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Abstract. We prove the existence of extremal Sasakian struc-
tures occurring on a countably infinite number of distinct contact
structures on T 2×S3 and certain related 5-manifolds. These struc-
tures occur in bouquets and exhaust the Sasaki cones in all except
one case in which there are no extremal metrics.

1. Introduction

Little appears to be known about the existence of Sasakian struc-
tures on contact manifolds with non-trivial fundamental group outside
those obtained by quotienting a simply connected Sasakian manifold
by a finite group of Sasakian automorphisms acting freely. Although it
has been known for sometime that T 2 × S3 admits a contact structure
[Lut79], it is unknown until now whether it admits a Sasakian struc-
ture. In the current paper we not only prove the existence of Sasakian
structures on T 2 × S3, but also prove the existence of families, known
as bouquets, of extremal Sasakian metrics on T 2 × S3 as well as on
certain related 5-manifolds.

We mention here that there is a toric contact structure on T 2 × S3

[Lut79, Ler02a]; however, its moment cone contains a two dimensional
linear subspace. Thus, it follows from Proposition 8.4.38 of [BG08]
that this toric contact structure is not of Reeb type, and so cannot
admit a compatible T 3-invariant Sasakian metric. Furthermore, T 2×S3

cannot admit any toric contact structure of Reeb type for the latter
must have finite fundamental group [Ler04]. Nevertheless, as we shall
show, T 2 × S3 does admit a countably infinite number of inequivalent
contact structures Dk, k ∈ Z+ with a compatible T 2 action of Reeb
type which fibers over the symplectic manifold T 2 × S2. It is easy to
see from Lutz that the toric contact structure on T 2×S3 has vanishing
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2 Extremal Sasakian Geometry on T 2 × S3

first Chern class; whereas, as we show below our T 2 invariant Sasakian
structures do not. Hence, our contact structures are distinct from that
of the toric case.

The organization of our paper proceeds as follows: in Section 2
we give the preliminaries of Sasakian geometry with emphasis on the
Sasaki cone and Sasaki bouquet. In Section 3 we apply the join oper-
ation [BGO07, BG08] to the three dimension nilmanifold N3 and the
three dimension sphere S3 to determine the diffeomorphism type of
our 5-manifolds1. The key here is a recent topological rigidity result
of Kreck and Lück [KL09]. In Section 4 we turn to a brief review
of the complex structures on ruled surfaces of genus one described by
Suwa [Suw69], and in Section 5 we give a review of extremal Kähler
structures on these surfaces based mainly on [Fuj92, ACGTF08a]. In
Section 6 we investigate Hamiltonian circle actions on T 2 × S2. The
important point is to describe Hamiltonian circle actions which rep-
resent distinct conjugacy classes of maximal tori. We are able to do
this by computing rational homotopy groups using the recent work of
Buşe [Buş10]. In Section 7 we describe the relevant Sasakian structures
on T 2 × S3 and certain related manifolds, and finally in Section 8 we
prove our main results concerning the extremal Sasakian structures on
these 5-manifolds by showing that in all but one case they exhaust the
Sasaki cones. It is important to realize that deforming the Sasakian
structure to obtain an extremal Sasaki metric also deforms the contact
structure D. Thus, we are actually dealing with isotopy classes of con-
tact structures that are obtained by isotopies that are invariant under
the normalizer of the maximal torus in the CR automorphism group.
We denote such an isotopy class by D̄, and prove that the Sasaki cone
only depends on this isotopy class.

Let M denote the moduli space of complex structures on the torus T 2.
We mention that for notational convenience we shall often suppress the
dependence of objects on τ ∈ M. Choosing a different complex struc-
ture τ ′ ∈M has no effect whatsoever on the Sasaki cone, so this is why
we suppress the notation. Often there are families of complex structures
associated with each Sasaki cone. Let us now sketch the construction
leading to our main theorem. As mentioned above our 5-manifolds
M5

k1,k2
are realized as circle bundles over T 2 × S2. The underlying CR

structures on M5
k1,k2

are inherited from the complex structures of the

base T 2×S2. These complex structures J2m arise by realizing T 2×S2 as

1It is reasonable to expect a similar description of Sasakian geometry on the
non-trivial S3 bundle over T 2, but we have not done so here. It will, however, be
treated in a forthcoming work [BTF12]
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projectivizations of rank two complex vector bundles over T 2 together
with a choice of complex structure on T 2. These ruled surfaces are well
understood from the work of Atiyah [Ati55, Ati57] and Suwa [Suw69].
When the chosen ruled surface admits a Hamiltonian Killing vector
field, this vector field lifts to an infinitesimal automorphism of the in-
duced Sasakian structure giving rise to a two dimensional Sasaki cone
as described in [BGS08]. Furthermore, as described in [Boy13, Boy11b]
the Sasaki cones often come in bouquets associated to an isotopy class
of contact structures which as mentioned above correspond to distinct
conjugacy classes of tori in the contactomorphism group. Then by
adapting the results of [ACGTF08a] to the orbifold case and using the
Openness Theorem of [BGS08] we prove that in all but one case ex-
tremal metrics exhaust the Sasaki cone. It can also be mentioned that
the construction of the extremal Sasakian metrics, given in Section 8, is
actually explicit. In this case the transversal Kähler structure admits
a Hamiltonian 2-form (see e.g. [ACGTF04] for a definition) or is a
(local) product of a flat metric on T 2 and a metric with a Hamiltonian
2-form.

Theorem 1.1. The contact manifolds M5
k1,k2

= N3 ?k1,k2 S
3 admit a

bouquet of Sasakian structures for each k1 ∈ Z+ and each positive in-
teger k2 relatively prime to k1. These Sasaki bouquets consist of dk1

k2
e

Sasaki cones κ(D̄k1 , J2m) of dimension two with complex structures J2m

labelled by m = 0, · · · , dk1
k2
e−1, plus a Sasaki cone κ(D̄k1 , J) of dimen-

sion one where J ∈ A0,τ , the non-split complex structure.

• For each m = 0, · · · , dk1
k2
e − 1 extremal Sasakian structures ex-

haust the Sasaki cones κ(D̄k1 , J2m). Moreover, for m = 0 there
is a unique regular ray of extremal Sasakian structures with con-
stant scalar curvature.
• For J ∈ A0,τ the one dimensional Sasaki cone κ(D̄k1 , J) admits

no extremal Sasaki metric.

Furthermore, M5
k1,1

is diffeomorphic to T 2 × S3 for all k1 ∈ Z+ and
has a countably infinite number of distinct isotopy classes of contact
structures D̄k1 of Sasaki type.
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Remarks 1.2.
1. For the m = 0 case we believe that the unique regular ray of constant
scalar curvature metrics is actually the unique ray of constant scalar
curvature metrics in each Sasaki cone.
2. For k2 > 1 the dependence of the homotopy type (and diffeomor-
phism type) of M5

k1,k2
on k1 is not understood at this time. Generally,

they are lens space bundles over T 2.
3. It can also be shown that for many cases with m > 0, there exist
constant scalar curvature extremal Sasaki metrics associated to a Reeb
vector field in the Sasaki cone. We do not know at the present time
whether these occur in all two dimensional Sasaki cones. This will be
addressed in the sequel to this work [BTF12].
4. The Sasaki bouquet is complete with respect to a fixed contact
form ηk1,k2 in the sense that there are no other Sasakian structures
with contact form ηk1,k2 in the bouquet. Here we are including those
Sasakian structures obtained by varying the transverse complex struc-
ture. For example, in the degree 0 case there is another CP1’s worth
of complex structures [Suw69] giving M × CP1 as parameterizing the
complex structures in this case. Moreover, in the degree > 0 case there
is the well-known jumping phenomenon [MK06] as discussed briefly in
Section 4.1. This makes the moduli space of complex structures non-
Hausdorff; hence, the moduli space of extremal Sasakian structures will
also be non-Hausdorff.

2. Preliminaries

Here we give a brief review of Sasakian geometry referring to [BG08]
for details and further development. Sasakian geometry can be thought
of as the odd dimensional version of Kählerian geometry. It consists of a
smooth manifold M of dimension 2n+1 endowed with a contact 1-form
together with a strictly pseudoconvex CR structure (D, J). Explicitly
it is given by a quadruple S = (ξ, η,Φ, g) where η is a contact 1-form,
ξ is its Reeb vector field, Φ is an endomorphism field which annihilates
ξ and satisfies J = Φ|D on the contact bundle D = ker η. Moreover, g
is a Riemannian metric given by the equation

(1) g = dη ◦ (Φ⊗ 1l) + η ⊗ η,

and ξ is a Killing vector field of g which generates a one dimensional
foliation Fξ of M whose transverse structure is Kähler. There is a
freedom of scaling, namely, given a Sasakian structure S = (ξ, η,Φ, g)
consider the transverse homothety by sending the Sasakian structure
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S = (ξ, η,Φ, g) to Sa = (a−1ξ, aη,Φ, ga) where a ∈ R+ and

ga = ag + (a2 − a)η ⊗ η.
This is another Sasakian structure which generally is inequivalent to
S. Hence, Sasakian structures come in rays.

When M is compact it follows from a theorem of Carrière (cf. The-
orem 2.6.4 of [BG08]) that the closure of any leaf of Fξ is a torus T of
dimension at least one, and the flow is conjugate to a linear flow on the
torus. This implies that for a dense subset of Sasakian structures S
on a compact manifold the leaves are all compact 1-dimensional man-
ifolds, i.e circles. Such S are known as quasiregular in which case the
foliation Fξ comes from a locally free circle action. Then the quotient
space Z has the structure of a projective algebraic orbifold with an
induced Kähler form ω such that π∗ω = dη where π is the quotient
projection. If the circles comprising the leaves of Fξ all have the same
period, S is said to be regular, and the quotient space Z is a smooth
projective algebraic variety with a trivial orbifold structure. The com-
plex structure Ĵ on Z is also related to the CR structure J on M . For
any foliate vector field X on M we have π∗ΦX = Ĵπ∗X. We say that
J = Φ|D is the horizontal lift of Ĵ .

Now the torus T = T(S) lies in the group Aut(S) of automorphisms
of the Sasakian structure S. Letting CR(D, J) denote the group of
automorphisms of the CR structure (D, J), Con(M,D) the Fréchet
Lie group of contactomorphisms of D, and Con(M, η) the Fréchet Lie
subgroup consisting of elements in Con(M,D) that leave the contact
1-form η invariant, we have natural inclusions (including arrows)

CR(D, J)
↗ ↘

T ⊂ Aut(S) Con(M,D)
↘ ↗

Con(M, η)

.

It is known that CR(D, J) is a compact Lie group except for the
standard CR structure on S2n+1 [Lee96, Sch95] and that Con(M, η)
is a closed Fréchet Lie subgroup of Con(M,D) [Boy13]. Furthermore,
Aut(S) is a closed Lie subgroup of both CR(D, J) and Con(M, η).

It is well known that for any contact 1-form η the one dimensional
Lie group Rξ generated by the Reeb vector field lies in the center of
Con(M, η) and hence when S is Sasakian (or even K-contact), in the
center of Aut(S). However, Rξ is not necessarily a closed subgroup of
either Aut(S) nor Con(M, η), but its closure is a torus Tk of dimension
k ≤ n + 1 which also lies in the center of both. Note that for any
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Sasakian structure we have dim Aut(S) ≥ 1, and if strict inequality
holds Aut(S) must contain a 2-torus T2. We are also interested in the
Lie algebra of these groups which we denote with lower case gothic
letters, viz. tk, aut(S), cr(D, J), con(M, η), con(M,D). Given a contact
structure D with a fixed contact form η, a torus T in Con(M, η) is said
to be of Reeb type [BG00b, BG08] if the Reeb vector field ξ of η lies in
the Lie algebra t of T. In this paper we only consider torus actions of
Reeb type.

2.1. Sasaki Cones and the Sasaki Bouquet. Let (M2n+1,D) be
a contact structure of Sasaki type. The Sasaki cone κ(D, J) was first
defined in [BGS08] to be the moduli space of Sasakian structures associ-
ated to a fixed underlying strictly pseudoconvex CR structure (D, J).
However, it is often convenient to fix a maximal torus Tk(D, J) of
Reeb type in the CR automorphism group CR(D, J) and consider
the ‘unreduced’ Sasaki cone t+

k (D, J) defined to be the subset of all
X ∈ tk(D, J) such that η(X) > 0 where tk(D, J) denotes the Lie
algebra of Tk(D, J), η is any contact form representing D, and k de-
notes the dimension of the maximal torus. Then t+

k (D, J) is related to
κ(D, J) by κ(D, J) = t+

k (D, J)/W(D, J) where W(D, J) is the Weyl
group of CR(D, J). Note that for a contact structure of Sasaki type
on a compact manifold 1 ≤ k ≤ n + 1, and k = n + 1 is the toric
case. Associated to a fixed oriented contact structure D there are
many compatible almost complex structures J , and some may be asso-
ciated to K-contact or Sasakian structures. These give rise to bouquets
B(D) = ∪ακ(D, Jα) of Sasaki cones as described in [Boy13, Boy11b].
Generally, the Sasaki cones in a bouquet can have varying dimension
(see Theorem 8.6 of [Boy13] for an example) and the index set can be
arbitrary. For examples of Sasaki bouquets with toric Sasaki cones and
finite index set on S2×S3 see [Boy11b, Boy11a, BP12]. In the present
paper the Sasaki cones of our bouquets occuring on T 2×S3 and certain
related manifolds all have finite index set and in each bouquet all Sasaki
cones but one has dimension 2. Generally, it is unknown whether or
not Sasaki bouquets always have finite index set. A bouquet consist-
ing of precisely N Sasaki cones is called an N-bouquet and denoted
by BN(D). In [Boy13] the index set of the bouquets were taken to
be what was called the set of T -equivalence classes of almost complex
structures that correspond to the same conjugacy class of maximal tori.
Generally, there are large families of almost complex structures corre-
sponding to the same conjugacy class of maximal tori; hence, there are
families of Sasakian structures corresponding to the same Sasaki cone.
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So we can get moduli of Sasakian structures belonging to a fixed con-
tact structure; however, as discussed in [Boy11b] this moduli space can
be non-Hausdorff. Indeed, this is the case in the present paper. An N -
bouquet BN(D) is complete if N is precisely the number of conjugacy
classes of maximal tori in Con(M,D), and it is complete with respect
to η if N is precisely the number of maximal tori in Con(M, η). Notice
that if BN(D) is complete with respect to η, then the intersection of
the Sasaki cones in BN(D) contains the ray of the Reeb vector field ξ
of η.

Remark 2.1. It is important to realize that a choice of Reeb vector
field ξ in a Sasaki cone κ(D, J) uniquely determines a Sasakian struc-
ture S = (ξ, η,Φ, g) since within a contact structure D a Reeb vector
field ξ belongs to a unique contact form η, Φ is completely determined
by ξ and J , and the Sasaki metric g is then determined by Equation
(1). As a consequence we often talk about a Sasakian structure being
an element of the Sasaki cone κ(D, J).

2.2. The Join Construction. Products of Kählerian manifolds are
Kähler, but products of Sasakian manifolds do not even have the cor-
rect dimension. Nevertheless, one can easily construct new Sasakian
manifolds from old regular (or more generally quasi-regular) ones by
constructing circle bundles over the product of Kähler manifolds (or
orbifolds). This is the join construction as described in [BGO07] and
in Section 7.6.2 of [BG08]. However, the Sasakian (or K-contact) struc-
ture is actually superfluous to the construction. It is natural to consider
the join of quasi-regular contact manifolds; however, in this paper we
only apply the join construction to regular contact structures. Let Mi

for i = 1, 2 be compact regular contact manifolds with Reeb vector
fields ξi, respectively. These vector fields generate free circle actions
on Mi and the quotient manifolds are smooth symplectic manifolds Zi.
Then the quotient of the product T 2 = S1 × S1 action on M1 ×M2

is Z1 × Z2. Taking primitive symplectic forms ωi on Zi we consider
the symplectic form ωk1,k2 = k1ω1 + k2ω2 on Z1 × Z2 where k1, k2 are
relatively prime positive integers. Then by the Boothby-Wang con-
struction the total space of the principal circle bundle over Z1 × Z2

corresponding to the cohomology class [ωk1,k2 ] ∈ H2(Z1 × Z2,Z) has
a natural regular contact structure whose contact form ηk1,k2 satisfies
dηk1,k2 = π∗ωk1,k2 where π is the natural bundle projection. The total
space of this bundle is denoted by M1 ?k1,k2 M2 and is called the join
of M1 and M2.

Choosing a complex structure (not necessarily the product structure)
on the base Z1 × Z2 that makes (Z1 × Z2, ωk1,k2) a Kähler manifold,



8 Extremal Sasakian Geometry on T 2 × S3

then gives rise via a well known construction [BG08] to a Sasakian
structure on the join M1 ?k1,k2 M2.

3. The Diffeomorphism Types

We consider the join of S3 with its standard Sasakian structure and
the nilmanifold N3 constructed as the compact quotient of the Heisen-
berg group H3(R) by its integral lattice H3(Z). The 3-dimensional
Heisenberg group H3(R) is given in coordinates by the nilpotent ma-
trices of the form 

 1 x z
0 1 y
0 0 1

 | x, y, z ∈ R
 .

It has a natural bi-Sasakian structure [Boy09], and if we consider the
nilmanifold N3 to be the manifold of left cosets H3(R)/H3(Z), it in-
herits the right Sasakian structure from H3(R). Actually it has a
family of Sasakian structures coming from the family of underlying
CR structures (D, Jτ ). Now N3 fibers over the 2-torus T 2 with its flat
Kählerian structures, and a result of Folland [Fol04] says that there is
a 1-1 correspondence between elements of the moduli space M of com-
plex structures on T 2 and the underlying CR structures on N3. Hence,
the moduli space M parameterizes the standard Sasakian structures on
N3. These all have a transverse Kähler structure with a flat transverse
metric. Thus, we have a family of inequivalent ‘standard’ Sasakian
structures Sτ = (ξ, η,Φτ , g) on N3 that are equivalent as Riemannian
structures, where τ ∈M.

Next we determine the diffeomorphism type of M5
k1,1

= N3 ?k1,1 S
3

with their induced Sasakian structures and show that the 5-manifolds
M5

k1,k2
= N3 ?k1,k2 S

3 with k2 > 1 have a fundamental group that is

a non-split central extension of Z2 when k1, k2 are relatively prime
positive integers. Explicitly, we shall prove

Theorem 3.1. Let M5
k1,k2

= N3?k1,k2S
3 be the regular Sasakian (k1, k2)-

join of the nilmanifold N3 with Sasakian structure Sτ and S3 with its
standard Sasakian structure where gcd(k1, k2) = 1. Then M5

k1,k2
is

an L(k2, 1) lens space bundle over T 2 with H1(M5
k1,k2

,Z) ≈ Z2 and

non-Abelian fundamental group when k2 > 1. Moreover, N3 ?k1,1 S
3 is

diffeomorphic to T 2 × S3 for all k1 ∈ Z+. However, when k2 > 1, the
fundamental group π1(M5

k1,k2
) is a non-Abelian central extension of Z2

by Zk2; hence, the lens space bundle is non-trivial.
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To prove this theorem, we first notice that N3 ?k1,k2 S
3 is a homoge-

neous manifold. This can be seen as follows: from the join construc-
tion we can write N3 ?k1,k2 S

3 as (N3 × S3)/S1(k1, k2) where the circle
S1(k1, k2) is generated by the vector field k2ξ1− k1ξ2. The Reeb vector
fields are given explicitly in coordinates (x, y, z) on N3 and (z1, z2) on
C2 by ξ1 = ∂z and ξ2 is the restriction of the infinitesimal generator
of the action (z1, z2) 7→ (eiθz1, e

iθz2) to the unit sphere S3 which we
identify with the Lie group SU(2) by

(z1, z2)←→
(
z1 z2

−z̄2 z̄1

)
, |z1|2 + |z2|2 = 1.

The group G = H3(R)×SU(2) acts on N3×S3 by the product action.
Consider the subgroup H of G defined by

H = {

1 a c+ k2t
0 1 b
0 0 1

× (e−2πik1t 0
0 e2πik1t

)
| a, b, c ∈ Z, t ∈ R}.

It is a closed Lie subgroup and we have

Lemma 3.2. The homogeneous manifold G/H can be identified with
the join N3 ?k1,k2 S

3.

Proof. Consider the map ψ : H3(Z)×R−−→H defined by

ψ(N, t) =
(
N ·

1 0 k2t
0 1 0
0 0 1

)× (e−2πik1t 0
0 e2πik1t

)
.

It is the defining map for H and a group epimorphism. The kernel of
ψ is

ker ψ = {
(1 0 k2e

0 1 0
0 0 1

 ,−e
)
| e ∈ Z} ≈ Z,

and we have an isomorphism H ≈ (H3(Z) × R)/Z. Notice that in
H3(Z)×R we have ker ψ∩H3(Z) = id, so H3(Z) is a subgroup of H.
In fact, it is a normal subgroup of H, and H/H3(Z) ≈ R/Z ≈ S1. We
now identify G/H with (G/H3(Z))/(H/H3(Z)) and the latter with the
join N3 ?k1,k2 S

3. First we have

G/H3(Z) =
(
H3(R)× SU(2)

)
/H3(Z) = N3 × S3.

Consider the action of the R subgroup of H on N3 × S3 given in coor-
dinates ([x, y, z]; z1, z2) by

([x, y, z]; z1, z2) 7→ ([x, y, z + k2t]; e
−2πik1tz1, e

−2πik1tz2)
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where t ∈ R, and the brackets denote the equivalence class in H3(R)
modulo H3(Z). Of course, this action is not effective, since the sub-
group Z obtained by restricting t to Z fixes all points of N3 × S3.
However, since (k1, k2) are relatively prime, the action of the quotient
group R/Z ≈ S1(k1, k2) is free, and we have

G/H ≈ (G/H3(Z))/S1(k1, k2) ≈ (N3 × S3)/S1(k1, k2).

But the right hand side is just the join construction as described in
Section 7.6.2 of [BG08]. Thus, G/H ≈ N3 ?k1,k2 S

3. �

Next we determine the weak homotopy type of N3 ?k1,k2 S
3.

Lemma 3.3. For each pair of relatively prime positive integers (k1, k2)
we have

(1) π1(N3 ?k1,1 S
3) ≈ π1(T 2 × S3) ≈ Z2.

(2) If k2 > 1, π1(N3?k1,k2S
3) is a non-Abelian central Zk2-extension

of Z2.
(3) πi(N

3 ?k1,k2 S
3) ≈ πi(S

3) for i ≥ 2; In particular,
π2(N3 ?k1,k2 S

3) = 0.

Proof. Applying the long exact homotopy sequence to the bundle

H−→G−→G/H ≈ N3 ?k1,k2 S
3

of Lemma 3.2 we have

−−→πi(G)−−→πi(G/H)−−→πi−1(H)−−→πi−1(G)−−→πi−1(G/H)−−→.
Now G is 2-connected, so we have the group isomorphism π2(G/H) ≈
π1(H), and the set bijection2 π1(G/H) ≈ π0(H). To proceed further we
notice that the connected component H0 of H is the normal subgroup
given by matrices of the form1 0 k2t

0 1 0
0 0 1

× (e−2πik1t 0
0 e2πik1t

)
, t ∈ R.

For k2 ∈ Z+ this has the homotopy type of R, so πi(H) = πi(H0) = 0
for i ≥ 1. Thus, in particular using Lemma 3.2 we have

π2(N3 ?k1,k2 S
3) = π2(G/H) ≈ π1(H) = 0.

Then the long exact sequence of the bundle S1−→N×S3−→N3?k1,k2 S
3

gives the short exact sequence

0−−→Z
δ
−−→H3(Z)−−→π1(N3 ?k1,k2 S

3)−−→0,

2Generally, π0(X) is just the set of path components of X and has no group
structure; however, if Γ is a discrete group π0(Γ) is isomorphic to Γ itself with its
group structure.
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where the connecting homomorphism δ is given by

(2) δ(n) =

1 0 k2n
0 1 0
0 0 1

 .

This gives the group isomorphism

(3) π1(N3 ?k1,k2 S
3) ≈ H3(Z)/k2Z(Z)

where Z(Z) is the central subgroup of H3(Z) consisting of matrices of
the form 1 0 c

0 1 0
0 0 1

 , c ∈ Z,

which proves (1). Then Equation (3) and the well known homomor-
phism theorems give the exact sequence

(4) 0−−→Zk2−−→π1(M5
k1,k2

)−−→Z2−−→0.

Moreover, from the structure of the Heisenberg group this is a non-
Abelian central extension which proves item (2). The fact that πi(H)
vanishes for i ≥ 1 together with the fibration H−→G−→G/H implies
πi(N

3 ?k1,k2 S
3) = πi(G/H) ≈ πi(G) ≈ πi(S

3) for i ≥ 2 which finishes
the proof of the lemma. �

Proof of Theorem. First consider the case k2 = 1. We make use of a
topological rigidity result of Kreck and Lück [KL09]. Notice that the
torus T 2 is the classifying space BZ2. So we consider the classify-
ing map f : M5

k1,1
−→BZ2 ≈ T 2 to be the composition M5

k1,1
−→T 2 ×

S2−→T 2. Now by Lemma 3.3 M5
k1,1

satisfies π1(M5
k1,1

) = Z2 and

π2(M5
k1,1

) = 0, and hence, the hypothesis of Problem 0.16 of [KL09]

is satisfied, namely, that π1(M5
k1,1

) is non-trivial and isomorphic to the

fundamental group of a manifold of dimension ≤ 2, and π2(M5
k1,1

) = 0.
Thus, by Theorem 0.18 of [KL09] the oriented homeomorphism type,
in fact since homeomorphism implies diffeomorphism in dimension five,
the oriented diffeomorphism type of M5

k1,1
is determined completely by

its second Stiefel-Whitney class w2(M5
k1,1

). More explicitly, M5
k1,1

is an

S3-bundle over T 2, and there are precisely two such bundles, the trivial
one with w2(M5

k1,1
) = 0, and the non-trivial one with w2(M5

k1,1
) 6= 0.

There are two ways to determine which of the two bundles occurs.
One can compute w2(M5

k1,k2
) explicitly using the fact that it is the

mod 2 reduction of the first Chern class c1(Dk1,k2) [BG08], and the
latter is calculated from the pullback of the first Chern class of the
quotient T 2 × S2 via transgression. Since we need the Chern class to
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distinguish contact structures, we give this computation in Lemma 3.4
below where we see that it is always an even multiple of a generator
of H2(M5

k1,k2
,Z)/(torsion). Alternatively, Gorbacevič [Gor78] has clas-

sified 5-dimensional compact homogeneous manifolds. Since our M5
k1,1

is homogeneous and the trivial bundle T 2 × S3 is also, whereas, the
non-trivial bundle does not appear on Gorbacevič’s list, M5

k1,1
must be

the former.
For the general case we can apply Proposition 7.6.7 of [BG08] which

gives M5
k1,k2

as a bundle over T 2 with fiber the lens space L(k2, 1). Now
(2) of Lemma 3.3 implies that that the lens space bundle is non-trivial.
Moreover, using Equation (3), an easy computation shows that the
commutator group [π1, π1] is Zk2 , so H1(M5

k1,k2
,Z) ≈ Z2. �

Lemma 3.4. On the contact manifold M5
k1,k2

we have c1(Dk1,k2) = 2k1γ

where γ is a generator of H2(M5
k1,k2

,Z)/(torsion).

Proof. The join construction gives a circle bundle π : M5
k1,k2
−−→T 2×S2.

Choosing a basis (α, β) for H2(T 2 × S2,Z) ≈ H2(T 2,Z) ⊕H2(S2,Z),
we have c1(T 2 × S2) = 2β and the Euler class of the circle bundle is
k1α + k2β. The pullback of this class to M5

k1,k2
vanishes, so π∗β =

−k1
k2
π∗α. But π∗β is an integral class, so we must have π∗α = −k2γ for

an element γ ∈ H2(M5
k1,k2

,Z)/(torsion). Thus,

c1(Dk1,k2) = π∗c1(T 2 × S2) = 2π∗β = 2k1γ.

Furthermore, γ is a generator of H2(M5
k1,k2

,Z)/(torsion) ≈ Z since α

and β are generators of H2(T 2 × S2,Z).
�

4. Complex surfaces diffeomorphic to T 2 × S2

Let (M,J) be a complex surface such that M is diffeomorphic to
T 2× S2. Then it follows from Atiyah [Ati55, Ati57] and Suwa [Suw69]
that (M,J) is a ruled surface of genus 1; (M,J) = P(E)→ T 2, where
T 2 is equipped with a complex structure Jτ , τ ∈ M and, without loss
of generality, E → T 2 is a holomorphic rank 2 vector bundle over the
Riemann surface (T 2, Jτ ) of one of the following types

(1) E is a non-split extension

0→ O→ E → O→ 0

(2) E = O ⊕ L, where L is a degree 0 holomorphic line bundle on
T 2 and O denotes the trivial (holomorphic) line bundle on T 2.

(3) E = O ⊕ L, where L is a holomorphic line bundle on T 2 of
positive even degree n.
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Assume the complex structure Jτ on T 2 is fixed. From [Suw69] we
have the following statements, up to biholomorphism. The first type is
unique and we denote the ruled surface by A0,τ .

The family of ruled surfaces of the second type is denoted by S0,τ

and is parametrized by CP1. It can be described as follows [Fuj92]: let
ρ : π1(T 2) = Z2−−→PSU(2) ≈ SO(3) be a projective unitary represen-
tation. Consider the action of π1(T 2) on C×CP1 given by the covering
space action on the first factor and by ρ on the second. We denote
the quotient ruled surface by T 2 ×ρ CP1 ∈ S0,τ . Note that in our case
ρ is a homomorphism from an Abelian group to SO(3), so the image
ρ(Z2) in SO(3) is Abelian, and so is contained in a maximal Abelian
subgroup of SO(3). Since T 2 × S2 is spin the homomorphism ρ lifts
to a homomorphism to SU(2). But in SU(2) any Abelian subgroup
must be a subgroup of a circle3. It follows that ρ(Z2) is a subgroup
(not necessarily closed) of a circle S1. Generally, we shall denote this
complex structure as Jρ. The product complex structure corresponds
to ρ mapping Z2 to the identity, that is, π1(T 2) = ker ρ. Naturally this
is the case where L = O for type (2) above. We denote the product
structure by S0,τ .

There is exactly one ruled surface of type (3) for each n ∈ 2Z+ and
fixed τ ∈M. We denote this by Sn,τ .

4.1. Complex analytic families of complex structures. In this
paper we are interested in families of complex structures on T 2 × S2

and therefore we now summarize the main conclusions of Section 3 of
[Suw69]: Let (M,J) be a ruled surface as above of type (1), (2), or (3)
and let Θ denote the sheaf over (M,J) of germs of holomorphic vector
fields. Then we have dimH2((M,J),Θ) = 0 and

(1) if (M,J) = A0,τ ,
then dimH0((M,J),Θ) = dimH1((M,J),Θ) = 2,

(2) if (M,J) = S0,τ ,
then dimH0((M,J),Θ) = dimH1((M,J),Θ) = 4,

(3) if (M,J) 6= S0,τ and (M,J) ∈ S0,τ ,
then dimH0((M,J),Θ) = dimH1((M,J),Θ) = 2,

(4) if (M,J) = Sn,τ ,
then dimH0((M,J),Θ) = dimH1((M,J),Θ) = n+ 1.

From [KNS58] and [KS58] it then follows that in each case there is a
local complex analytic family J of complex structures on T 2 × S2 such

3SO(3) does have a maximal Abelian subgroup that is not a circle, namely, the
Klein four group of diagonal elements. In this case the underlying manifold is the
non-trivial S2 bundle over T 2 which is not spin (cf. Exercise 6.14 of [MS98]), and
the complex ruled surface is denoted by A1 in [Suw69].
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that J ∈ J and J is parametrized by a complex parameter space of di-
mension equal to dimH1((M,J),Θ). In fact, Suwa explicitly constructs
effectively parametrized and complete families at J . One of the defor-
mation directions in each of the cases above corresponds to changing
Jτ on the base T 2. In case (2), two of the deformation directions leads
to A0,τ , while the last yields the complex analytic family S0,τ . Case (3)
is similar to case (2) without the two deformation directions leading to
A0. Finally, case (4) has two deformation directions jumping to A0,τ

and n−2 deformation directions jumping to Sn−2(k−1),τ for k = 3, ..., n,
where S−m,τ = Sm,τ . Unless, n = 2, the latter yield, possibly with
some double counting, the ruled surfaces Sn,τ , Sn−2,τ , ..., S0,τ (the first
one corresponding to no deformation).

Consider now the symplectic 2-form

ωk1,k2 = k1ω1 + k2ω2

on T 2×S2, where ω1 and ω2 are the standard area measures on T 2 and
S2, respectively. Let αk1,k2 ∈ H2(M,R) denote the cohomology class
of ωk1,k2 .

Lemma 4.1. For any (M,J) ∈ S0,τ ∪ {A0,τ}, αk1,k2 is a Kähler class
if and only if k1, k2 > 0. For any (M,J) = Sn,τ , n ∈ 2Z+, αk1,k2 is a
Kähler class if and only if k2 > 0 and k1

k2
> n/2.

Proof. In either case the zero section, En of M → T 2 has the property
that En·En = n where n = 0 if (M,J) ∈ S0,τ∪{A0,τ}. (If (M,J) = S0,τ ,
E0 = T 2 × {pt}.) If C denotes a fiber of the ruling M → T 2, then
C · C = 0, while C · En = 1. Any real cohomology class in the two
dimensional space H2(M,R) may be written as a linear combination
of (the Poincare duals of) En and C,

m1En +m2C .

In particular, the Kähler cone K corresponds to m1 > 0,m2 > 0 (see
[Fuj92] or Lemma 1 in [TF98]). By integrating αk1,k2 over E0 and C
we easily get that PD(αk1,k2) = k2E0 + k1C where PD means Poincaré
dual, and since E0 = En − n

2
C the lemma now follows. �

As a consequence of this Lemma, if we start with a ruled surface
(M,J) diffeomorphic to T 2×S2 such that αk1,k2 is a Kähler class, then
αk1,k2 remains a Kähler class for all the complex structures arising from
the deformation families above.

5. Existence of Extremal Kähler metrics

Extremal Kähler metrics are generalizations of constant scalar cur-
vature Kähler metrics: Let (M,J) be a compact complex manifold
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admitting at least one Kähler metric. For a particular Kähler class α,
let α+ denote the set of all Kähler forms in α.

Calabi [Cal82] suggested that one should look for extrema of the
following functional Φ on α+:

Φ : α+ → R

Φ(ω) =

∫
M

s2dµ,

where s is the scalar curvature and dµ is the volume form of the Kähler
metric corresponding to the Kähler form ω. Thus Φ is the square of
the L2-norm of the scalar curvature.

Proposition 5.1. [Cal82] The Kähler form ω ∈ α+ is an extremal
point of Φ if and only if the gradient vector field grad s is a holomorphic
real vector field, that is £grad sJ = 0. When this happens the metric g
corresponding to ω is called an extremal Kähler metric.

Notice that if £grad sJ = 0, then Jgrad s is a Hamiltonian Killing
vector field inducing Hamiltonian isometries.

As follows from Fujiki [Fuj87], the complex surface A0,τ does not
admit any extremal metric at all4.

Lemma 5.2. The complex surface T 2 × S2 with a non-split complex
structure A0,τ has no non-trivial Hamiltonian Killing vector fields and
no extremal Kähler metrics.

Proof. To see that A0,τ admits no non-trivial Hamiltonian Killing vec-
tor fields with respect to any Kähler metric, assume that we did have
such a vector field X. Then, since A0,τ is compact, X would have
to vanish somewhere and thus if π denotes the projection of A0,τ to
T 2, π∗X would be a holomorphic vector field on T 2 with a zero. It is
well known that holomorphic vector fields on T 2 either vanish every-
where or nowhere. Thus π∗X = 0. This means that X would induce
a group of fiber preserving automorphisms of A0,τ . By compactness
of A0,τ any Hamiltonian Killing vector field X 6= 0 induces a group of
automorphisms whose closure is S1 or T 2. By the fiber preservation,
the latter possibility is clearly not possible and a fiber preserving S1

4Notice that in the first paragraph of the proof of Theorem 4.6 in [ACGTF08b],
it is inadvertently and incorrectly implied that E of A0,τ is polystable (and hence
A0,τ should admit a CSC Kähler metric). This is obviously not true. In fact, what
should have been said is that the other of the the two possible cases of P(E)→ T 2

with E indecomposable has E polystable. That case has also E non-spin and so
the bracket comment in Theorem 4.6 of [ACGTF08b] is not true and should be
ignored.
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action would cause E to split into two holomorphic line bundles (cf.
[ACGTF11] Lemma 1). So there are no non-trivial Hamiltonian Killing
vector fields.

The lack of non-trivial Hamiltonian Killing vector fields implies that
any extremal Kähler metric would have to have constant scalar curva-
ture. However, by the well known Lichnérowicz-Matsushima Theorem
(cf. [Gau10]) the Lie algebra of holomorphic vector fields on (M,J)
must be a reductive complex Lie algebra. For (M,J) = A0,τ this is
not the case [Mar71] and so the manifold admits no extremal Kähler
metrics. �

If (M,J) ∈ S0,τ , then there is a constant scalar curvature (CSC)
Kähler metric in each Kähler class of the Kähler cone on T 2 ×ρ CP1.
These are called quasi-stable in [Fuj92]. When ρ is the identity (M,J) =
T 2 ×CP1 is simply a product of constant curvature Kähler metrics on
T 2 and CP1 respectively. In general, T 2 ×ρ CP1 is a flat CP 1-bundle
and so the local products of CSC Kähler metrics inherited from product
CSC Kähler metrics on the universal cover C×CP1 exhaust the Kähler
cone.

If (M,J) = Sn,τ , n ∈ 2Z+, then there is an extremal Kähler metric
(non-CSC) in every Kähler class [Hwa94] (see also [TF02]) arising from
a Calabi type construction: Recall that M = P(O ⊕ L) → T 2, where
L is a holomorphic line bundle of degree n ∈ 2Z+ on T 2, and O is
the trivial holomorphic line bundle. Let gT 2 be the Kähler metric on
T 2 of constant zero scalar curvature, with Kähler form ωT 2 , such that
c1(L) = [

ωT2

2π
].

The natural C∗-action on L extends to a holomorphic C∗-action on
M . The open and dense set M0 of stable points with respect to the
latter action has the structure of a principal C∗-bundle over the stable
quotient. The hermitian norm on the fibers induces via a Legendre
transform a function z : M0 → (−1, 1) whose extension to M consists
of the critical manifolds En := z−1(1) = P (O⊕0) and E∞ := z−1(−1) =
P (0 ⊕ L). To build the so-called admissible metrics [ACGTF08a] on
M we proceed as follows. Let θ be a connection one form for the
Hermitian metric on M0, with curvature dθ = ωT 2 . Let Θ be a smooth
real function with domain containing (−1, 1). Let r be a real number
such that 0 < r < 1. Then an admissible Kähler metric is given on M0

by

(5) g =
1 + rz

r
gT 2 +

dz2

Θ(z)
+ Θ(z)θ2
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with Kähler form

(6) ω =
1 + rz

r
ωT 2 + dz ∧ θ .

The complex structure yielding this Kähler structure is given by the
pullback of the base complex structure along with the requirement

(7) Jdz = Θθ.

The function z is Hamiltonian with K = Jgradgz a Killing vector
field. Observe that K generates the circle action which induces the
holomorphic C∗- action on M as introduced above. In fact, z is the
moment map on M for the circle action, decomposing M into the free
orbits M0 = z−1((−1, 1)) and the special orbits z−1(±1). Finally, θ
satisfies θ(K) = 1. In order that g (be a genuine metric and) extend
to all of M , Θ must satisfy the positivity and boundary conditions

(i) Θ(z) > 0, −1 < z < 1, (ii) Θ(±1) = 0, (iii) Θ′(±1) = ∓2.

(8)

The last two of these are together necessary and sufficient for the
smooth compactification of g.

Note that in the above set-up different choices of Θ determines dif-
ferent compatible complex structures J with the same fixed symplec-
tic form ω as the Kähler form. However, for each Θ there is an S1-
equivariant diffeomorphism pulling back J to the original fixed com-
plex structure of Sn,τ in such a way that the Kähler form of the new
Kähler metric is in the same cohomology class as ω. Therefore, with
all else fixed, we may view the set of the functions Θ satisfying (8) as
parametrizing a family of Kähler metrics within the same Kähler class
of Sn,τ [ACGTF08a].

It is easy to see that the Kähler class of a metric as in (5) is given
by

PD([ω]) = 4πEn +
2π(1− r)n

r
C.

From the proof of Lemma 4.1, we see that, up to rescaling, the set
{0 < r < 1} exhausts the entire Kähler cone. Finally, one may check
by direct calculation [ACGTF08a] that g as in (5) is extremal if and
only if

Θ(z) =
(1− z2)(2r2z2 + r(6− 2r2)z + (6− 4r2))

(1 + rz)2(3− r2)
.

For any choice of 0 < r < 1 this is a function satisfying all conditions
in (8) and thus any Kähler class admits an extremal Kähler metric.
None of these extremal Kähler metrics have constant scalar curvature.
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5.1. Families of complex structures with extremal metrics in
αk1,k2. Now, if we start with a ruled surface (M,J) diffeomorphic to
T 2×S2 such that αk1,k2 is a Kähler class admitting an extremal Kähler
metric, then we know that either (M,J) ∈ S0,τ , and then the extremal
metric is a CSC Kähler metric, or (M,J) = Sn,τ , n ∈ 2Z+. From
Section 4.1 together with the above observations we see that in the first
case we have a two dimensional complex parameter family of complex
structures such that αk1,k2 remains a Kähler class admitting a CSC
Kähler metric. The second case contains two subcases; if n = 2 we
have a one dimensional complex parameter family (corresponding to
changing the complex structure on the base) of complex structures
such that αk1,k2 remains a Kähler class admitting an extremal Kähler
metric (all non-CSC), if n = 4, 6, ..., we have an (n − 1)-dimensional
complex family of complex structures such that αk1,k2 remains a Kähler
class admitting an extremal Kähler metric. A one dimensional sub-
parameter family contains complex structures (all biholomorphic to
S0,τ ) admitting CSC Kähler metrics whereas the rest are non-CSC.

Remark 5.3. Suppose αk1,k2 is a Kähler class for a given complex
structure J on T 2 × S2. According to McDuff [McD94], up to isotopy,
there is only one symplectic form in the class αk1,k2 . In particular, if
αk1,k2 admits some extremal Kähler metric g w.r.t. J with Kähler form
ω, then there exists a diffeomorphism φ such that φ∗ω = ωk1,k2 . Then,
φ∗J is a complex structure compatible with ωk1,k2 such that ωk1,k2 is
the Kähler form of an extremal Kähler metric.

6. Hamiltonian Circle Actions on T 2 × S2

The purpose of this section is to show that the Hamiltonian circle
actions corresponding to the complex structures S2m,τ (including m =
0) discussed in Sections 4 and 5 belong to distinct conjugacy classes of
maximal tori in the group Ham(T 2×S2, ωk1,k2) for m = 0, · · · , dk1

k2
e−1.

Fix a symplectic form ωk1,k2 = k1ω1 + k2ω2 on T 2 × S2 with k1, k2 ∈
Z+ relatively prime, and let Sym(T 2 × S2, ωk1,k2) denote its group of
symplectomorphisms. It is a Fréchet Lie group locally modelled on its
Lie algebra

sym(T 2 × S2, ωk1,k2) = {X ∈ X(T 2 × S2) | £Xωk1,k2 = 0},
where X(M) denotes the Lie algebra of smooth vector fields on M .
We are interested in the ideal of Hamiltonian Killing vector fields
ham(T 2 × S2, ωk1,k2) of sym(T 2 × S2, ωk1,k2) consisting of those vec-
tor fields X such that the 1-form X ωk1,k2 is exact. The normal
subgroup of Hamiltonian isotopies Ham(T 2 × S2, ωk1,k2) is defined to
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be the subgroup of Sym(T 2× S2, ωk1,k2) generated by smooth families
of Hamiltonian Killing vector fields connected to the identity.

Consider the symplectic 4-manifolds (T 2 × S2, ωk1,k2) together with
the diffeomorphisms ϕ2m : T 2×S2−−→P(O⊕L) where L is a line bundle
on T 2 of degree 2m. Transport the complex structure on P(O⊕ L) to
T 2 × S2 via ϕ2m. Let J2m denote this complex structure on T 2 × S2.
It is compatible with the symplectic form, and it follows from Lemma
4.1 that (T 2 × S2, ωk1,k2 , J2m) with m ∈ Z+ is Kähler if and only if
k1 > mk2.

Hamiltonian S1 actions on 4-manifolds were first studied indepen-
dently by Ahara-Hattori [AH91] and Audin [Aud90]. Later Karshon
[Kar99] classified the Hamiltonian circle actions on 4-manifolds in terms
of certain labelled graphs. These graphs are determined by the fixed
point set of the S1 action. See also Chapter VIII of [Aud04].

We write a point of the total space W of the projective bundle π :
P(O⊕L)−−→T 2 as (w, [u, v]) where [u, v] are homogeneous coordinates
in the CP1 fiber P(O ⊕ Lw) at w ∈ T 2. Define the circle action on

W by Ã(λ) : W−−→W by Ã(λ)(w, [u, v]) = (w, [u, λv]) where λ ∈
C with |λ| = 1. This action is clearly holomorphic. Let A2m(λ) =

ϕ−1
2m ◦ Ã(λ) ◦ ϕ2m denote the transported action on T 2 × S2. It is

holomorphic with respect to J2m. The fixed point set of the action
Ã(λ) is the disjoint union of sections E∞ = z−1(−1) = (w, [0, v]) and
En = z−1(1) = (w, [1, 0]). Then we have [Aud90]

Lemma 6.1. For each n ∈ 2Z≥0 satisfying n < 2k1
k2

and λ ∈ S1 we

have An(λ) ∈ Ham(T 2 × S2, ωk1,k2).

Thus, for each n = 2m ∈ 2Z+ satisfying m < k1
k2

we have a monomor-
phism

An : S1−−→Ham(T 2 × S2, ωk1,k2) ⊂ Sym0(T 2 × S2, ωk1,k2),

where the subscript 0 on a group denotes its connected component.
We simplify our notation following [McD01, Buş10] to some extent and
define

(9) Gk1,k2 = Sym(T 2 × S2, ωk1,k2) ∩Diff0(T 2 × S2).

Clearly, Sym0(T 2×S2, ωk1,k2) ⊂ Gk1,k2 . We claim that the circle actions
An belong to different conjugacy classes of maximal tori in Ham(T 2 ×
S2, ωk1,k2) where conjugacy is taken under the larger group Gk1,k2 . In
order to see this we employ the work of Buşe [Buş10] and consider the
rational homotopy group π1(Gk1,k2) ⊗ Q. Note that tensoring with Q
is defined here since the fundamental group of any topological group
is Abelian. Recall the ceiling function dae defined to be the smallest
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integer greater than or equal to a. Before stating the main result of
this section, we recall that Ham(T 2×S2, ωk1,k2) cannot contain a torus
of dimension greater than one.

Theorem 6.2. There are exactly dk1
k2
e conjugacy classes (under Gk1,k2)

of maximal tori in Ham(T 2 × S2, ωk1,k2). Each of these classes is rep-
resented by one of the circle subgroups A2m(S1), m = 0, . . . , dk1

k2
e.

Proof. First notice that since Ham(T 2 × S2, ωk1,k2) is normal in Gk1,k2

it makes sense to consider conjugacy under this larger group. Then by
Lemma 6.1 we have dk1

k2
e Hamiltonian circle actions given by A2m with

m = 0, · · · dk1
k2
e − 1. According to Lemma 4.3 of [Buş10] the induced

maps in rational homotopy [A2m] satisfy the equation

(10) [A2m] = m[A2] ∈ π1(Gk1,k2)⊗Q
form = 1, · · · , dk1

k2
e−1. Moreover, they are non-trivial in π1(Gk1,k2)⊗Q.

But elements of the vector space π1(Gk1,k2) ⊗ Q are invariant under
conjugacy giving altogether at least dk1

k2
e conjugacy classes of circles

(maximal tori) in Ham(T 2 × S2, ωk1,k2).
We now show there are no other such conjugacy classes. Suppose

there is another Hamiltonian circle action that does not belong to one
of the conjugacy classes described above. By Theorem 7.1 of [Kar99]
there is a compatible complex structure J ′ such that (T 2×S2, ωk1,k2 , J

′)
is Kähler. But then it must satisfy the bound of Lemma 4.1, and the
classification of complex structures [Ati57, Suw69] on ruled surfaces
implies that J ′ must belong to one on the list in Section 4.1 for which
the conjugacy classes have been determined. Since maximal tori in
Aut(ωk1,k2 , J

′) are unique up to conjugacy, this gives a contradiction.
(See also Chapter VIII of [Aud04]). �

7. Sasakian Structures on M5
k1,k2

Sasakian structures can be easily constructed on M5
k1,k2

by apply-
ing the Inversion Theorem 7.1.6 of [BG08] to the Kählerian struc-
tures on ruled surfaces of genus one discussed in Section 4.1. Con-
sider the symplectic 4-manifold (T 2 × S2, ωk1,k2) and construct the
principal S1-bundle π : M5

k1,k2
−−→T 2 × S2 over it corresponding to

the class αk1,k2 = [ωk1,k2 ] ∈ H2(T 2 × S2,Z). Let ηk1,k2 be a connec-
tion 1-form in M5

k1,k2
satisfying dηk1,k2 = π∗ωk1,k2 . By Boothby-Wang

(M5
k1,k2

, ηk1,k2) is a regular contact manifold with contact 1-form ηk1,k2
and contact bundle Dk1,k2 = ker ηk1,k2 . Choosing complex structures
J ∈ S0,τ ∪ {A0,τ} ∪ S2m,τ , we obtain Kähler structures (ωk1,k2 , J, hk1,k2)
on T 2 × S2 subject to the conditions that k1, k2 are relatively prime
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positive integers and m < k1
k2

and the Kähler metric5 is given by

hk1,k2 = ωk1,k2 ◦ (J ⊗ 1l). By taking the horizontal lift of J and ex-
tending it to a section Φ of the endomorphism bundle of TM5

k1,k2
by

imposing Φξk1,k2 = 0 where ξk1,k2 is the Reeb vector field of ηk1,k2 , we
obtain Sasakian structures (ξk1,k2 , ηk1,k2 ,Φ, g) on M5

k1,k2
.

7.1. Families of Sasakian Structures associated to Dk1,k2. We
easily obtain families of transverse complex structures by lifting the
families of complex structures from the base manifold. Nevertheless,
it is interesting to see how this relates to applying Kodaira-Spencer
deformation theory to the transverse geometry of the characteristic
foliation Fξ of a fixed Sasakian structure S = (ξ, η,Φ, g). So we can
apply Proposition 8.2.6 of [BG08] to our case and use the fact [Suw69]
that for any ruled surface Z we have H2(Z,Θ) = 0 where Θ is the
sheaf of germs of holomorphic vector fields on Z. If ΘFξ denotes the
sheaf of germs of transverse holomorphic vector fields on the Sasakian
circle bundle M5

k1,k2
over Z, the aforementioned proposition gives the

exact sequence

(11) 0−−−→H1(Z,Θ)−−−→H1(M5
k1,k2

,ΘFξ)−−−→H0(Z,Θ)−−−→0.

So the transverse holomorphic deformations on M5
k1,k2

arise in two
distinct ways, first from the holomorphic deformations of the base,
and second from the holomorphic symmetries of the base. The first
inclusion map is the differential of the lift of a complex structure
Ĵ ∈ S0,τ ∪ {A0,τ} ∪ S2m,τ to a strictly pseudoconvex CR structure
(Dk1,k2 , J) on M5

k1,k2
. Extending J to the endomorphism Φ by de-

manding Φξ = 0 gives families of Sasakian structures with the same
Reeb vector field ξ. As mentioned above the inverse to the Boothby-
Wang construction (cf. Theorem 7.1.6 of [BG08]) guarantees that these
structures are Sasakian with underlying CR structure (D, J). In fact
they all share the same contact 1-form η. By abuse of notation we
will also use S0,τ ∪ {A0,τ} ∪ S2m,τ as the local parameter space for the
transverse complex structures, writing J ∈ S0,τ ∪ {A0,τ} ∪ S2m,τ .

The relation with infinitesimal symmetries is more involved. In order
that a holomorphic vector field on Z give Sasakian deformations of
Sasakian structures it is necessary that it also be Hamiltonian which
means in our case that it be one of the circle actions discussed in Section
6. For it is precisely the Hamiltonian Killing vector fields X̂ that lift to
an infinitesimal automorphism of the Sasakian structure by Corollary

5The opposite convention to that usually used in Kählerian geometry is typically
used in Sasakian geometry, namely, that ω ◦ (J ⊗ 1l) is positive.
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8.1.9 of [BG08]. Let us see exactly how a Hamiltonian Killing vector
field lifts.

Lemma 7.1. Let M be a quasiregular Sasakian manifold with Sasakian
structure S = (ξ, η,Φ, g) and let π : M−−→Z be the orbifold Boothby-

Wang map to the Kähler orbifold Z with Kähler form ω. Let X̂ be a
vector field on Z leaving both the Kähler form ω and the complex struc-
ture J invariant. Then X̂ lifts to an infinitesimal automorphism X of
the Sasakian structure S that is unique modulo the ideal Iξ generated

by ξ if and only if it is Hamiltonian. Furthermore, if X̂ is Hamiltonian
with Hamiltonian function H satisfying X̂ ω = −dH, then X can be
represented by X̂h + π∗Hξ where X̂h denotes the horizontal lift of X̂.

Proof. The first claim is just Corollary 8.1.9 of [BG08]. To see that

the lift can be represented by X̂h + π∗Hξ we look for a smooth basic
function a, which exists by the first part, such that X = X̂h + aξ and
compute 0 = £Xη = X dη + d(η(X)) implying

da = −X̂h dη = −X̂h π∗ω = −π∗(X̂ ω) = dπ∗H.

So we choose a = H. �

The Reeb vector field together with the lift X = X̂h + η(X)ξ span
the Lie algebra t2 of a maximal torus T2 ∈ Con(M5

k1,k2
, η). So we obtain

deformed Sasakian structures by choosing another Reeb vector field ξ′

representing an element in the Sasaki cone κ(D, J).

7.2. Bouquets of Sasakian Structures. If J ∈ S0,τ then the Hamil-
tonian circle action leaving the Kähler structure (ωk1,k2 , J, hk1,k2) in-
variant is A0, whereas, if J ∈ S2m,τ and m < k1

k2
, the Hamiltonian

circle action leaving (ωk1,k2 , J, hk1,k2) invariant is A2m. Now according
to [Ler02b, Boy13] these Hamiltonian circle groups lift to maximal tori
of dimension two in the contactomorphism group Con(M5

k1,k2
, ηk1,k2).

Furthermore, applying Theorem 6.2 the corresponding circle groups
A2m′ and A2m lift to maximal tori in Con(M5

k1,k2
, ηk1,k2) that are non-

conjugate in the larger group Con(M5
k1,k2

,Dk1,k2) when 0 ≤ m′ < m <
k1
k2

. Since there are dk1
k2
e such Hamiltonian circle subgroups, there are

dk1
k2
e maximal tori of dimension two in the contactomorphism group all

containing the ray generated by the Reeb vector field ξk1,k2 . In fact,
they intersect precisely in this ray. Thus, using Theorem 6.2 we have

Proposition 7.2. The contactomorphism group Con(M5
k1,k2

,Dk1,k2) con-

tains at least dk1
k2
e distinct conjugacy classes of maximal tori of dimen-

sion 2 of Reeb type, and exactly dk1
k2
e conjugacy classes of maximal tori
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of dimension 2 of Reeb type that intersect in the ray of the Reeb vector
field ξk1,k2.

The second statement of Proposition 7.2 can be reformulated as

Corollary 7.3. The strict contactomorphism group Con(M5
k1,k2

, ηk1,k2)

contains exactly dk1
k2
e distinct conjugacy classes of maximal tori of di-

mension 2 of Reeb type.

As a consequence of this we have

Theorem 7.4. For each positive integer k2 the 5-manifolds M5
k1,k2

ad-
mit a countably infinite number of distinct contact structures Dk1,k2

labelled by k1 ∈ Z+ which is relatively prime to k2 each having a Sasaki
N-bouquet BN(Dk1,k2) with N = dk1

k2
e consisting of 2-dimensional Sasaki

cones intersecting in a ray. In particular, the manifold M5
k,1 ≈ T 2×S3

admits a countably infinite number of distinct contact structures Dk la-
belled by k ∈ Z+ each having a Sasaki k-bouquet of Sasakian structures
consisting of 2-dimensional Sasaki cones intersecting in a ray.

Proof. The fact that the contact structures Dk1,k2 and Dk′
1,k2

are in-
equivalent when k′1 6= k1 follows from Lemma 3.4. The statement
about the bouquets is a consequence of the discussion above and The-
orem 6.2. �

7.3. The Sasaki Cones. Here we determine the Sasaki cones associ-
ated to the different CR structures on M5

k1,k2
. Consider the Sasaki cone

κ(Dk1,k2 , J). As discussed at the end of Section 7.1 the circle actions on
M5

k1,k2
are determined by lifting the Hamiltonian circle actions A2m for

m = 0, · · · , dk1
k2
e− 1 on T 2×S2 horizontally to M5

k1,k2
and extending it

to leave the contact structure invariant. Let S = (ξ, η,Φ, g) be a regu-
lar Sasakian structure on a compact manifold M fibering over T 2× S2

with its Kähler form ω and projection map π : M−→T 2 × S2. Then
according to Lemma 7.1 a Hamiltonian Killing vector field X̂ lifts to an
element X ∈ aut(S) giving a circle action on M5

k1,k2
. We call the circle

action generated by X on M the induced Hamiltonian circle action on
M .

Lemma 7.5. Consider the Sasakian structure Sk1,k2 = (ξk1,k2 , ηk1,k2 ,Φτ , g)
on the 5-manifold M5

k1,k2
with Φτ |Dk1,k2

= Jτ for τ ∈ M. Let X2m

denote the infinitesimal generator of the induced Hamiltonian circle
action on M5

k1,k2
.
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(1) If

Jτ ∈ S0,τ t
d k1
k2
e−1⊔

m=1

S2m,τ ,

the Sasaki cone has dimension two and is determined by

κ(Dk1,k2 , Jτ ) = {aξk1,k2 + bX2m | a+ k2bη2(X2m) > 0},
where η2 is the standard contact form on S3.

(2) If J ∈ A0,τ the Sasaki cone κ(Dk1,k2 , J) has dimension one con-
sisting only of the ray of the Reeb vector field ξk1,k2.

Proof. Applying the Boothby-Wang construction to the symplectic man-
ifold (T 2 × S2, ωk1,k2) gives M5

k1,k2
as the total space of a principal S1

bundle over the symplectic manifold (T 2 × S2, ωk1,k2). Moreover, a
choice of connection 1-form ηk1,k2 in this principal bundle such that
dηk1,k2 = π∗ωk1,k2 where π : M5

k1,k2
−→T 2 × S2 is natural projection

defines a contact structure Dk1,k2 = ker ηk1,k2 on M5
k1,k2

. Letting ξk1,k2
be the fundamental vertical vector field on M5

k1,k2
corresponding to the

element 1 ∈ R identified as the Lie algebra of S1 gives the Reeb vector
field of ηk1,k2 . From our construction in Section 3 we have a commuta-
tive diagram

(12)

N3 × S3

↘y M5
k1,k2

↙
T 2 × S2 ,

where the vertical arrow is the natural T 2-bundle projection map gen-
erated by the vector fields

(13) L =
1

2k1

∂z −
1

2k2

ξ2, ξk1,k2 =
1

2k1

∂z +
1

2k2

ξ2.

Here ξ2 is the Reeb vector field of η2 the standard contact form on S3.
The vector field L generates the circle action of the southeast arrow,
and ξk1,k2 generates the circle action of the southwest arrow, and it is
the Reeb vector field of ηk1,k2 . Note that on N3 × S3 the 1-form ηk1,k2
takes the form

(14) ηk1,k2 = k1(dz − ydx) + k2η2.

Now choose a compatible complex structure Ĵτ on T 2 × S2 as de-
scribed in Section 4. We lift this to a complex structure Jτ in the
contact bundle Dk1,k2 . Since (ωk1,k2 , Ĵτ ) is Kähler, the lifted structure
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Sk1,k2 = (ξk1,k2 , ηk1,k2 ,Φτ , g), where Φτ extends Jτ by setting Φτξk1,k2 =

0, is Sasakian. If X̂ is a Hamiltonian Killing vector field that is holo-
morphic with respect to Ĵτ then by Lemma 7.1 it lifts to an infinitesimal
automorphism X of the Sasakian structure S. If Jτ is in S0,τ or S2m,τ

for m = 1, · · · , dk1
k2
e − 1, then X = X2m is the induced Hamiltonian

Killing vector field on M5
k1,k2

. Since the Reeb vector field is in the cen-
ter of aut(S), the Sasaki cone κ(Dk1,k2 , Jτ ) has dimension two and is
determined by

0 < ηk1,k2(aξk1,k2 + bX2m) =
a

2
+
a

2
+ bηk1,k2(X2m) = a+ k2bη2(X2m).

This proves (1).
For item (2) we see that Lemma 5.2 says that the complex structure

A0,τ has no Hamiltonian Killing vector fields. Thus, M5
k1,k2

with this
complex structure has no induced Hamiltonian circle action, and it
follows that for J ∈ A0,τ the Sasaki cone κ(Dk1,k2 , J) has dimension
one. �

The Hamiltonian Killing vector fields referred to in this lemma are
induced from the vector fields Hi, i = 1, 2 on S3 that generate a max-
imal torus in the automorphism group U(2) of the standard Sasakian
structure on S3. For future use we give these in terms of the standard
coordinates on C2

(15) Hi = i(zj∂zj − z̄j∂z̄j).

8. Extremal Sasakian Structures

The main result in this section involves lifting our extremal Kähler
metrics to extremal Sasaki metrics via the Boothby-Wang construction.
We then deform in the Sasaki cone to obtain quasiregular Sasakian
structures which project to Kähler orbifolds which in turn we show
have extremal representatives. Then the Openess Theorem of [BGS08]
shows that extremal structures exhaust the entire Sasaki cone. As in
[Boy13, Boy11b] this will give rise to bouquets of extremal Sasakian
structures.

Given a Sasakian structure S = (ξ, η,Φ, g) on a compact manifold
M2n+1 we deform the contact 1-form by η 7→ η(t) = η+ tζ where ζ is a
basic 1-form with respect to the characteristic foliation Fξ defined by
the Reeb vector field ξ. Here t lies in a suitable interval containing 0
and such that η(t) ∧ dη(t) 6= 0. This gives rise to a family of Sasakian
structures S(t) = (ξ, η(t),Φ(t), g(t)) that we denote by S(ξ, J̄) where
J̄ is the induced complex structure on the normal bundle ν(Fξ) =
TM/Lξ to the Reeb foliation Fξ which satisfy the initial condition
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S(0) = S. On the space S(ξ, J̄) we consider the “energy functional”
E : S(ξ, J̄)−→R defined by

(16) E(g) =

∫
M

s2
gdµg,

i.e. the L2-norm squared of the scalar curvature sg of the Sasaki metric
g. Critical points g of this functional are called extremal Sasakian met-
rics. Similar to the Kählerian case, the Euler-Lagrange equations for
this functional says [BGS08] that g is critical if and only if the gradi-
ent vector field Jgradgsg is transversely holomorphic, so, in particular,
Sasakian metrics with constant scalar curvature are extremal. Since
the scalar curvature sg is related to the transverse scalar curvature sTg
of the transverse Kähler metric by sg = sTg − 2n, a Sasaki metric is
extremal if and only if its transverse Kähler metric is extremal. Hence,
in the regular (quasi-regular) case, an extremal Kähler metric lifts to
an extremal Sasaki metric, and conversely an extremal Sasaki metric
projects to an extremal Kähler metric.

Note that the deformation η 7→ η(t) = η + tζ not only deforms the
contact form, but also deforms the contact structure D to an equivalent
(isotopic) contact structure. So when we say that a contact structure D

has an extremal representative, we mean so up to isotopy. Deforming
the Kähler form within its Kähler class corresponds to deforming the
contact structure within its isotopy class. It is convenient to restrict
the class of isotopies. Let N(T) denote the normalizer of the maximal
torus T in Cr(D, J), and let SN(T)(ξ, J̄) denote the subset of S(ξ, J̄) such
that the basic 1-form ζ is invariant under N(T). We refer to an isotopy
obtained by a deformation of the contact structure with ζ ∈ SN(T)(ξ, J̄)
as an N(T)-isotopy and we denote the N(T)-isotopy class of such con-
tact structures by D̄. As in Lemma 2.3 of [Boy11b] it follows from a
theorem of Calabi [Cal85] that any extremal representative will lie in
SN(T)(ξ, J̄). Notice also that under a choice of isomorphism ν(Fξ) ≈ D,
J̄ is isomorphic to J . Next we have

Lemma 8.1. The Sasaki cone κ(D, J) depends only on the N(T)-
isotopy class D̄.

Proof. Let (D, J) and (D′, J ′) be connected by an N(T)-isotopy. Then
the Lie algebras t and t′ actually coincide since they are maximal and
invariant under N(T). Thus, the unreduced Sasaki cones t+ and (t′)+

coincide. But all vector fields in these cones are also invariant under
the Weyl group W = N(T)/T. Thus, the reduced Sasaki cones κ(D, J)
and κ(D′, J ′) coincide. �
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This lemma allows us to say that a contact structure D has an ex-
tremal representative by which we mean that it is N(T)-isotopic to a
contact structure with a compatible extremal Sasakian metric. Notice
also that under a transverse homothety extremal Sasakian structures
stay extremal, and a transverse homothety of a CSC Sasakian structure
is also a CSC Sasakian structure. This is because under the transverse
homothety S 7→ Sa the scalar curvature of the metric ga is given by
(cf. [BG08], page 228) sga = a−1(sg + 2n)− 2n.

In the case where the complex structure J comes from S0,τ tm S2m,τ ,
we see from Lemma 7.5 that for any element of the Sasaki cone κ(Dk1,k2 , J)
we must have 0 < a+bk2|z2|2. In this case the Sasaki cone is determined
by the conditions

(17) a > 0, a+ bk2 > 0.

Similar to Section 4, let Sn denote P(O ⊕ L) → T 2, where L is a
holomorphic line bundle on T 2 of degree n. We now have

Lemma 8.2. If a and b are integers with b 6= 0 satisfying conditions
(17), the quotient of (M5

k1,k2
, J) by the circle action generated by the

Reeb vector field Rab = aξk1,k2 + bH2 is (Sn,∆pq) with branch divisor

∆pq = (1− 1

p
)En + (1− 1

q
)E∞,

where p = a, q = a+ k2b, and n is some integer determined by J , p, q,
k1 and k2.

Proof. We want to identify the quotient of N× S3 by the 2-torus gen-
erated by the vector fields L and Rab given in coordinates by

(18) L =
1

2k1

∂z −
1

2k2

ξ2, Rab =
a

2k1

∂z +
a

2k2

H1 +
a+ 2k2b

2k2

H2

where Hi is given by Equation (15).
The quotient by the circle generated by L is M5

k1,k2
. So we have the

commutative diagram

(19)

N3 × S3

↘y M5
k1,k2

↙
Ba,b

where by [BG00a] Ba,b is a projective algebraic orbifold, and the south-
west arrow is the projection of the S1-orbibundle generated by Rab. For
(x, y, z; z1, z2) ∈ N × S3 we let [x, y, z; z1, z2] denote the corresponding
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class in Ba,b under the T 2 action. If (x′, y′, z′; z′1, z
′
2) is another point of

N× S3 representing the same class, Equation (18) implies that x′ = x
and y′ = y. Thus, we have a natural projection ρ : Ba,b−−→T 2. More-
over, one easily sees that

(20) Rab ≡
1

k2

(pH1 + qH2) mod IL

where IL denotes the ideal generated by L. So the fibers of ρ are
identified with the quotient of S3 by the corresponding weighted circle
action generated by Rab on M5

k1,k2
, namely the weighted projective line

CP(p, q). Moreover, the orbifold singular locus comes from the two
points [1, 0] and [0, 1] in the fibers CP(p, q) with isotropy Zp and Zq,
respectively. The former is identified with zero section En and the latter
with the infinity section E∞. Thus, the orbifold Ba,b can be represented
as a weighted projectization of a rank two vector bundle O⊕L fibering
over T 2 with fibers CP(p, q) where the degree of L is an integer n, that
is, Ba,b is identified with the nth orbifold pseudo-Hirzebruch surface
Ba,b = (Sn,∆pq). �

Remark 8.3. One can actually determine n in terms of the integers
p, q, k1, k2, but we do not need it here. We shall do so in the sequel
[BTF12] at least in the case that k2 = 1.

Since all the complex structures in S0,τ tm S2m,τ admit extremal
Kähler metrics in every Kähler class, we know that the regular Sasakian
structures also admit extremal Sasaki metrics, and only for complex
structures in S0,τ do we get CSC Sasaki metrics. We also know from
[BDB88, Fuj92] that the one dimensional Sasaki cone associated to the
non-split complex structure admits no extremal Sasaki metric. Thus, in
order to complete the proof of Theorem 1.1 we need to further consider
the complex structures in S0,τ and S2m,τ for m = 1, · · · , dk1

k2
e − 1 for

the non-regular elements of the Sasaki cones. Essentially we need to
establish

Theorem 8.4. For the transverse complex structure
J ∈ S0,τ tm=1,··· ,d k1

k2
e−1

S2m,τ on M5
k1,k2

every member of the Sasaki cone

κ(Dk1,k2 , J) admits extremal Sasaki metrics.

Proof. By the Openness Theorem of [BGS08] it is enough to show that
every quasi-regular ray in the Sasaki cone admits extremal Sasaki met-
rics and further by the homothety invariance of extremality we just
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need to show that one quasi-regular Sasaki structure in each quasi-
regular ray admits an extremal Sasaki metric. In the next two sub-
sections we will first determine the orbifold Kähler quotients of such
Sasaki structures

8.1. The m = 0 case. When the complex structure is J ∈ S0,τ on
T 2 ×ρ CP1 = Z, Suwa [Suw69] shows that for ρ 6= id, H0(Z,ΘZ) has
dimension two. In a local coordinate chart (w, ζ) on U × CP1 with
U = T 2 − {p1, p2} where p1, p2 are distinct points of T 2, a basis for
H0(Z,ΘZ) takes the form

ζ∂ζ , ∂w +
(
Z(w − p1)− Z(w − p2)

)
ζ∂ζ ,

where ζ is an affine coordinate on CP1 and Z is the Weierstrass zeta
function. Neither the real nor imaginary part of the second vector field
is Hamiltonian; however, the imaginary part of ζ∂ζ is a Hamiltonian
Killing vector field and generates a Hamiltonian circle action. If we
take the vector field K̂ = 4Im ζ∂ζ we see that the Hamiltonian is
H = 1

1+|ζ|2 . In homogeneous coordinates (z1, z2) with ζ = z1
z2

on CP1

we have H = |z2|2
|z1|2+|z2|2 , so pulling back to M5

k1,k2
gives π∗H = |z2|2.

So by Lemma 7.1 the Hamiltonian Killing vector field on M5
k1,k2

is

X0 = K̂h + |z2|2ξk1,k2 mod the ideal generated by L. A straightforward
calculation shows that X0 = H2 and this is also the Hamiltonian Killing
vector field for ρ = id. Thus, from Lemma 8.2 the quotient orbifolds
in the quasi-regular case have the form (Sn,∆pq) for some integer n.

8.2. The m > 0 case. The discussion begins as in the degree zero case
However, in this case the dimension of H0(Z,ΘZ) is 2m + 1 [Suw69]
and in local coordinates (u, ζ) is spanned by ζ∂ζ , u

2mζ2∂ζ together
with 2m holomorphic vector fields involving the Weierstrass ℘ function
and its first 2(m − 1) derivatives. As before K̂ = 4Imζ∂ζ generates
the Hamiltonian circle action which in terms of homogeneous coordi-
nates on the fibers is (w, [z1, z2]) 7→ (w, [z1, λz2]). With respect to this
complex structure the Kähler structure on T 2 × S2 is taken to be that
described explicitly by Equations (5)-(8) in Section 5. Moreover, the
complex structure lifts to a transverse complex structure and CR struc-
ture (Dk1,k2 , J2m) on M5

k1,k2
, and it follows from Equation (20) and the

definition of p and q that the induced Hamiltonian Killing vector field
on M5

k1,k2
is again represented by H2. Thus, the Sasaki cone is exactly

the same as in the previous case. It is represented by the set of all
elements in t+

2 of the form aξk1,k2 + bH2 where a, b satisfy conditions
(17). As in Lemma 8.2 we set p = a and q = a+ bk2. For p and q pos-
itive integers the Reeb vector field aξk1,k2 + bH2 = pH1 + qH2 mod IL
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generates a locally free S1 action, and by Lemma 8.2 its quotient is the
orbifold (Sn,∆pq) for some integer n now determined by m as well as
p, q, k1 and k2.

8.3. Existence of Extremal Kähler metrics on (Sn,∆pq). To fin-
ish the proof of Theorem 8.4 we will now show that for any n ∈ Z
and any pair of co-prime positive integers p, q, every Kähler class on
(Sn,∆pq) admits an extremal Kähler metric. Without loss of generality
we may assume n ≥ 0.

First let us consider the case n = 0. From Section 4 we know that
Sn may be described as T 2 ×ρ CP1, where ρ lies in a circle. Thus
(Sn,∆pq) may be viewed as the as a complex orbifold T 2 ×ρ CP(p, q),
where CP(p, q) denotes the weighted projective space. As algebraic
varieties T 2 ×ρ CP1 and T 2 ×ρ CP(w1, w2) are isomorphic for each
homomorphism ρ; however, the latter has branch divisors along E0

and E∞ with ramification index p and q, respectively, making them
inequivalent as orbifolds. It is often convenient to view such orbifolds
as pairs; the former has trivial orbifold structure and is written as
(T 2 ×ρ CP1, ∅), whereas the latter is written as (T 2 ×ρ CP1,∆) with
branch divisor

∆ = (1− 1

p
)E0 + (1− 1

q
)E∞.

Then the identity map (as sets)

1l : (T 2 ×ρ CP1,∆)−−−→(T 2 ×ρ CP1, ∅)
is a Galois covering map with trivial Galois group, and the inequivalent
orbifolds (T 2×ρ CP1, ∅) and (T 2×ρ CP1,∆) have the same underlying
complex structure. The employment of such Galois orbifold covers orig-
inated in [GK07] and was subsequently exploited in [Boy11a, BP12].
We will exploit this point of view to treat the case n > 0 as well.

The scalar curvature of the T 2 factor vanishes, and for weighted
projective spaces it was computed in [BGS08]. Moreover, weighted
projective spaces are known [Bry01, DG06] to admit extremal Kähler
metrics. Hence, T 2×ρCP(p, q) admits (local) product extremal Kähler
metrics in every Kähler class which have constant scalar curvature if
and only if p = q.

Now let us take care of the case n > 0. Here again we have the
identity map

1l : (Sn,∆)−−−→(Sn, ∅).
The extremal Kähler metrics for (Sn, ∅) were given in Section 5 where
the “canonical” structure is determined by taking Θ(z) = 1 − z2. To
describe the extremal metrics for (Sn,∆pq) we adobt the discussion in
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Section 1.3 of [ACGTF08a] to the orbifold setting as in Section 1.5 of
[ACGTF04]. The “canonical” structure (giving the Abreu-Guillemin
metric on the fibers, cf. [Abr01]) is determined by the function

(21) Θc(z) =
2pq(1 + z)(1− z)

p2q(1− z) + q2p(1 + z)
,

where we assume that p and q are relatively prime positive integers.
Now the conditions (8) on Θ are replaced by

(i) Θ(z) > 0, −1 < z < 1, (ii) Θ(±1) = 0,(22)

(iii) Θ′(−1) = 2/p, Θ′(1) = −2/q.

It is easy to check that Θc of Equation 21 satisfies these conditions.
However, the metric obtained from Θc is not extremal. We obtain
extremal Kähler metrics from Proposition 1 in [ACGTF08a] by defining
the function F (z) = Θ(z)(1 + rz). We see that g is extremal exactly
when F (z) is a polynomial of degree at most 4 and F ′′(−1/r) = 0.
Together with the endpoint conditions of (22) this implies that F (z)
must be given by

(23) F (z) =
(1− z2)h(z)

4pq(3− r2)
,

where

h(z) = q(6− 3r − 4r2 + r3) + p(6 + 3r − 4r2 − r3)

+ 2(3− r2)(q(r − 1) + p(1 + r))z

+ r(p(3 + 2r − r2)− q(3− 2r − r2))z2,

and −1 < z < 1. We can then check that Θ(z) as defined via F (z) above
satisfies all the conditions of (22). Thus for any pair (p, q) of positive
integers and for all r ∈ (0, 1) we have an extremal Kähler metric. Since
up to rescaling the set {r ∈ (0, 1)} still exhausts the Kähler cone, we
are done. �

Remark 8.5. Notice that the parameter r is also determined via the
Sasakian quotient by m, p, q, k1 and k2. Experimental data indicate
that for some choices of these data, we arrive at an r such that h(z)
is a linear function and hence, according to [ACGTF08a], the corre-
sponding Kähler and Sasakian extremal Kähler metrics have constant
scalar curvature. We treat this issue carefully in [BTF12]. Note that
here F ′(z) does not have a double root at z = −1/r, which is the cri-
terion for a Kähler-Einstein metric in this set-up (see e.g. Section 3 of
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[ACGTF08b]). There are no Kähler-Einstein metrics on T 2 × S2 nor
regular Sasaki-Einstein metrics on T 2 × S3.
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