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ABSTRACT. We describe a general procedure for constructing new
Sasaki metrics of constant scalar curvature (CSC) from old ones.
Explicitly, we begin with a regular Sasaki metric of constant scalar
curvature on a 2n + 1-dimensional compact manifold M and con-
struct a sequence of rays of CSC Sasaki metrics on a compact
Sasaki manifolds M, ;, w of dimension 2n+3 which depend on four
integral parameters [y, s, wy,ws. Most of the CSC Sasaki metrics
are irregular. We also give examples which show that the CSC rays
are often not unique on the underlying fixed strictly pseudoconvex
CR manifold.

1. INTRODUCTION

The purpose of this paper is to present a general geometric construc-
tion that combines the Sasaki join construction of [BG00, BGO07] with
the Hamiltonian 2-form formalism of [ACGO06, [ACGTF04, ACGTFO0S]
to construct many new Sasaki metrics of constant scalar curvature.
This method has already been used by the authors in special cases
[BTF13a, BTF13c, BTF14a, BTF13b]. The method is the following:
consider a regular Sasaki manifold M with its ‘Boothby-Wang circle
bundle’ S'—M—N over the Kahler manifold N. For each pair of
relatively prime positive integers (1, l2) we form the Sasaki join M), ;, w
of M with a weighted 3-sphere S2 (cf. [BGOS], Example 7.1.12), where
the components of the weight vector w = (wy, ws) are relatively prime
positive integers satisfying w; > ws. The latter has a 2-dimensional
Sasaki cone tJ, we call the w-Sasaki cone. Now we can deform within
t[ to obtain other Sasakian structures. The quasi-regular ones will
fiber over a ruled orbifold (S,,A) with the following structure. S, is
a CP!-bundle over N with an orbifold structure on its fibers giving
rise to a branch divisor A. The orbifold (S,,A) is a projectivization
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P(1 & L,) where L, is certain line bundle over N, and it admits a
Hamiltonian 2-form. The explicit nature of this formalism allows us
to obtain extremal (or constant scalar curvature) Kahler orbifold met-
rics on (S, A). Then by a well known procedure we obtain extremal
(constant scalar curvature) Sasaki metrics on the join M), 5, . This
approach was initiated in [BTF14al for the case I = 1 (the case of ar-
bitrary [y is being worked out in [Casl4]), and continued in [BTEF13b]
for Sasaki-Einstein metrics.
Our main theorem is:

Theorem 1.1. Let My, 1, w = M %,4, S3 be the Si,-join with a regu-
lar Sasaki manifold M which is an S*-bundle over a compact Kdhler
manifold N with constant scalar curvature. Then for each vector w =
(w1, we) € Z7T X 7" with relatively prime components satisfying wy >
wo there exists a Reeb vector field &, in the 2-dimensional w-Sasaki
cone on My, 1, w such that the corresponding ray of Sasakian structures
So = (a7 '&,, any, @, g,) has constant scalar curvature.

The manifolds M;, ;, w can also be realized as certain three dimen-
sional lens space bundles over V.

Suppose in addition that the scalar curvature of N satisfies sy > 0,
then we obtain more information about extremal Sasaki metrics. In
fact, we have

Theorem 1.2. Suppose that in addition to the hypothesis of Theorem
the scalar curvature of N satisfies sy > 0, then the w-Sasaki cone
is exhausted by extremal Sasaki metrics. In particular, if the Kdahler
structure on N admits no Hamiltonian vector fields, then the entire
Sasaki cone r of the join My, 1, w = M %, 1, S5 can be represented by
extremal Sasaki metrics.

A particular example of interest when the hypothesis of the last sen-
tence of Theorem [1.2]is satisfied is when N is an algebraic K3 surface.
In this case there are many choices of complex structures and many
choices of line bundles. But in all cases M = 21#(S* x §%). It is
interesting to contemplate the possible diffeomorphism types of the
7-manifolds 21#(S5? x S®) x;, 4, S5, in this case.

We also give examples where there are more than one CSC ray in
the same w-Sasaki cone. Indeed, generally we have

Theorem 1.3. Suppose that in addition to the hypothesis of Theorem
the scalar curvature of N satisfies sy > 0. Then for sufficiently
large ly there are at least three CSC' rays in the w-Sasaki cone of the
jOZ"rl Mll,lg,W'
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In particular, Theorem below gives a countable infinity of in-
equivalent contact structures on the two S®-bundles over S? such that
there are at least three CSC rays of Sasaki metrics. However, the
bouquet phenomenon which is related to distinct underlying CR struc-
tures and appears for S*-bundles over Riemann surfaces [Boy 11, [Boy13,
BTF13a, BTF14a] seems not to occur in these more general cases. This
is related to the topological rigidity of the Boothby-Wang base space as
discussed briefly in Section below. The non-uniqueness described in
Theorem occurs on a fixed strictly pseudoconvex CR manifold and
a fixed contact manifold. The former also illustrates non-uniqueness
on the sub-Riemannian level.

It should be mentioned that generally the CSC rays are most of-
ten irregular, that is the closure of a generic Reeb orbit is a torus
of dimension greater than one. In this regard in Section we fill
in a gap that occured in the first version of [BTF13b] concerning the
application of the admissibility conditions to irregular Sasakian struc-
tures. This was kindly pointed to us by an anonymous referee. It has
been shown recently that irregular Sasakian structures have irreducible
transverse holonomy [HS12|, and that the corresponding Kéhler cone is
K-semistable [CS12] for CSC Sasaki metrics. Also the non-uniqueness
phenomenon of CSC Sasakian structures was first shown to occur for
the case of S*-bundles over S? by a different method in [LegI1]. The-
orem [I.3] shows that this is fairly common.

2. RULED MANIFOLDS

In this section we consider ruled manifolds of the following form. Let
(N,wy) be a compact Kéhler manifold with primitive integer Kéahler
class [wy], that is, a Hodge manifold. Consider a rank two complex
vector bundle of the form £ = 1& L where L is a complex line bundle on
N and 1 denotes the trivial bundle. By a ruled manifold we shall mean
the projectivization S = P(1® L). We can view S as a compactification
of the complex line bundle L on N by adding the ‘section at infinity’.
For x € N we let (¢, z) denote a point of the fiber E, = 1@ L,. There
is a natural action of C* (hence, S*) on F given by (¢, z) + (¢, A\z) with
A € C*. The action z — Az is a complex irreducible representation of
C* determined by the line bundle L. Such representations (characters)
are labeled by the integers Z. Thus, we write L = L,, for n € Z and
refer to n as the ‘degree’ of L.

2.1. A Construction of Ruled Manifolds. We now give a con-
struction of such manifolds. Let S'—M—N be the circle bundle
over N determined by the class [wy| € H?(N,Z). We denote the
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Sl-action by (z,u) — (z,e?u). Now represent S® C C? as |5]? +
|25|> = 1 and consider an S'-action on M x S? given by (x,u; 21, 29) —
(z, €®u; 21, €™ 2zy). There is also the standard S'-action on S® given by
(21, 22) — (€21, eX29) giving a T?action on M x S? defined by

9 x+nb)

u; Xz, el 29).

Lemma 2.1. The quotient by the T?-action of Equation 15 the
projectivization S, = P(1& L,,).

(1) (%w 21722) = (x7€i

Proof. First we see from that the action is free, so there is a natu-
ral bundle projection (M x S3)/T?—N defined by 7(z, [u; 21, 2]) =
x where the bracket denotes the 72 equivalence class. The fiber is
7 (x) = [u; 21, 25] which since u parameterizes a circle is identified
with $3/S* = CP!. This bundle is trivial if and only if n = 0 and n
labels the irreducible representation of S* on the line bundle L,. O

We can take the line bundle L; to be any primitive line bundle in
Pic(N). In particular, we are interested in the taking L; to be the line
bundle associated to the primitive cohomology class [wy] € H?(N, Z).
Then we have

Lemma 2.2. The following relation holds: ¢i(Ly,) = n[wy].

Proof. Equation implies that the Sl-action on the line bundle L,
is given by z — ¢z, But we know that the definition of M that it
is the unit sphere in the line bundle over N corresponding to n = 1,
and this corresponds to the class [wy], that is ¢;(L1) = [wy]. Thus,

c1(Ly) = nlwy].

2.2. Ruled Manifolds with known Diffeomorphism Type. There
are several cases when the diffeomorphism type of the ruled manifold
can be ascertained. First we have the case when N = Y, a Riemann
surface of genus g. It is well known [MS98§] that in this case there are
precisely two diffeomorphism types. They are distinguished by their
second Stiefel-Whitney class. This gives rise to inequivalent Kahler
structures belonging to the same underlying symplectic structure (up
to symplectomorphism). It also gives rise to non-conjugate maximal
tori in the symplectomorphism group, a fact that was exploited in
[Boy11], Boy13|, BP14, BTF13a, BTE14al.

On the other hand it appears that this phenomenon changes in higher
dimension. It is still known to occur as witnessed by the polygon spaces
of [HT03] and described in Example 8.5 of [Boy13]. However, it has
been shown recently [CMSI10, [CPS12] that for N = CP? with p > 1
the two ruled manifolds S,, and S, are diffeomorphic if and only if
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|n’| = |n|. Indeed,the diffeomorphism type is determined completely
by its cohomology ring which takes the form

(2) H*(Sn, Z) = Z[%l, .2?2]/(17]1?—'—1, (xg(nxl + $2))

where x1, x5 have degree 2. So the Hirzebruch-type phenomenon in-
volving inequivalent complex structures on the same manifold does not
generalize when p > 1.

2.3. The Admissible Construction. We will now assume that n
from Section 2.1]is non-zero and (NN, wy) defines a Kéahler structure with
CSC Kahler metric gy. Then (wy,,gn,) = (2nmwy,2nmgy) satisfies
that (gn,,wn,) or (—gn,, —wny,) is a Kéhler structure (depending on
the sign of n). In either case, we let (+gy,, Twy, ) refer to the Kéhler
structure. We denote the real dimension of N by 2dy and write the
scalar curvature of +gy, as +2dy, sn,. [So, if e.g. —gn, is a Kéhler
structure with positive scalar curvature, sy, would be negative.|

Now Lemma implies that ¢;(L,) = [wy, /27]. Then, following
[ACGTEFOS], the total space of the projectivization S, = P(1& L,,) is
called admissible.

On these manifolds, a particular type of Kahler metric on S,,, also
called admissible, can now be constructed [ACGTFO08]. We shall de-
scribe this construction in Section [d] where we will use it to prove Theo-
rems [L1] and [L.2 of the Introduction. An admissible Kahler manifold is
a special case of a Kahler manifold admitting a so-called Hamiltonian
2-form [ACGO6]. More specifically, the admissible metrics as described
in section 4l admit a Hamiltonian 2-form of order one.

Remark 2.3. In the special case where (N, wy ) is Kéhler-Einstein with
Kéhler metric gy and Ricci form py = 2ndywy, where Jy denotes the
Fano index, there is a simple relationship between the value of sy,
and the value of n. Since the (scale invariant) Ricci form is given by
PN = SN,WN,, it is easy to see that sy, = In/n. For the general CSC
case this will be more complicated and will need to be handled case by
case. We do know that if we write sy, = pn/n, then p, < dy + 1 (see
Remark 1 in [ACGTEFO0S]).

3. THE S3-JOIN CONSTRUCTION

The join construction was first introduced in [BGO0] for Sasaki-
Einstein manifolds, and later generalized to any quasi-regular Sasakian
manifolds in [BGOO07] (see also Section 7.6.2 of [BG0§]). However,
as pointed out in [BTFE13al it is actually a construction involving the
orbifold Boothby-Wang construction [BW58, BGO0], and so applies to
quasi-regular strict contact structures. Although it is quite natural to
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do so, we do not need to fix the transverse (almost) complex structure.
Moreover, in [BTEF14a|] it was shown that in the special case of S3-
bundles over Riemann surfaces a twisted transverse complex structure
on a regular Sasakian manifold can be realized by a product transverse
complex structure on a certain quasi-regular Sasakian structure in the
same Sasaki cone.

We consider a generalization of the join construction used in previ-
ous work [BTF13a, BTFI14al BTF13b]. We refer to [BGOO7, BGOS]
for a thorough discussion of the join construction. Here we let M be a
regular Sasakian manifold with constant scalar curvature, and consider
the join My, ,w = M %, 1, S, with the weighted 3-sphere S2, (a sphere
with a weighted circle action) where both w = (wy, wsy) and 1 = (I3, l5)
are pairs of relatively prime positive integers. We can assume that the
weights (wq,ws) are ordered, namely they satisfy w; > wy. Further-
more, M, 1, w is a smooth manifold if and only if ged(ly, Hwwe) = 1
which is equivalent to ged(ly, w;) = 1 for ¢ = 1,2. Henceforth, we shall
assume these conditions.

The join is constructed from the following commutative diagram

M x S
N\ L
(3) l”Q Mll,ZQ,W
V!
N x CP![w]|

where the 7s are the obvious projections. Here M has a regular contact
form 7; with Reeb vector field £;, and S3 has the weighted contact form
12 with Reeb vector field &, = wy Hi+ws Hy where H; is the infinitesimal
generators of the S* action on

S ={(21,2) € C | |21 + |22 = 1}
given by sending z; to e
the vector field

1 1
4 L w=—E — —&.
(4) I1.la, 21151 2l252

z;. The circle projection 7, is generated by

Moreover, the 1-form 7y, ;,w = Limi + lany on M X S3 passes to the
quotient M, ;, w and gives it a contact structure. The Reeb vector
field of 7, 1, w is the vector field

1 1

2_l1§1 + —&.

(5) fllh,w = 20,
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The base orbifold N x CP'[w] has a natural Kahler structure, namely
the product structure, and this induces a Sasakian structure S, ;, w =
(&1 tows Ty dows @y g) o0 My, 4, . The transverse complex structure J =
®|p, ,, ., is the lift of the product complex structure on N x CP'[w].

It follows from Proposition 7.6.7 of [BG0S§] that the join M, ;, w can
also be realized as a fiber bundle over N associated to the principal
Sl-bundle M — N with fiber the lens space L(ly; lywy, liwy). Tt is easy
to see that the join of extremal (CSC) Sasaki metrics gives an extremal
(CSC) Sasaki metric induced by the product extremal (CSC) Kéhler
metrics. Thus, since weighted projective spaces have extremal orbifold
metrics, we can take the Sasakian structure &, ;,w to be extremal.
However, most of the CSC Sasaki metrics of interest in this work are
not induced by the product of CSC Kahler metrics.

3.1. The First Chern Class. Let us compute the first Chern class
of our induced contact structure Dy, ;, w on M %, ;, S2. The orbifold
first Chern class of the base is

(6) &N x CP'wl) = ey(V) + 2L pp(D)

wiWa
as an element of H?(N x CP'[w],Q) ~ H*(N,Q) ® H?(CP'[w]), Q)
where D a divisor given by z; = 0 or z; = 0 and PD denotes Poincaré
dual. The Kéhler form on N x CP![w] is wy, 1, = lijwn+Iawy where wy, is

the standard Kahler form on CP'[w] which satisfies [wy,] = % where
wp is the standard volume form on CP!'. Note that PD(D) = [wo).
Pulling wy, ;, back to the join My, 1, w = M %, 1, S5 we have 7wy, 4,

dni, 1, w implying that Iy m*[wy] + lam*|ww] = 0 in H*(My, 1w, Z). So

taking 7*[wn] = loy and 7*[wy] = —l17y for some generator vy €
H?(M, 1,.w, Z) we have
(7) c1(Diy gpw) = T er(N) — li|wly.

Taking the mod 2 reduction gives the second Stiefel-Whitney class of
Mll,lz,W7 ViZ.

(8) w2(Mll,l2,W) = 71-*UJZ(‘N') - p(l1|W|’Y>

where p is the reduction mod 2 map. This implies

Corollary 3.1. If l; is even or if w; are both odd for i = 1,2, then
M, 1w 15 a spin manifold if and only if N is a spin manifold. On the

other hand if both Iy and |w| are odd, then M, 1, w is a spin manifold
if and only if N is not a spin manifold.

Equation reduces further in the special case that [wy] is mono-
tone. Actually we are interested in a generalization. We say that [wy]
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is quasi-monotone if ¢;(N) = Iy|wy] for some integer Iy. Here Ty is
the Fano index when Jy is positive (the monotone case) and the canon-
ical index when it is negative. We also allow the case Jy = 0. So when
[wn] is quasi-monotone we have

(9) (D tow) = (LIn — L|w|)y.

From the homotopy exact sequence of the fibration S'—M-—N
we see that if M is 2-connected then N is quasi-monotone.

Example 3.2. Let M = S%*! so we have the Hopf fibration with
N = CP? which is monotone with Jy = p + 1. In this case Equation
@D becomes

(10) Dy ow) = (l2(p+ 1) = lLifwl)7.
The cohomology ring for this case was computed in [BTE13b], viz.

H*(Mh,lz,W? Z) ~ Z[l‘, y]/(w1w2l%x27 Ip-l—l’ :E2y, 92)

where x, y are classes of degree 2 and 2p+1, respectively. The topology
of this case is studied further in [BTE14b], and more specific informa-
tion about the Sasakian geometry is treated in Section below.

3.2. The Sasaki Cone. Since for any Sasakian structure S the Reeb
vector field lies in the center of the Lie algebra aut(S) of the Sasaki
automorphism group 2ut(S), it follows from the join construction that
the Lie algebra aut(S,;,w) of the automorphism group of the join
satisfies aut(Sy, 1, w) = aut(S1) & aut(Sy) where S is the Sasakian
structure on M, and S, is the Sasakian structure on S3. Now the
unreduced Sasaki cone [BGS08] t© of S = (£,7n, P, g) is by definition
the positive cone in the Lie algebra t of a maximal torus in 2Aut(S), i.e.

(11) tt={X et]|nX)>0}.
Thus, the Sasaki cone tlt

(12) tf

of the join M, ;, w satisfies

lo,w

={X €ty | My iow(X) >0} =4 + 15,

l1,l2,w
If the Lie algebra of a maximal torus of the automorphism group of &;
has dimension £, then dim J‘lt,lz,w = k+ 2, since the t,, has dimension 2.

However, in this paper we are mainly concerned with the 2-dimensional
subcone t, which we call the w-Sasaki cone, of the full Sasaki cone
4 1, w- The w-Sasaki cone t; can be identified with the first quadrant

in R? with coordinates vy, v, for all w, viz.
(13) tj_v = {(Ul,Uz) < Rz | U1, Vg > 0}

We are also interested in the full reduced Sasaki cone x which is
t" /W where W is the Weyl group of the Sasaki automorphism group
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2ut(S). One can think of k as the moduli space of Sasakian structures
with a fixed underlying CR structure (D, J).

3.3. The Tori Actions. Consider the action of the 3-dimensional
torus T° on the product M x S2 defined by

(14) (z,u; 21, 29) — (x, €20u; O170w18) 5 pila—liwab) )

The Lie algebra t3 of T is generated by the vector fields Ly iyow, Hi, Ha.
Following the analysis of Section 3.3 of [BTF13b] we see that our
join M, 1, w is the fiber bundle

Mll,lg,w = M X g1 L(lg, llwl, lle)

over the Kahler manifold N associated to the principal S!-bundle
M — N with fiber the lens space L(ly; lywq, lyws) over the Ké&hler man-
ifold N. The S! action on the lens space is accomplished in two stages.
First, represent L(lo; lywy, liws) as a Zy, quotient of va, then the resid-
ual S} /7y, ~ S' action is

lqw .l w:
9 _11) —212

(15) (z,u; 21, 29) = (w,ePuy e 2 Pz e R 9)22]).

The brackets in Equation denote the equivalence class defined by
(21, 2) ~ (21, 20) if (2], 25) = (N@rzy Niw2z) for A2 = 1,

Next consider the T action of S§ x (S5/Z,) on M x L(la; lywy, lyws)
given by

Liwa g

0 z‘(v@—%&)zl’ ei(vw—T )22])’

(16) (x,u; 21, 29) (:E,ei u; [e

This gives rise to the commutative diagram
M x L(ls; lhwy, lyws)
N T
(17) lm M, 1y w
/Ty
By 1y vw

where By, j,v.w is a bundle over N with fiber a weighted projective
space, and 7 denotes the quotient projection by T?. The Lie algebra
of this 77 is generated by

1 1
(18) LW = Tth—;%w]H], gv:;ijj;
where &, denotes the Reeb vector field of the regular Sasakian structure
on M. Note that &, is a Reeb vector field in the w-Sasaki cone of
My 15 w-
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Let us analyze the behavior of the T? action given by Equation (16)).
We shall see that it it not generally effective. First we notice that the
Sj action is free since it is free on the first factor. Next we look for
fixed points under a subgroup of the circle Sqlb. Thus, we impose

wy

! .
) Y e

(eM1%21, €0 2) = (¢ 27 1 Tz e T )
for some r =0,...,lo — 1. If 2125 # 0 we must have
l l
(19)  wo=2m(— 2 1 k), wee = 2m(— 2 4 ky)

lg 2
for some integers ky, ko which in turn implies
llr(wgvl — U)l'UQ) = l2(k21)1 — ]fﬂ)g).
This gives
ly kovy — kyv

(20) , = 2 2l 1U2

ll WoU1 — W1V
which must be a nonnegative integer less than /. We can also solve
Equations for ¢ by eliminating lll—T giving

2
(21) b= o 102 — Koy

Wy — Wvs
Next we write (20)) as

(22) r=

Iy )(11 kov1 — k09

( _ W2V —WIV2
ng(|1U2?J1 ’LU1’U2|, lz) ged(Jwav1—wival i)

Since v; and vy are relatively prime, we can choose k; and ks so that
the term in the last parentheses is 1. This determines r as

s

23 T =
(23) ged(|wavy — wyvsl, lo)
i — 7rl Yl g
Now suppose that z; = 0. Then generally we have e?1¢ = e Sy
for some r =0,...,lo — 1 or equivalently r = 1,...,[,. This gives
llwlr k
24 =27(— —).
24) 6= 2m(-2 4 2)
A similar computation at z; = 0 gives
ll’lUQT/ k'
25 = 27(— —).
(25) 6 =2m(~L2 1 )

We are interested in when regularity can occur. For this we need the
minimal angle at the two endpoints to be equal. This gives

Lywyr! E’  hwer ok

Valy V2 v1ly U1



Charles P. Boyer and Christina W. Tgnnesen-Friedman 11

for some choice of integers k, k" and nonnegative integers r,r’ < .
This gives

—lywar” + Kl —lywyr + Kkl
(26) 1We 2 _ —hw 2

V2 U1

3.4. Periods of Reeb Orbits. We assume that w # (1,1). We want
to determine the periods of the orbits of the flow of the Reeb vector
field defined by the weight vector v = (v, v3). In particular, we want
to know when there is a regular Reeb vector field in the w-Sasaki cone.

Let us now generally determine the minimal angle, hence the generic
period of the Reeb orbits, on the dense open subset Z defined by z125 #
0. For convenience we set s = ged(|wavy — wyivs|,l3) in which case
becomes 1 = ly/s.

Lemma 3.3. The minimal angle on Z is 2?” Thus, Sqlﬁ/Zs acts freely
on the dense open subset Z .

Proof. We choose ki, ky in Equation so that the last parentheses
equals 1. This gives

WaV1 — W1V2

1 = ko1 — kyvs.

S

Rearranging this becomes
(SkQ - ll’LUQ)Ul = (Skl — llwl)vg.

Since v; and vy are relatively prime this equation implies sk; = ljw; +
mu; for i = 1,2 and some integer m. Putting this into Equation (21

gives ¢ = 2™ 5o the minimal angle is 2%, O
S S

We now investigate the endpoints defined by z5 = 0 and z; = 0.
Proposition 3.4. The following hold:

(1) The period on Z, namely 2?”, 15 an integral multiple of the peri-
ods at the endpoints. Hence, S;)/ZS acts effectively on M, 1, w-

(2) The period at the endpoint z; = 0 is 3—’[2 where i = j+1 mod 2.
So the end points have equal periods if and only if v = (1,1).

(3) The w-Sasaki cone contains a reqular Reeb vector field if and
only if lo divides wy — wy, and in this case it is given by v =

(1,1).

Proof. A Reeb vector field will be regular if and only if the period of
its orbit is the same at all points. We know that it is 2?” on Z. We
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need to determine the minimal angle at the endpoints. From Equation
the angle at zo = 0 is

¢ _ 27‘(( —l1w17’ + k'lg ‘

v1ly

Now ged(ly, lwy) = 1, so we can choose k and r such that numerator of
the term in the large parentheses is 1. This gives period 1)21—’[2 Similarly,
at z; = 0 we have the period 1122—’;2 So the period is the same at the
endpoints if and only if v; = ve which is equivalent to v = (1,1) since
vy and vy are relatively prime which proves (2).

Moreover, the period is the same at all points if and only if

(27) v=(1,1), lo = s = ged(|wavy — wyvs|, la).

But the last equation holds if and only if /5 divides w; — wy proving
(3).

(1) follows from the fact that for each i = 1,2, v;ly is an integral
multiple of ged(|wovy — wivs|, ls) = s. O

In contrast to the 2-dimensional Sasaki cones in [BTF14al, not every
w-Sasaki cone has a regular Reeb vector field. Nevertheless, it does
have a special Reeb vector field, namely that given by v = (1,1). For
this there can be, as usual, two branch divisors, but they have the
same ramification index, namely m = l/s. We refer to this Reeb field
as almost reqular. Clearly, there is precisely one almost regular Reeb
vector field in each w-Sasaki cone of M, ;, w-.

Example 3.5. Regular Reeb vector fields. As stated in (c) of Proposi-
tion when [y divides w; — wo we always have a regular Reeb vector
field in the w-Sasaki cone by taking v = (1,1). (This was the case in
[BTE14a] where I, = 1.) We obtain M, ;,+w as a principle S* bundle
over the smooth quotient By, 1, 1.w = S, = P(16L,,) withn = llwll;;”?.
3.5. Bj,1,vw as a Log Pair. We follow the analysis in Section 3 of
[BTF14a). We have the action of the 2-torus S§/Z, x (Sg/Z,) on
M x L(lg; liwy, lyws) given by Equation , and denoted by Ay w,
whose quotient space is By, j, v.w- 1t follows from Equation that
By, i, vw 1s a bundle over N with fiber a weighted projective space of
complex dimension one. By (1) of Proposition the generic period
is an integral multiple, say m;, of the period at the divisor D;. Thus,
for i = 1,2 we have

b

(28) m; = U;— = U;Mm.
s
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Note that from its definition m = %2, so my; is indeed a positive integer.
It is the ramification index of the branch divisor D;. We think of D; as
the zero section and D, as the infinity section of the bundle By, j, v w-
Thus, By, 1, vw is a fiber bundle over N with fiber CP![vy, vs]/Z,, =
CP!. The isomorphism is simply [z1, 2] — [2]"?, 25"*] where the brack-
ets denote the obvious equivalence classes on CP![vy, v3]/Zy,. The com-
plex structure of By, j,v.w is the projection of the transverse complex
structure on M, ;, w which in turn is the lift of the product complex
structure on N x CP![w]. However, B, 1, v.w is not generally a product
as a complex orbifold, nor even topologically.

Now we can follow the analysis leading to Lemma 3.14 of [BTF14a].
So we define the map

;Lv M X L(lg;llwl,llwg)—>M X L(lg, llwﬂ)g,llwgvl)
by
(29) hy(@, u; [21, 22]) = (,u; 212, 25)).

It is a mwvyve-fold covering map. Similar to [BTEF14a] we get a commu-
tative diagram:

AviwAT
M x L(lg, llwl, llwg) LZ M x L(lg;llwl,llwg)

(30) lﬁv lﬁv

. / / A1), 1w (ATTL2) . / /
M x L(lg, llwl, l1w2) M x L(lg, l1w17 l1w2),

where w' = (vowy, vjwy) and 7 = € X\ = €. So B, 1,v.w is the log
pair (By, 1,.1.w, A) with branch divisor

(31) A=(1——)Dy+(1-—)D,.

where By j,1,w 1S a CP!-bundle over N. Now By, 1,vw 1s the quo-
tient (M X L(lg; lywy, lfLUg))/.Av’l’w()\, 7), and By, 1, 1w is the quotient
(M x L(lo; hiw!, iwh)) JA 1) w (A, 7™12). So hy induces a map hy
Bll,lg,v,w—>Bl1,lg,1,w’ deﬁned by

(32) ho ([, u; [21, 20]]) = [, u; [217, 23],

where the outer brackets denote the equivalence class with respect to
the corresponding 72 action. We have

Lemma 3.6. The map hy : B, 1,vw—DBl, 1,1.w defined by Equation
(@ 1s a btholomorphism.
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Proof. The map is ostensibly holomorphic. Now hy is the identity map
on M and a muvyvs-fold covering map on the corresponding lens spaces.
From the commutative diagram the induced map h,, is fiber pre-
serving and is a bijection on the fibers with holomorphic inverse. [

Remark 3.7. It is well known that a weighted projective line CP*[wy, wy]
is biholomorphic to the projective line itself CP!. Similarly, developable
orbifolds of the form CP!/G are biholomorphic to CP! for any finite
reflection group G C qut(CP!). In the case of our ruled manifolds this
gives rise to Galois covers of log pairs

LDy + Do)~ (S, 0).

m

(S, (1= Dy 4 (1— m%w))—é(sn, (1

my
Set theoretically the maps are the identity maps with the identity Ga-
lois group. However, they are inequivalent as orbifolds. For further
discussion of this approach see [GK07]. Note also that generally the
trivial orbifold (.S, ) does not occur as one of our quotients.

Lemma allows us to consider the orbifold B, ;, vw as the log pair
(B, 151w, A) where A is given by Equation (31)). Notice, as mentioned
above, when v = (1,1) we have an almost regular Reeb vector field.
Here the orbifold structure can be non-trivial, namely, By, i, 1.1)w =
(Biy 1a1,ws A) where mq = my = m = 2 and the branch divisor is given

by .
A=(1- E)(Dl + D).

The T? action A 1) gw © M X L(lo; hw, liwh)— M X L(ly; liw], liw))
is given by

) . l1w/ . llu)/
(33) (z,u; 21, 29) — (0, eu; [ez(d)_ lzle)zl, (9~ 1229)22]),

Defining x = ¢ — %9 gives

. . ; l / ’
(34) (2, u; 21, 22) > (2, €03 [z, € OF BT L)),

The analysis above shows that this action is generally not free, but has
branch divisors at the zero (22 = 0) and infinity (21 = 0) sections with
ramification indices both equal to m.

Equation tells us that the T2-quotient space By, 1,1,w 18 the
projectivization of the holomorphic rank two vector bundle £ = 16 L,
over N where 1 denotes the trivial line bundle and L,, is a line bundle
of ‘degree’ n = %(wlvg —wavy) with s = ged(|wyve —wavy ], l3). So S, =
P(1 & L,) is a smooth projective algebraic variety. Next we identify
N with the zero section D; of L,, and note that ¢;(L,) is just the

restriction of the Poincaré dual of Dy to Dy, i.e. PD(Dy)|p, = c1(Ly).
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Summarizing we have

Theorem 3.8. Let My, 1, w = M), 1, Sa, be the join as described in the
beginning of the section with the induced contact structure Dy, 1, w. Let
v = (v1,v2) be a weight vector with relatively prime integer components
and let & be the corresponding Reeb vector field in the Sasaki cone tg,.
Then the quotient of My, 1, w by the flow of the Reeb vector field &, is a
projective algebraic orbifold written as a the log pair (S,, A) where S,
is the total space of the projective bundle P(1 & L,,) over the Kdhler
manifold N with n = ll(%), A the branch divisor

1 1
35 A=(1—-——)D 1— —)Ds,,
(3) (1= —)Di+ (1= -)Ds
with ramification indices m; = vilf = y;m and dwwisors Dy and Dq

given by the zero section 160 and infinity section 0@ L,,, respectively.
The fiber of the orbifold (S,,A) is the orbifold CP[vy, vs]|/ iy, .

Next we focus on the projective bundle S, = P(1& L,). From
Equation (34 we see that S, is a fiber bundle over N with fiber CIP!
associated to the principle S*'-bundle M —N. We want to determine
the Kéhler class [wp] of the orbifold By, i, vw = (Sn, A) induced by the
projection M, 1, w—Bj, 1,.v.w- First consider the following commuta-
tive diagram:

M x L(lQ, llwl, llwg)

|

My, 1o w
 Tw L Ty
N x CP'[w] (Sn, A)
Pw \u e
N

(36)

where pyw,py are the obvious projections. Second, note that we have
the following lemma

Lemma 3.9. [BTF13b| For the log pair (S,,A) with

the orbifold Chern class equals

1 1
" (Sn, A) = pler(N) + o PD(D) + - PD(Dy).
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By
chfl)rb(sna A) = Cl<®l1,lz,W> = (pw © 7TW)*CI (N) - l1|W"7-
So from Lemma [3.9] we have

1 1
(pvomy) er (N )"‘EWiPD(DlHEWjPD(Dg) = (pwortw) 1 (N) =1y |w]y.
1 2

We also know that (see e.g. Section 1.3 in [ACGTFO0S])
and so

7o PD(Dy) — n, PD(Ds) = n(py o my) " [wy].
From the commutative diagram (36)) we see that

(pv o Ty)[wn] = (pw o Tw)*[wn] = lo.

and
(pv o ﬂ-V)*cl(N) = (pw o WW)*Cl(N)7
so we get the system

i PD(Dy) — miPD(Dy) = lony

Ll?—ll\w|

which implies that 73 PD(Dy) = “#——— = —miliwyy and 7y PD(D;) =
—malywyy.

We are now ready to prove the following lemma

Lemma 3.10. The induced Kdhler class on By, j,vw = (Sn, A) takes
the form
k1py[wn] + ke PD(Dy)

for some positive integers ki, k.

Proof. From the commutative diagram (36)) we see that on degree 2
homology ker 7y, = (my o 71)* has dimension 2. We claim that p%|wy]
and PD(D;) span ker };. To see this we note that from the definition
of the join, that pf|wx] is in ker 5. Moreover,

(pyomyomp)*: HQ(N, ]R)—>H2(M X L(ly; lywy, lyws), R)

has a one dimensional kernel. So it must be spanned by [wy]. Since
pilwy] is in ker 75 and (py o my)*[wn]| = lay, we must have that 7}~y =
0. It follows that PD(D;) is also in the kernel of 7} and since it is
clearly independent of pi[wy] we conclude that p%|wy]| and PD(Dy)
span ker 7.
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The induced Kéhler class on By, 1, v.w = (Sn, A) is clearly in ker 7y
and so the lemma follows. O

In view of Lemma we write the induced Kahler class [wg] on
(Sn, A) as

(37) (wp] = kipylwn] + ke PD(Dy)

Lemma 3.11. The following hold:

(1) kQ = lg,
(2) kl = mlllwg

Proof. Since we know that 7} [wg] is a trivial class in M), ;, w and (py o

7y)*[wn] = loy while 72 PD(D;) = —mylywqy, we see immediately that
k1ly — kamylywy = 0 and since ged(kq, ko) = m = ls/s, we conclude that
]{32 = 12 while ]{?1 = mlllwg. O

In the almost regular case this process can be inverted. Given pos-
itive integers n,m, k1, ko with m = ged(kq, k2) we can determine the
relatively prime positive integers wy, wo from the equation

(%) ky

w1 N TL]{?Q + kl
and the relatively prime positive integers [y, [ from

ll n

Iy m(wy — wy)

This gives an analog of diagram (32) of [BTE14al together with its
interpretation depicted in the diagram

M, 1y w

(38) Tw N Ty
N x CP(w) (S, A).

Thus, we can view M, ;, w in two ways. First, the southwest arrow
describes an S* orbibundle over the Kéhler orbifold N x CP![w] with
its product structure. Second the southeast arrow describes the Kéahler
structure of a CPP'-bundle over N with twisted complex structure and
a mild orbifold structure on the fibers given as a quotient by an almost
regular Reeb vector field. Note that in (32) of [BTE14a] the southeast
arrow is the quotient by a regular Reeb vector field.
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4. ADMISSIBLE CSC CONSTRUCTIONS

We now pick up the thread from Section and describe the con-
struction (see also [ACGTEO0S§]) of admissible Kéhler metrics on .S, (in
fact, more generally on log pairs (S,,A)). Consider the circle action
on S, induced by the natural circle action on L,. It extends to a
holomorphic C* action. The open and dense set S, C 5, of stable
points with respect to the latter action has the structure of a principal
C* bundle over the stable quotient. The hermitian norm on the fibers
induces via a Legendre transform a function 3 : S,y — (—1,1) whose
extension to S, consists of the critical manifolds 37'(1) = P(160) and
3 '(=1) = P(0® L,). Letting 6 be a connection one form for the Her-
mitian metric on S,4, with curvature df = wy, , an admissible Kahler
metric and form on the base S,, are given up to scale by the respective
formulas

1473 dz?
39) g=-—"T3g +
(39) AT

valid on S,y. Here © is a smooth function with domain containing
(—1,1) and 7, is a real number of the same sign as gy, and satisfying
0 < |r| < 1. The complex structure yielding this Kéhler structure is
given by the pullback of the base complex structure along with the re-
quirement Jd3 = ©60. The function 3 is hamiltonian with K = J grad}
a Killing vector field. In fact, 3 is the moment map on 5, for the cir-
cle action, decomposing S, into the free orbits S, = 37'((—1,1)) and
the special orbits D; = 37!(1) and Dy = 371(—1). Finally, 6 satisfies
0(K)=1.

Remark 4.1. Note that on S,

—(1+
¢ = %WNH ‘I’jdj/\e

1
0GR, w=—3 +dzne,
T

is a Hamiltonian 2-form of order one.

We can now interpret g as a metric on the log pair (.S,,A) with
if © satisfies the positivity and boundary conditions

O(3) >0, —-1<j3<l1,
(40) O(£1) =0,

O'(~1) =2/my  ©(1) = —2/my.
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Remark 4.2. This construction is based on the symplectic viewpoint
where different choices of O yields different complex structures all com-
patible with the same fixed symplectic form w. However, for each ©
there is an S'-equivariant diffeomorphism pulling back .J to the original
fixed complex structure on S, in such a way that the Kahler form of the
new Kéhler metric is in the same cohomology class as w [ACGTE0S].
Therefore, with all else fixed, we may view the set of the functions ©
satisfying as parametrizing a family of Kahler metrics within the
same Kéhler class of (S,,A).

The Kéhler class €, = [w] of an admissible metric is also called
admissible and is uniquely determined by the parameter r, once the
data associated with S,, (i.e. dn, sn,, gn, etc.) is fixed. In fact, up to
scale

(41) Q. = [wn, /T + 20PD[D;y + Dy,

where PD denotes the Poincaré dual. The number r, together with
the data associated with S,, will be called admissible data.

Define a function F'(3) by the formula O(3) = F(3)/p(3), where
p(3) = (1+73)%. Since p(3) is positive for —1 < 3 < 1, conditions
are equivalent to the following conditions on F'(3):

F(3) >0, —-1<j3<1,
(42) F(%1) =0,

Fi(-1) = 2p(~1)/my  F'(1) = ~2p(1)/m.

4.1. The CSC condition. From [ACG06] we have that the scalar
curvature of an admissible metric given by equals

2dysy,r  F'(3)

43 Scal = )

) Trrs  p0)

Thus the CSC condition is equivalent the ODE

(44) F"(3) = (2dysn,m — k(1 +713)) (1 +7r3)™ 1,

where £ is a constant (equal to Scal when (44)) is solved). Notice that if
has a solution such that the boundary conditions from holds,
then it will also follow that F'(3) > 0 for —1 < 3 < 1 and thus all of
(42)) is satisfied. To see this, merely observe that since (1+73)v=1 > 0
for 0 < |r] < 1 and —1 < 3 < 1, then F”(3) can change sign at
most once over the interval —1 < 3 < 1. Together with this fact, the
endpoint conditions rule out any possibility of F(3) being zero for any
-1<3< 1l
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Integrating and using the conditions of F'(41) in (42]), we immedi-
ately get that

F'(3) = (2an —k (1+ rza)) (1+73)™ +c,

T(dN + 1)
where
20— )™ (ma(1 = r) + my(1+7) — 2mimasy,)
) o= mama (14 7)™+ — (1 —r)iv+)
and
(46)

Q(d]v + 1)7" (m2(1 + T)dN(l =+ mlan) — ml(l _ r)dN(_]_ 4 m2an))
mymy (1 + r)dntt — (1 — r)dn+1) .

Now we have a solution to (44)), namely

F(3) = /31 ((2an — km(l + rt)) (1 +rt)® + c> ds,

satisfying iff

! 1
47 25y, — k——(1 1 dn d3 = 0.
an) [ (2w b)) () e dy

Now we integrate to arrive at the equation

(48)
25Nn ((1 + ,r,)dNJrl _ (1 _ r)dN+1) _k’ ((1 + T)dN+2 _ (1 _ T)dNJrZ)
T(d]v+1) Tz(dN+1)(dN—|—2)

Thus the existence of an admissible CSC Kahler metric on the log pair
(Sn, A) correspond to solving all three equations , , and .

4.2. Extremal Kahler metrics. If we generalize equation to the
condition that Scal from (43) is a affine function of 3, then we obtain
the equation

(49) F'(3) = (1 +r3)™ ' 2dysn,r + (a3 + 8)(1+13)),

where o and ( are constants. It is well known that this corresponds
to extremal Ké&hler metrics (see e.g. [ACGTFO08]). Moreover, similarly
to the smooth case, one easily sees (by integrating and solving for A
and B) that (49) has a unique solution F(3) satisfying the endpoint
conditions of (42)). Finally, if the Kahler form wy on N is assumed to
have positive scalar curvature, this polynomial F'(3) also satisfies the
positivity condition of by the standard root-counting argument
introduced by Hwang [Hwa94] and Guan |[Gua95]. For completeness

+2¢=0.



Charles P. Boyer and Christina W. Tgnnesen-Friedman 21

we give the root-counting argument for this special case: Assume for
contradiction that the positivity condition of fails. Then, due to
the endpoint conditions on F'(3), the function F'(3) has at least two
relative maxima and at least one relative minimum inside the interval
(—1,1). Thus, in the interval (—1, 1), the concavity of F'(3) changes at
least twice, i.e. F”(3) is zero at least twice. Since (1 4 r3)™~1 > 0 for
—1 < 3 < 1, we see that this implies that the second order polynomial
P(3) = (2dysn,r + (a3 + B)(1 + r3)) has two roots inside (—1,1) and
further the concavity changes exactly twice. Thus F'(3) has two relative
maxima at 3 = a; and 3 = a3 and one relative minimum at 3 = a5 such
that —1 < a3 < ay < a3 < 1 and the roots 71,79 of P(3) are such
that a; < 1 < az < r9 < az. Moreover, P(a;) < 0 and P(a3) < 0.
Now we observe that P(—1/r) = 2dysy,r and thus if sy, r > 0, we
see that P(3) must have one more root in either [—1/r,ay) (if » > 0)
or (ag,—1/r] (if < 0). Obviously P(3) cannot have three roots and
so we have a contradiction. We conclude that the positivity condition
of must be satisfied.

This yields the following proposition which also proves Theorem
as we shall see below.

Proposition 4.3. Assume that the scalar curvature sy of (N,wy) is
non-negative. For any log pair (S,,A), any admissible Kahler class
on S, contains an admissible extremal metric which s smooth in the

orbifold sense on (S,, A).

5. CSC AND EXTREMAL RAYS

In order to finish the proofs of Theorem and Theorem [1.2| we
now connect the Kahler geometry of Section [d] with the Sasaki geome-
try of Section 3| Assume M, 1, w = M %, 4, S3 is the join as described
in the beginning of the Section (3| with the induced contact structure
Dy, 15w, and now we assume that wy; > wq. Let v = (vy, v2) be a weight
vector with relatively prime integer components and let &, be the cor-
responding Reeb vector field in the w-Sasaki cone ti,. Let the log pair
(Sn, A) be the quotient of M, 1, w by the flow of the Reeb vector field
& . Using Theorem We have m; = vi% and n =y (%), where
s = ged(Jwavy — wyval, le). Writing [wy, ] = 2mnpl|wy| and using that

PD[Dl + DQ] = 2PD<D1) — PD(D1 — Dg) = 2PD(D1) — TL[CUN],
we see that can be re-written to

O, = 41 ("%—Z”[wm + PD<D1))
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and so [wg] given by Lemma is indeed admissible, where r is such

that 1
n(l—r
o = ki/ka = miliwy/ly

which gives
W1V — Waly

(50) = )
W1V + W2V

and
(51)

O, = 4n (Z lwn] + PD<D1)) = = (kilw] + ko PD(D1)) =

% 7, sl

For a description of extremal Sasaki metrics we refer the reader to
[BGSO8] and Section 4.4 of [BTF14al.

5.1. Lifting the Admissible Data. We now want to lift the admis-
sibility conditions on (S,,A) to M, using Theorem and we need
to determine the scale factor involved in this lifting. Let M, denote
the dense open subspace of M, ;, w defined by the condition 22, # 0,
and let Z; be the submanifolds of M., defined by setting 2,11 = 0 with
t=1,2 mod 2. This gives a stratification

(52) My, 1w = Mo U Zy U Zs.
It is easy to see that

Lemma 5.1. For each pair of relatively prime positive integers vy, vq
the dense open submanifold My is the total space of an S'-bundle over
Sno and Z; = 7,1 (D;) is independent of v and n.

This lemma says that although the quotient spaces of different Reeb
vector fields in the Sasaki cone may be quite different even topologically,
their lifted geometry on M, ;, w is similar.

Now Theorem shows that the quotient space of M, ;, w by the
circle action generated by the quasi-regular Reeb vector field &, is a
ruled projective algebraic orbifold given as the log pair (S,,A); how-
ever, although there is a specific Sasakian structure Sy on M;, ;, w the
theorem does not specify the Kahler structure on (S,,A). It is now
our purpose to do so, and relate it to S, .

Proposition 5.2. Let vy, vy be relatively prime positive integers, and
consider the Sasakian structure Sy = (&, 1y, P, gv) on My, 1, w. Then
the induced Kdhler structure (gp,wp) on (Sn, A) satisfies

* * * *
T_l_g g9  Ty9B d _l_g TwWw T Wp
- v

AT muive MUy 4T muve MUV
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where g* = dno (1® ®).

Proof. For any &, € ti define the quadratic form ¢, = v |21 |> 4+ v2|22|%.
Then the Sasakian structure S, is related to reducible Sasakian struc-
ture Sw by ¢vv = gwnw- This gives the relation between the transverse
Kahler forms,

(53) dnv|D = q\TIQdewli)'

Now choose coordinates on S* so that ¢, = vi|21|* + v2|22|* = 2k with
k € RT. Let 3 : My, ;,w—[—1,1] be the moment map of the lifted
circle action of the moment map 3. Then Lemma |5.1f implies

K — Vg|2o? _ R

3=
K K

which gives
|21? = (k3 +K) /o1 |zl* = (k — K3)/v2.
This gives, using Equation ((50))
W1Ve — W)} + WUy + Wov WUy — Waly .
(54) q;lqwz( 1U2 21)3 1U2 2U1 _ Wht2 21(3_1_70_1)‘
2’011)2 2U1U2

Now by Equation the Kéhler form (47/l3)wp is in the admissible
class ©, and we choose it to be admissible. So (47 /ly)wp = w. Thus,
pulling back and using Equation we have by identifying N with
the zero section of S, = P(1& L,,),

lan
(55) wp|n = 27(7“_1 + 3)wn-
Thus, to find the scale factor we write
(56) Towp = bdny

for some positive constant b. Now from the commutative Diagram ({36))
we have 7wy = mywn. To find b it is enough to compare coifficients
of the pullback of wy on both sides of Equation . Using Equations
— together with the equation for n in Theorem (3.8 gives b =

MV, vUs. O

Remark 5.3. The factor mwvyvy can be thought of as arising from the
multiple cover argument in Diagram [30| which occurs on Sasakian level
as well.

This proposition allows us to consider the Sasakian structure S, as
an admissible Sasakian structure. We simply view © as a function of
the lifted moment map 3. This function O(3) satisfies the positivity
conditions and boundary conditions of Equation . We then get a
Sasaki metric in the usual way, namely g, = g7 + 1y, ® 1y together
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with its full Sasakian structure Sy, = (&v, 7y, Py, gv). Although this
construction was done for a pair of relatively prime positive integers
v1, vy We can extend this to the entire ray by applying a transverse
homothety (£,7) — (a7'¢, an) which implies the following scaling of
the admissible data:

0 — a'0, O +— aO, m; — a"‘my,

and m is scale invariant. This defines the Sasaki admissible data for
all quasi-regular Reeb vector fields.

We now wish to extend the concept of admissible Sasaki data to the
irregular case. For this we consider the components vy, vy of v to be any
positive real numbers. We shall assume that the function © of Section
is chosen such that m© is independent of m and varies smoothly
with vy, vg. As we shall see later this is the case for any (quasi-regular)
extremal Sasakian structure. We need

Lemma 5.4. Let vi,v, € RY. Then the family of transverse Kaihler
metrics and forms of Proposition vary smoothly with v = (vy,vs).

Proof. It is convenient to rewrite the transverse metric g7 and Kahler
form w” of Proposition on the dense open set M in the form

l2 271'[1(11)11}2 — U)g?]l) _ ~ dZQ PN
57 T:—( r ) migy + =—— + O 92>
(57) ¢" =~ Lyorts ( AN+ 5 G (3)

wl = b (277[1(11)11}2 — wyv) (rt +3)twn + d3 A é)
41 lQUl’Ug v
where © = muveme© and 6 = miii. Note that © satisfies the bound-

ary conditions O(£1) = 0, ©'(—1) = 2v; and ©’'(1) = —2v,. We will
ignore the term Iy /47 and consider the terms in brackets as our admis-
sible data.

We claim that we can interpret Equation as a family of trans-
verse Kahler metrics and forms that varies smoothly with v. First from
the commutative Diagram we see that m5gy = 7, gn, so the term
mygn is independent of v.

So to show that the family is smooth on M, we only need to show 0
is a family of 1-forms on M, that varies smoothly with v. Since on M,
we have coordinates induced by z7, 2o such that

v1]21]2:/<;+6, U2|22’2:K,—6

where —k < ¢ < k. This trivializes My as My ~ T? x (—k, k) x N as
well as Spo = S x (—k, k) x N. Now the Hamiltonian vector field K
vanishes nowhere on S,g and lifts to a vector field on M,. Choosing
k = v; we see that this vector field is H; with moment map 3 and
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satisfies my. Hy = mvivo K (cf. Remark . Since 6 is a pullback we
have 6(&,) = 0 implying that (H,) = —v; /v,. Moreover, since both
H, and H, are nowhere vanishing on M, we have coordinates ¢ and s
such that 6 = dp; — Ldp, + A where the A is a 1-form on N satisfying

U2

dA _ 277'11(?1)1112 — ’LU2U1)7Tin.
l2U1U2

Since miwy is independent of v, this shows that 6 depends smoothly
on v on M,.

As in the Kahler case the admissible quasi-regular Sasaki structures
smoothly extend to the boundary Z; L Z, with the indicated boundary
conditions. Moreover, any irregular Sasakian structure S, in the w-
Sasaki cone can be represented as a limit of quasi-regular structures
by Theorem 7.1.10 of [BGO8] which from the above can be taken to be
admissible. Hence, by continuity the irregular admissible structures on
My extend to the boundary as well. O

Remark 5.5. Beginning from a Kéhler class €2, of Equation (41)) we
obtain an admissible Kahler form within the Kahler class by performing
a deformation of the form w +— w + i0Jp where the function ¢ is
invariant under the Hamiltonian circle action. This is equivalent on
the Sasaki level to a deformation of the contact structure of the form
1 +— 1+ ¢ where ( is a basic 1-form that is invariant under the lifted
Hamiltonian circle action. Once this is done for a fixed v we see from
the discussion above that it holds for all v.

Remark 5.6. It is convenient to consider the space of rays of the
w-Sasaki cone. We let R, denote the space of rays in ti, and the ray
defined by the vector v by v. By mapping a ray v € t, to its slope
v9/vy gives a homeomorphism of R, with the open interval (0, c0).
It follows from Equation 7.3.12 of [BG0S8] that under the transverse
homothety (£,7) — (a1, an) extremality as well as constant scalar
curvature are preserved. Thus, being extremal or CSC is a property of
rays and descends to Ry. Let R denote the subset of rational rays,
that is, those rays with rational slope. By Theorem 7.1.10 of [BGOS],
R is dense in Ry,. Moreover, for every rational ray there is a unique
pair of relatively prime positive integers vy, v2. So by Theorem [3.8]there
is unique log pair (S, A) associated to the ray v € R

5.2. Applying the Admissible Sasaki Data. For a choice of co-
prime integers (v, v3) # (w1, ws) and the values of m;, n, and r given as
above, we recall that the metric is extremal when O(3), satisfying
the boundary conditions (40), is such that when ©(3) = F(3)/p(3),
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then F'(3) satisfies the ODE (49). The constants a and 3 are uniquely
determined from this ODE and the boundary conditions.

Now we are setting sy, = A/n = ll(ww‘j—fu}m), where, by Remark
A < dy + 1. In any case, A depends solely on (N, gy,wy). (If
wy is Kahler-Einstein, A is just Jy as introduced in Remark . As
a consequence, since m = ly/s, msy, depends only on the join data
and the choice of (vq,v2). Thus the function mO(3) is independent of
m and varies smoothly with vy, vy. This is precisely the assumption
we need to be able to use Lemma [5.4, and so moving forward any
pair (v1,v;) such that vy, v, € Rt has a well-defined “extremal” ©(3)
resulting in the existence of an admissible extremal Sasakian metric
whenever ©(3) > 0 for —1 <3 < 1.

Notice that together with Propostion [£.3] this proves that when the
scalar curvature sy of (N, wy) is non-negative, then each ray in Ry, can
be represented by extremal Sasaki metrics. Consequently this proves
Theorem [1.2]

Assuming w; > wsy, the existence of a quasi-regular CSC ray in
the w-Sasaki cone t{, corresponds to showing that for a choice of
(v1,v9) # (wy,wy) and the values of mz, n, and r given as above,
the equation system (45 . . and is solved Notice that Wlth
sy, = A/n = m the value s (equlvalently m) predictably
cancels from the equation system (45 ., ., and . In fact, we have
(assuming (vi,v9) # (wq,ws)), that the system is equivalent to the
equation f(b) =0 for b > 0, where b = 2 # 2 is the slope alluded to
in Remark 5.6 and

(58)
Fb) = wi™TOp2Nn+3( AL + 1 (dy + Dws — b(dy + 1)lw:)

— wIN PN A3 (A + 1) (A(dy + D)ls — L ((dy + Dwy + (dy + 2)ws)))

+

wN TN RINT2(2 Ady (dy + 2)ly — (dy 4+ 1)(2dn + 3) 1 (wy + ws))
U}tliN dN+2bdN+1(dN + 1)<A(dN + 1)[2 — ll((dN + 2)’[1)1 + (dN + 1)w2))

wy ™ (b(Aly + L (dy + )wr) — (dy + 1)lws).

When a solution b € QT, we have a quasi-regular CSC metric and,
since CSC is just a special case of extremal, when b € R \ Q*, we
have an irregular CSC metric.
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Since f(b) is a polynomial which is formally defined for any real value
of b and

Wo / Wy 7 Wy

W2y _ W2y e W2y

)= () = ()
while

F"(52) = 3(dy + 1)(dy + 2l ug™ (wy — wy) > 0
1
and
bEE—noof(b> =%

we see that there is at least one solution b € (32,+00) to f(b) = 0.
This completes the proof of Theorem [1.1] O

Remark 5.7. In the special case when wy is Kahler-Einstein, Iy > 0
and [} = m and ly = o2 we saw in [BTF13D] that we
have the Sasaki-Einstein ray discovered by the physicists [GMSWO04].
While the majority of these are irregular we do know some of them to
be quasi-regular (see e.g. Example 5.5 in [BTEF13Dh]). As the examples
in the next subsection will illustrate we can also produce many non-

Einstein quasi-regular CSC rays in all dimensions.

5.3. A Special Case: N = CPP. Recall Example in which case
A =13y =p+ 1. Now if we let (I1,[3) be any relatively prime pair of
positive integers except (gcd(fij‘;H , gcd(||v‘:/'v|‘,p+l)> we know that the CSC
ray from the proof of Theorem [1.1]is not Sasaki-Einstein (see Lemma

3.1 1in [BTF13b]), and by Equation c1(Dyy 1yw) # 0. Again, for the
majority of choices of (wy, ws), the CSC ray discovered will be irregular.
However we can produce quite a lot of quasi-regular CSC rays as the
example below shows.

This case is studied in much more depth in [BTF14b]. In particular,
it is shown there that if p,l; and w are fixed, there is only a finite
number of diffeomorphism types among the manifolds M, ;, w. So for
each p > 1,1, w1, wy with wy; > wy, there exists a smooth 2p + 3-
dimensional manifold M, , which admits a countably infinite number
of contact structures of Sasaki type each with a compatible Sasaki
metric of constant scalar curvature.

Example 5.8. For example with A =p+ 1, [} = and [y =

—_pr
ged(jwl.p)?

% we set t = %2 and b = kt in f(b) above. Then the equation

f(b) = 0 is equivalent to

p—(p+ 1)k + k!

t = .
k(1 — (p+ 1)kp + pkrtl)
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It is a straightforward calculus exercise to check that for £ > 1 we get
a solution 0 < ¢ < 1 as predicted in the previous section (so b = kt >
t = z—f and w; > wg). In particular, if we pick a rational & > 1 we
get a rational ¢. This value of ¢ will determine (w,ws) and then with
(v1,v9) such that vy /vy = b = kt we have our CSC quasi-regular Sasaki
metric.

Example 5.9. Let us assume that p = 2 (hence A = 3), [; = 1 and
w = (3,2). So to have smooth 7-manifolds th’( ) we must have

ged(ly,6) = 1. Then f(b) = 3(2 — 3b)3g(b), where
g(b) = 81b° — 27(ly — 4)b* — 54(ly — 2)b* +36(Iy — 1)b* + 8(Iy — 6)b — 16.

3,2

Now ¢(2/3) = —32 < 0 and , lim g¢(b) = +o0, justifying the solution
—>+00

to g(b) = 0 in the interval (2/3,+00) as already established. Notice
however that ¢(0) = —16 < 0 and ¢(1/3) = (13ly — 115)/3. So for any
ly > 9 with ged(lz,6) = 1, we have two additional solutions to g(b) = 0
in the interval (0,2/3). Furthermore, one can check that the other two
solutions are negative, so there are 3 rays of CSC Sasaki metrics in the
w-cone. It can also be checked that for s = 1,5,7, there is only one
solution to g(b) = 0. We thus have

Proposition 5.10. For each lo > 9 relatively prime to 6 there are three
distinct constant scalar curvature rays in the w-Sasaki cone of the toric
contact 7-manifold <M17,lz,(3,2)’ D1 1y,(3.2))-

It also follows from our results in [BTF14b| that infinitely many of
the manifolds M17,12,(3,2) are diffeomorphic. Thus, there exists an infinite
subsequence s; C {lo} of the integers Iy > 9 giving distinct contact
structures D, of Sasaki type occurring on the same 7-manifold all
containing three rays of CSC Sasaki metrics in their w-Sasaki cone.

Example 5.11. Wang-Ziller manifolds. In the calculus analysis we
have done on f(b) so far, we have assumed that wy, > w,. For arguments

sake let us assume that w; = wy; = 1 in which case our manifolds
My, 101y = Mé’fl, a Wang-Ziller manifold [WZ90]. If we assume that

N = CP? and pick [y = 1, we know from Proposition 2.3 of Wang
and Ziller that M7 is 5% x S° when [, is even and the non-trivial S5°-
bundle over S?, which we denote by S?x.S5°, when [, is odd. So there
are exactly these two diffeomorphism types. Moreover, we know that
we have at least one CSC ray, namely the regular ray in the S*-bundle
over the product N x CP!. This case corresponds to b = 1, although
f(b) has no geometric meaning for b = 1. However, we also get that
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f(b) = =3(b = 1)*g(b) with
g(b) = (1 + (3 = Io)b — 4b%ly + 6b* + (3 — I5)b® 4+ b?).
Now we observe that ¢g(0) =1 > 0, g(1) = 2(7 — 3l3), and bEIJ'rnoog(b) =

+00. So for Iy > 3 f(b) has at least 2 roots not equal to 1 ; one in the
interval (0,1) and one in the interval (1,4o00). Thus we have at least
three CSC rays in this case as well.

Now the Wang-Ziller manifolds are toric, in fact, they are homoge-
neous, and in our case M11221 have a four-dimensional Sasaki cone, and
when l; > 3 the w-Sasaki cone (i.e. the 2-dimensional Sasaki cone
associated with S?) has three CSC rays, one regular and the other two
irregular or quasi-regular. Notice also in our case the first Chern class
of the contact bundle is ¢1(Dy4,) = (3ly — 2)v. Summarizing we have

Theorem 5.12. The 7-manifolds S? x S® and S?*x.S% admit countably
infinite inequivalent toric contact structures Dy, of Reeb type with Il
even for the former and ly odd for the latter. Furthermore, when ly > 3
these contact structures admit three distinct rays of Sasaki metrics with
constant scalar curvature in tJ,.

As [y varies the contact structures are clearly inequivalent as contact
structures, not just as toric contact structures.

Remark 5.13. In this Wang-Ziller case two of the three CSC metrics
are actually equivalent under a transformation in the Weyl group Z,
acting on the unreduced w-cone t{. This transformation sends a root
to its reciprocal. Thus, there are only two CSC Sasaki metrics in the
moduli space k. See the proof of Theorem 1.3 in [Legll] for another
approach to this phenomenon.

5.4. Multiple CSC Rays. The multiple CSC rays in Proposition |5.10
and Theorem [5.12]illustrate a somewhat common phenomenon that was
first illustrated in the case of quadrilateral toric structures (S*-bundles
over S?) by Legendre [LegI1]. Consider f(b) in (58). As already stated,
any positive solution b # :U”—f to the equation f(b) = 0 corresponds to a
CSC ray in the w-Sasaki cone. So far we know that, assuming w; > ws,
there is at least one solution in the interval (22, 4-00). Since
Wa

f(=)=1"(—=) ="

w1 w1 w1

W2 W

) =0

while

f///(z_j) _ 3(dN + 1)(dN + 2)l1wile§lN (w1 - w2) >0
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we know that for b < 2 sufficiently close to 32, we have f(b) <

Further it is easy to see that f(0) < 0. Now we notice that f(32) is a
linear function of Iy with slope equal to

Aw2dN+3

P, [14 29 (292 — (dy + 2dy +5))] -

When A > 0, which is equivalent to the scalar curvature sy of (N, wy)
being positive, then this slope is positive and thus for sufficiently large
value of I we have that f(3:2) > 0. In that case we have at least two

more roots; one in the interval (0, 5) and one in the interval (5%, +2).

As Example illustrates, even i w; = we = 1, we can have several
CSC rays in the w-Sasaki cone. This proves Theorem [I.3]
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