59 that H4(Ml,w,Z) = Zw0w∞(l0)2 from
which the cohomology ring easily follows. �

Remark 6.13. This proposition generalizes to higher dimensional spheres as long as
the smoothness condition of the join holds. That is, if Ml,w = S2r+1 ?l S

3
w is a smooth

manifold, then its cohomology ring is

Z[x, y]/(w0w∞(l0)2x2, xr+1, x2y, y2)

where x is a 2-class, and y is a (2r + 1)-class.

Proposition 6.12 implies that the S3
w join with any 5-sphere has the same cohomology

ring. In particular, we apply this to the standard toric join, the complexity one links Lp,q
with gcd(p, q) = 1 and the complexity two links Lk,p with gcd(p, k) = gcd(p, k+ 1) = 1.
We are now ready to apply Sullivan’s rational homotopy theory [Sul77]. As described
in [WZ90] this implies that if a collection of simply connected closed manifolds have the
same cohomology ring, the same rational Pontrjagin classes, and if the so-called minimal
model is a formal consequence of the rational cohomology ring, then the collection has
only finitely many diffeomorphism types. Let Cp,q,l,w be the collection of smooth S3

w-
joins Lp,q ?l S

3
w of Brieskorn links with w0w∞(l0)2 fixed and satisfy Equation (54) with

gcd(p, q) = 1. Similarly let Ck,p,l,w be the collection of smooth S3
w-joins Lk,p ?l S

3
w

of Brieskorn links with w0w∞(l0)2 fixed and satisfy Equation (57) with gcd(p, k) =
gcd(p, k + 1) = 1. These collections have the cardinality of N. Then we have

Proposition 6.14. There are finitely many diffeomorphism types within the collection
Cp,q,l,w. There are finitely many diffeomorphism types within the collection Ck,p,l,w with
fixed k.

Proof. Since w0w∞(l0)2 is a fixed odd number within each collection, the cohomology
rings coincide. So according to Sullivan’s theory we need only check that the first
Pontrjagin class is fixed within each collection, and that the join is formal in each
case. By Lemma 6.11 all the elements of each collection have the rational cohomology
ring of S2 × S5, so they are formal. To compute the Pontrjagin class we make note
of the map π in the Commutative Diagram (59). Since the vertical bundle is trivial,
p1(Ml,w) is the pullback of p1(B(N,∆) × BCP1[w]). This is well defined since the
underlying topological space (N,∆) × CP1 is a combinatorial manifold determined up
to combinatorial equivalence [Rv57, Tho58]. Then it follows from Lemma 6.3 that for
the collection Cp,q,l,w the underlying topological space is independent of p, q, l∞, so the
first statement follows. In the case of the collection Ck,p,l,w Lemma 6.9 tells us that the
quotient singularity of the underlying topological space depends on k, so we should fix
k for the underlying spaces to be combinatorially equivalent. �
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From Lemma 6.1 and Proposition 6.14 we obtain

Corollary 6.15. For each odd natural number of the form w0w∞(l0)2 there exists a
simply connected smooth 7-manifold with infinitely many inequivalent contact structures
of Sasaki type which admit cscS metrics.

These results can be compared to a very similar result in our unpublished manu-
script [BTF14b] in which the contact structures are toric; whereas, those above have
complexity one or two.
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