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ABSTRACT. This paper describes certain hypercomplex manifolds as circle V-bundles over
3-Sasakian orbifolds. Our techniques involve both 3-Sasakian and hypercomplex reduction.
In general dimension most of the quotients exist only as hypercomplex orbifolds; however, we
construct a large family of compact simply connected smooth 8-manifolds whose second integral
homology group is free with arbitrary rank. We also construct hypercomplex manifolds in any
dimension 4n whose second Betti number is either 1 or 2.

Introduction

A hypercomplex structure on a smooth manifold M*" is a G-structure where G =
GL(n,H) that admits a necessarily unique torsion free connection, the Obata connection
[Bon,Ob]. In particular, every such M has three complex structures I,.J, and K which
satisfy the relations of the algebra of imaginary quaternions. Compact hypercomplex
manifolds M of dimension 4 (‘quaternionic curves’) have been classified [Boy|. Such M
are either hyperkihler, in which case they are either tori 7% or K3 surfaces, or M is
a quaternionic Hopf surface [Ka]. Thus, both the geometry and topology of compact
hypercomplex 4-manifolds are quite restrictive. Every such manifold is locally conformally
hyperkahler [Boy|, and has Kodaira dimension —oco or 0. Topologically the second Betti
number is either 0 or 22, and every compact simply connected hypercomplex 4-manifold
is hyperkahler, in fact a K3 surface. By contrast for compact hypercomplex manifolds
of dimension 8 (‘quaternionic surfaces’) and higher the situation is dramatically different.
Very recently several new constructions involving compact hypercomplex manifolds that
are not hyperkahler have made this difference apparent.

In the case of compact hyperkahler geometry all known examples of irreducible hy-
perkéhler manifolds are deformation equivalent [Huy] to one of two possibilities, the Hilbert
scheme of points on a K3 surface, or a generalized Kummer variety. Both of these ex-
amples are due to Beauville [Bea], and both are simply connected. Outside the world of
hyperkahler geometry the simplest examples of hypercomplex manifolds are the ones that
are locally conformally hyperkahler. All of these are generalized Hopf manifolds of Vais-
man [Vai], and they admit a natural one-dimensional foliation which when the leaves are
compact has a compact 3-Sasakian orbifold as its space of leaves [OrPi]. In particular, all
such homogeneous examples have been classified [OrPi] by using the classification of ho-
mogeneous 3-Sasakian manifolds in [BGM2]. The connection to 3-Sasakian geometry also
gives large families of examples of inhomogeneous hypercomplex manifolds constructed
as flat bundles over 3-Sasakian manifolds S. This is done by taking S to be any of the
3-Sasakian manifolds recently constructed in [BGM3, BGMR] or a quotient thereof, and
by choosing a homomorphism p : 71(S)—S!. However, these spaces are never simply
connected.

The case when M is not locally conformally hyperkéhler is perhaps the most intrigu-
ing. Very little is known in general about such spaces. A class of homogeneous hyper-
complex manifolds that are not locally conformally hyperkahler was studied by physicists
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interested in supersymmetric o-models. In this regard, Spindel et. al. [SSTP] classified
compact Lie groups which admit hypercomplex structures. Using different methods, Joyce
[Joy1] later recovered this [SSTP] classification and developed a theory of homogeneous hy-
percomplex manifolds. He also introduced a construction he called hypercomplex quotient
[Joy2] which is a variant of the hyperkéhler reduction of [HKLR]. The authors [BGM4]
used this reduction to study hypercomplex structures on the complex Stiefel manifold V2([,:n
of 2-frames in C". The homogeneous hypercomplex structure on this complex Stiefel man-
ifold was first discussed by Joyce in [Joyl] and later as a submanifold of a quaternionic
vector space by Battaglia [Bat]. However, we studied families of hypercomplex structures
on an most of which are inhomogeneous, and investigated the equivalence problem. The
automorphism group of the hypercomplex structures given in [BGM2, BGM4] all contain
an n-torus T" with an additional SU(2) rotating the hypercomplex structures. The quo-
tient construction can be generalized to give n2-parameter family of structures. This was
observed by Pedersen and Poon [PP] who also proved that this family is complete. They
developed a deformation theory of hypercomplex structures allowing them to compute the
dimension of the moduli space in a neighborhood of the homogeneous hypercomplex struc-
ture [PP]. In dimension 8, the Stiefel manifold Vz% is just SU(3) and the hypercomplex
geometry of this group manifold has been seen in several different contexts. Until the work
of Joyce [Joy1] this was the only simply connected example that is not hyperkéhler.

Joyce introduced yet another method of generating simply connected examples. In
dimension 8 the construction can be described as follows: Let us consider any compact
self-dual 4-manifold N and take the associated quaternionic line bundle of N which is
known to be hypercomplex [S]. This bundle can be compactified and then twisted with
another U(1)-bundle (an instanton) to produce new simply connected hypercomplex 8-
manifolds. This construction has recently received more systematic study by Pedersen,
Poon and Swann [PPS]. They proved that any hypercomplex manifold with a certain type
of a free U(2) action, up to Z/2 cover, must arise this way. When N = CP?2, twisting with
the primitive instanton bundle over CP?, gives the homogeneous hypercomplex geometry
of SU(3)/Zy. The authors give a detailed discussion of the N = 2CP? case showing that
there are twists giving simply connected 8-manifolds. We are not aware of any study of
the hypercomplex structures in the k£ > 2 case, although, in principle, one could use the
explicit description of the self-dual geometry of kCP? due to LeBrun [LeB] and carry it
out.

This paper presents a different approach and a bundle construction which employs the
relation to 3-Sasakian geometry and 3-Sasakian reduction. We believe that our method
has several important advantages. First, it appears that our method is a natural extension
of the locally conformally hyperkahler geometry which is just a special case for us. Then
we can utilize all the recent results on compact 3-Sasakian 7-manifolds [BGMR, BGM3,
Bi]. Finally, our construction is very explicit and gives some insight into the world of
compact simply connected hypercomplex 8-manifolds.

In the first half of this paper we describe hypercomplex structures on circle V-bundles
H(S) over 3-Sasakian orbifolds S, and study some of their properties. We show that these
hypercomplex structures define a unique complex structure which is never Kahler. In fact,
H(S) cannot admit any symplectic structure. Moreover, they are (in general, singular)
holomorphic fibration whose fibers are elliptic curves over a base space that is a Q-Fano



projective variety, namely the twistor space of S described in [BG]. As a complex analytic
manifold H(S) has vanishing geometric genus, and the algebraic dimension a(H(S)) is
either 2n — 1 or 2n; if 71 (H(S)) is finite, a(H(S)) must be 2n — 1. When the bundle H(S)
is flat then H1(H(S),Q) = Q and H(S) is locally conformally hyperk&hler.

The second half of the paper contains our main results, where we construct hypercom-
plex toral quotients. This is done in arbitrary dimension in section 3 by applying Joyce’s
hypercomplex reduction [Joy2] to the hypercomplex Stiefel manifolds N (p) obtained pre-
viously [BGM2]. We explicitly construct hypercomplex orbifolds as toral quotients in
every allowable dimension. However, two problems arise, the first theoretical, and the
second technical. First, if we demand that the orbifolds be smooth manifolds then there
will be bounds on both the second Betti number for a large enough fixed dimension and
on the dimension for a large enough fixed second Betti number. This was described in
the 3-Sasakian context in [BGM3]. Second, the techniques [BGMR]| that we have devel-
oped for understanding the topology of such quotients are limited so far to the case when
dim H(S) = 8. Indeed, in this regard we show in section 4 that our smooth hypercomplex
toral quotients of dimension 8 are simply connected and have no 2-torsion. In fact, so
far this is the only method we have for distinguishing the toral quotients H(S) from the
trivial bundle over S. In particular, we prove

THEOREM A: Consider the following matrix

b1 P2 .- Pk DPk+1 DPk+2

1 0 e a9 b2 C2
= 0 .

0 e 1 ag bk Ck

where a;, bj, c;,p; € Z. Let all k x k minor determinants of { be non-zero and assume that
ged(ag, by, ¢;) =1 for all i = 2,- - - k. Then, for each such Q) there exists a compact hyper-
complex 8-manifold H(S(Q2)) with w1 (H(S(2))) = 0 and mo(H(S(2))) = Hy(H(S(Q))) =
ZF~1. Furthermore, each H(S(S2)) has at least a real one parameter family of inequivalent
hypercomplex structures on it.

It is not difficult to see that for each k the conditions of this theorem can be satisfied.
For k = 1 Theorem A reproduces the hypercomplex structures on the Stiefel manifold
N (p1,p2,p3) ~ SU(3) discussed in [BGM2,BGM4]. These can be obtained as deforma-
tions [PP] of the homogeneous hypercomplex structure on SU(3). But for k£ > 1 there is
no homogeneous hypercomplex structure, and for large enough & the manifold H(S(2))
cannot be homotopy equivalent to any homogeneous space. Each H(S(Q)) has a T3 of
hypercomplex symmetries and there also is an SU(2) which rotates the two sphere of com-
plex structures. Topologically, for a given k > 1, the bundles H(S) have a lot in common
with twisted compact associated bundles over kCP2. The precise relation between the two
different constructions remains unclear. We only point out that our bundles H(S) do not
appear to have any free U(2)-action of the type considered in [PPS] which is a charac-
teristic property of any twisted associated bundle over a compact quaternionic manifold.
Our U(2) action described in section 2 is clearly of the same type but it is only locally
free, and for k£ > 1 it is never free regardless the choice of parameters (p, ;). One could,
however, view our construction as an orbifold version of the construction of [Joyl, PPS]
with the base space O being a compact self-dual Einstein orbifold constructed in [GN].
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As a corollary of Theorem A, we have

COROLLARY B: Let H(S(2)) be as in Theorem A, and assume that the 3-Sasakian quotient
S is smooth. Then for each positive integer | there are hypercomplex 8-manifolds H (2,1)
with m (H(Q,1)) ~ Z; and by(H(2,1)) = k — 1. Furthermore, each H(f2,1) has at least a
real one parameter family of hypercomplex structures.

As an immediate consequence of [BGMR, BGM3, Bi| and Theorem 4.1 below we get

COROLLARY C: There exist hypercomplex generalized Hopf manifolds H(S(2)) of di-
mensions 8,12 and 16 having any second Betti number by < 4. There exist hypercom-
plex generalized Hopf manifolds of the form H(S(2)) = S(2) x S! of dimension 8 with
1 (H(S(RQ))) = Z, and Ho(H(S(Q))) = Z* for any integer k. Furthermore, each of these
manifolds has a real one parameter family of inequivalent hypercomplex structures.

Our quotient construction also gives hypercomplex toral quotients of the same dimen-
sions. However, as mentioned above we have been successful in analyzing the topology
only in dimension 8. We certainly believe that these are all simply connected with possible
second Betti numbers 1,2 and 3. Our construction also gives hypercomplex manifolds of
dimension 4n with second Betti number either 1 or 2. We also believe that these are simply
connected with second Betti number 1.

ACKNOWLEDGMENTS: The authors thank Alex Buium for some helpful discussions. The
second author would like to thank Max-Planck-Institute in Bonn for support and hospi-
tality. He was there during part of the preparation of this work.

§1. Hypercomplex Circle Bundles over 3-Sasakian Orbifolds

We are interested in hypercomplex manifolds that are circle V-bundles over 3-Sasakian
orbifolds.

DEFINITION 1.1: An orbifold § is said to have an almost contact 3-structure if there are
vector fields £*, one forms n*, and (1, 1) tensor fields ®%, for a = 1,2, 3 that are invariant
under the action of all the local uniformizing groups of the orbifold and that satisfy the
conditions

na (gb) — 5ab,
1.3 @dé-b — _eabcgc
P° o ‘I)b _ ga ® nb — _eabc(pc _ (Sab]l.

If the almost contact 3-structure is a 3-Sasakian structure with respect to a metric g which
is invariant under all the local uniformizing groups, then § is called a 3-Sasakian orbifold.

REMARK 1.2: The condition of invariance of tensor fields under the local uniformizing
groups adopted here has quite strong consequences. It implies for example that each
stratum in the singular locus has a 3-Sasakian structure. This can be contrasted to the
case of both the twistor and quaternionic Kéhler orbifolds [BG,GL]. Here the invariance
condition is imposed on a certain bundle and the singular locus need not carry the original
structure.



We are particularly interested in the case when the total space of a circle V-bundle
over a 3-Sasakian orbifold is a smooth manifold. Let & be a 3-Sasakian orbifold with local
uniformizing systems {U,T’, ¢}. A circle V-bundle H(S) over S is described [Bal,Ba2] by
locally trivial bundles U x S over the local uniformizing neighborhoods together with a
map v — hy defined by

1.3 hu(7) (@, u) = (v~ 2, nu(7) () - w),

where v — 0y (v)(z) is a group homomorphism from T into the group of the bundle S?.

LEMMA 1.4: Let H(S) be a circle V-bundle over an orbifold S. The total space of H(S) is
a smooth manifold if and only if the homomorphism 7y is a monomorphism everywhere
onS.

PROOF: The orbifold charts on H(S) are given by open sets V of the quotients (U x S1)/ ~
with respect to the action 1.3. If ny is injective this action is free, so V is homeomorphic
to an open set of R"*! where n = dim S. Conversely, let z be in the singular locus of
the orbifold §. Then z is a fixed point of the local uniformizing group T'. If the map
v — nu(7y) has a non-trivial kernel K then K is a subgroup of I' which fixes (z,u). Hence,
in a neighborhood of x the quotient (U x S')/ ~ is locally homeomorphic to R**! /K. 1

Henceforth we shall refer to a V-bundle on an orbifold simply as a bundle unless we
wish to emphasize the orbifold aspects. Let H(S) be a circle bundle over a 3-Sasakian
orbifold S. At this stage we do not assume that the total space H(S) is a smooth manifold
but only an orbifold of a certain type. There is natural almost hypercomplex structure
on H(S) defined as follows: Let 7 : H(S) — S denote the natural projection and let § be
a Riemannian metric on H(S) that is invariant under the local uniformizing groups and
such that 7 : (H(S),§) — (S, g) is a Riemannian submersion. Let V; denote the vertical
subbundle of the tangent bundle TH(S) to H(S) and let = be a nowhere vanishing section
of V; that generates the S' action on H(S). The almost contact 3-structure on S allows
us to define an almost hypercomplex structure on H(S). This is done as follows. The
metric § on H(S) splits the tangent bundle TH(S) as TH(S) ~ H & V; and =, induces
an isometry between the horizontal vector space ’;ftp at a point p € H(S) and the tangent
space Ty (,)S. For any vector field X on &, we denote by X its horizontal lift to H (S), that

is, X is the unique basic vector field that is m-related to X. In particular, the three vector
fields £ generate a subbundle V3 of H that is isometric at every point to the bundle V5
on S. Let H denote the orthogonal complement to V3 in H, so that we have the further
splitting TH(S) ~ H® V1 = H® V3 ® Vs Since the ®* ’s are sections of End # @ End V3
on S they hft to sections ¢ of End # @ End Vs on H(S) defined on basic vector fields
by $X = $2X and extended to arbitrary sections of End H & End V; by linearity. We
further assume that § o and $° are invariant under the local uniformizing groups of H(S).
Hence, we can define endomorphisms Z% on TH(S) by

7°X = —3°X + 7*n%(X)E,
= _g )

1.5

[I]



where X is any horizontal vector field on H(S) (i.e., any section of 7). If this almost hy-
percomplex structure is integrable, we call this a compatible (with the 3-Sasakian structure
on S) hypercomplex structure on H(S). Every hypercomplex structure on H(S) considered
in this paper will be of this type.

Now the metric § is not necessarily hyperhermitian; however, it is easy to see that
by rescaling along the fibers of m by a factor of §(Z,Z)~! yields a hyperhermitian metric
which we denote by h. We shall refer to the pair (H(S),Z) as a framed circle bundle on S.

Now, given a framed circle bundle (H(S),E), the horizontal subbundle # defines a u(1)

connection on H(S) if and only if [2, X] is a section of 7 whenever X is, and it is direct
to prove

PROPOSITION 1.6: Let (H(S), E) be a framed circle bundle and let h be an hyperhermitian
metric on H(S). Then the following are equivalent:

(i) E is a Killing vector field with respect to h.
(ii) H defines a u(1) connection on H(S).
(iii) The two conditions hold:
(a) [2,6%] =0 foralla=1,2,3.
(b) [E, X] is a section of # whenever X is.

Next we examine the curvature of u(1) connections of a framed circle bundle (H(S), )
over a 3-Sasakian orbifold S. Let 7° denote the 1-form on H(S) that is dual to the vector
field = with respect to the hyperhermitian metric A, i.e., #°(X) = h(E, X) for any vector

field X on (H(S),Z). In the case that # defines a connection on (H(S),E), one sees that

A

7° is the connection 1-form of H. The curvature of this connection is the 2-form defined
by

1.7 w(X,Y) =di’(X,Y),

where X,Y are any vector fields on H(S). Now on a 3-Sasakian orbifold S the vector

fields £ form a basis for the Lie algebra su(2). However, in general, the horizontal lifts £
to (H(S),E) do not. Certain components of the curvature 2-form w are obstructions to
lifting the Lie algebra. A computation shows that

1.8 €9, €%] = 2¢%bede — w(£e, EY)E,
The following proposition is an immediate consequence of equation 1.8.

PROPOSITION 1.9: Let (H(S),ZE) be a framed circle bundle over a 3-Sasakian orbifold S

and suppose that the horizontal subbundle H defines a u(1) connection on H(S). Then
the following conditions are equivalent:

(i) The horizontal lifts £* generate the Lie algebra su(2).
(ii) The subbundle Vs of TH(S) is integrable.

(iii) The components w(£®, £Y) of the curvature of the u(1) connection on H(S) vanish.

More generally, if (H(S), E) is any framed circle bundle over a 3-Sasakian orbifold and
the horizontal subbundle # defines a u(1) connection on H(S) then equation 1.8 together
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with condition (iiia) of Proposition 1.6 imply that the rank four subbundle V, = V@V is
integrable and thus defines a four-dimensional foliation F4 on H(S). In the case that any
(and hence all) of the conditions of Proposition 1.9 are satisfied the splitting V4 = VsV,
as bundles gives also a splitting as foliations, namely, F4y = F; & F3. Let us assume for
simplicity that S is complete, hence, both § and H(S) are compact. Then we have the
identifications

H(S)/F =8 and H(S)/F1=0,

where O is the quaternionic Kahler orbifold associated to S and an orbifold commutative
diagram

HS) — S
1.10 l l
H(S)/Fs — O.

The leaves of the two vertical maps are of the form S3/T", where I is a finite subgroup of
SU(2). So the leaves of the foliation F4 are products S! x.S3/T. In the case that the generic
leaf has I' = identity or Zy, H(S) is a principal orbifold bundle over O with group SU(2) or
S0(3), respectively. The first vertical map is an S3/T orbifold bundle over H(S)/F3 and
one can show that the horizontal subbundle H @ V; defines an su(2) on H(S). However, a
similar result does not necessarily hold for the orbifold bundle H(S) — O. We have

PROPOSITION 1.11: Assume the hypothesis of Proposition 1.9 together with any (hence
all) of its conditions. Suppose further that the generic leaf of the foliation H(S)/Fy is a
Lie group G of the form U(2) or S x SO(3). Then the following are equivalent:

(i) The horizontal subbundle H defines a w(2) connection in the orbifold bundle H(S) —
0.

(ii) The components w~(£a, X) of the curvature of the u(1) connection in H(S) vanish for
any section X of H.

PROOF: Let X be a section of # that is basic with respect to the orbifold bundle H(S) —

O. Then, using the fact (see [BGM2]) that dA®(£?, X) = dn®(¢, X) = 0, one obtains the

equation

1.12 (€%, X] = [£%, X]* — w(£®, X)E,
where the superscript % denotes the horizontal lift to 7. The result follows from this

equation. 1

THEOREM 1.13: Let (H(S),Z) be a framed circle bundle over a 3-Sasakian orbifold S.
Then the almost hypercomplex structure defined by Equation 1.5 is integrable if and only
if the horizontal subbundle H on (H(S),ZE) defines a u(1) connection and the following
three conditions hold:

(i) w(é“,fb) =0 for any a,b=1,2,3.
(i) w(é“, f() =0 for all a = 1,2, 3 and any section X of H.
(ii) w(ci)“X, &)“f/) = w(X, f/) for all a = 1,2,3 and for any sections X,Y of H, where w

denotes the curvature 2-form of the connection 1-form 7°.
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REMARK 1.14: Propositions 1.9 and 1.11 show that conditions (i) and (ii) are equivalent
to the fact that the 1-form 7° defines the u(1) part of a u(2) connection in the orbifold
bundle H(S) over the quaternionic Kahler orbifold O. Condition (iii) of the definition
means that the curvature of this connection is of type (1,1) with respect to each almost
complex structure defined by a = 1, 2, 3.

PROOF OF THEOREM 1.13: Assuming that the horizontal subbundle # defines a (1)
connection on H(S), one computes the Nijenhuis tensor of the almost complex structures
Z*. Integrability follows then from the vanishing of this tensor by the Newlander-Nirenberg
theorem. Straightforward but tedious computations give for the non-identically zero com-
ponents:

N(X,Y) = (w(X,Y) —w(@*X,9°V))Z + (w(®°X,Y) + w(X, 2°Y))E%

|15 N (E%,€°) = (w(€h, £°) — e®e™w (€4, €9)) 2 — (€™ w(€%, €°) + w(E’, £%))E"
N*(X,€") = w(X, M8 + [w(@°X, ") — ™ (w (9" X, £%) + w(X, £)))E5
N(&,8) = w(€®,€%)E" + e w(€", €7)E,

and the result follows. ]

§2. Some Topological and complex Analytical Properties of H(S)

In this section we investigate some general properties of our circle bundles H(S).

LEMMA 2.1: Let H(S) be a compatible hypercomplex circle bundle over the 3-Sasakian
orbifold §. Then

(i) The fibers of H(S) are totally geodesic.
(ii)) The leaves of the foliation F, are totally geodesic.

(iii) The vector fields é L 52, 53, = are everywhere linearly independent Killing fields which
span the Lie algebra u(2). In particular, the Lie algebrai(H) of infinitesimal isometries
contains u(2).

(iv) The vector field Z® = B + i€® is nowhere vanishing and holomorphic with respect to
the complex structure Z®.

(v) If the 3-Sasakian orbifold S is complete, the complex structures in the two-sphere of
complex structures on H(S) are all equivalent. Hence, the hypercomplex structure
on H(S) defines a unique complex structure.

PRrOOF: The proof of (i) and (ii) are standard computations involving the O’Neill tensors
A and T (see [Bes]) and is left to the reader. [

To prove (iii) we first note that compatibility and Proposition 1.6 imply = is a Killing
vector field. Furthermore, Proposition 1.9 implies that the £* generate the Lie algebra

su(2). The linear independence is clear. We need to show that the vector fields £* are
Killing fields for all a = 1,2, 3. Now for any vector fields X,Y on H(S) we have

2.2 (Le)R(X,Y) = E*R(X,Y) — h([E®, X1, Y) — h(X, €%, Y]).



Let X and Y be sections of # which since Eéah is a tensor field we can take to be basic,

that is, the horizontal lifts of vector fields X and Y on S. Then h(X,Y) = gs(X,Y) and
£h(X,Y) = €%s(X,Y), so the right hand side of 2.2 vanishes since £% are Killing vector
fields on (S, gs). Now suppose that X is vertical which we can take to be ZE. Then again
the right hand side of equation 2.2 vanishes by Proposition 1.6 and Theorem 1.13. If Y
is also vertical we can take Y = Z. In this case the first term vanishes since h(E,=) = 1
and the last two terms vanish by (iiia) of Proposition 1.6. This proves that £* are Killing
vector fields.

(iv): The vector field Z* is clearly nowhere vanishing and is easily seen to be type
(1,0) with respect to the complex structure Z®. A type (1,0) vector field is holomorphic
if and only if its real part preserves the complex structure, that is, LzZ% = 0. We have

2.3 L=T® = —L2® + 2@ Lai® — [E,9] @ 7° — £* @ LA’

The last three terms vanish by Proposition 1.6. To see that the first term vanishes we
first notice that ®*X is the H component of V Xﬁ“ while the V1 component vanishes by
compatibility. Hence, we can write

2.4 Lz = L=(VE) = (L=V)E + V[, £2].

The last term on the right vanishes by Proposition 1.6, while the first term vanishes since
=, being a Killing vector field, is an infinitesimal affine transformation. This proves (iv).

To prove (v) we notice that, since S is complete, Theorem A of [BGM2| implies that
S is compact and, hence, H(S) is also compact. So the vector field Z® generates a global
Z*-holomorphic transformation on H(S). Thus it suffices to show that

2.5 L7.T0 = 24e20°TC,

To verify this identity we first notice that, since £¢ are Killing vector fields on S, they
are infinitesimal affine transformations on S. Now since S is 3-Sasakian, L¢a ®° = 2¢20¢¢
and this equation lifts to a similar equation with hats on H(S). This fact, together with
equation 2.4 above, implies that £z.®? = 2ievcde. A similar argument shows that the
remaining terms in the expression for Z¢ transform in the same way, verifying 2.5. This
proves (v) and hence the lemma. [

A well-known residue theorem of Bott [Bot] implies that a compact complex manifold
with a nowhere vanishing holomorphic vector field has zero Chern numbers. Thus we have

THEOREM 2.6: Let S be a complete 3-Sasakian orbifold and H a smooth manifold, then
the Chern numbers of H(S) all vanish. Thus, if {F}} is any multiplicative sequence of
Chern classes, then the F-genus of H(S) vanishes. In particular, the Todd genus, the A
genus, and Hirzebruch signature of H(S) all vanish.

REMARKS 2.7: Since, by (iv) of Lemma 2.1, all the complex structures in the hypercomplex
structure are equivalent, we do not distinguish between them. So there is no ambiguity
by not specifying the complex structure in Theorem 2.6. Theorem 2.6 also implies that
the Euler number vanishes, but this is true for any principal bundle.
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From now on we shall assume that S is complete, so that both S and H(S) are
compact. There are two important foliations on H(S) that are related to the hypercomplex
structure. First, we have the foliation F, discussed previously. The leaves of this foliation
have the form S! x $3/T', where T is a finite subgroup of SU(2) and the space of leaves is
the quaternionic Kahler orbifold O. We have

LEMMA 2.8: Each leaf L of the foliation F4 on H(S) is an elliptic Hopf surface of the form
S1 x §3 /T with respect to the hypercomplex structure I° restricted to L.

PROOF: The almost hypercomplex structure Z* on H(S) restricts to an almost hypercom-
plex structure on each leaf given by

It =-9+E@i* - 017",

where <i>§‘ denotes the tensor field ¢ restricted to the leaf L. This almost complex structure
is clearly integrable. Thus, L is one of the hypercomplex Hopf surfaces discussed in [Boy].

Now since the é“’s are the horizontal lifts of the 3-Sasakian vector fields £€* on &, the
projection 7 : H(S) — S restricted to L maps surjectively onto a leaf S3/T" of the foliation
F on 8. Moreover, this map is just projection onto the second factor in L = St x S3/I.

Furthermore, the vector field £ is a generator of a circle subgroup U(1) in SU(2) and
this subgroup acts locally freely on S3/I'. It is easy to see that this action preserves the
complex structure given by Z;'. Hence, we have an elliptic foliation

E — S'x 83T

2.9 l

P!/T.

The second foliation on H(S) is the holomorphic foliation F» generated by Z¢ =

=4 ié“. Without loss of generality we take a = 1. We want to identify the space of leaves
H(S)/F> with the twistor space Z of the 3-Sasakian orbifold S with its induced complex
structure [BG]. As spaces this follows from the commutative diagram

H(S)
st E
2.10 N .
S N z.

We need to identify the complex structure on H(S)/F2 ~ Z induced by the holomor-
phic foliation F» with the standard complex structure on the twistor space Z. It suffices
to identify the almost complex structures since both structures are integrable. The al-
most complex structure on Z induced by the foliation F3 is the pro’]ectlon of the almost
complex structure Z' restricted to the horizontal subbundle Hd V3 , Where V3 is the
two-dimensional subbundle of V3 generated by the vector fields § ‘2 and &°. ‘3. This restricted
almost complex structure is just —&'. Under the natural projection, m : H(S) — &, this
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tensor field projects to the tensor field —®! on S. But from [BG] —® defines a CR-structure
on the horizontal space kern! and this induces the complex structure on Z. Hence, the
two complex structures coincide. Then the results of [BG] imply

THEOREM 2.11: Let H(S) be a compatible circle bundle over a 3-Sasakian orbifold S.
Then H(S) is holomorphically foliated by elliptic curves and the space of leaves Z is a
Q-factorial Fano contact variety with a Kahler-Einstein metric of positive scalar curvature.

Topologically the circle bundles on S are classified by H?(S,Z). For a given bundle
H(S) we can change the framing of the circle by & — AZ for A € R*. This does not
alter the bundle, but it does change the hypercomplex structure. In fact, the proof of
Proposition 4.6 of [BGM2] gives

PROPOSITION 2.12: Each circle bundle H(S) over S has a real one-parameter family of
inequivalent hypercomplex structures.

REMARK 2.13: The inequivalent hypercomplex structures described in Proposition 2.12
determine inequivalent complex structures on H(S).

Next we describe some topological information about circle bundle H(S) over 3-
Sasakian orbifolds §. When § is a smooth manifold it is well-known that circle bundles
on S are classified by elements of H?(S,Z). In the case that S and H(S) are orbifolds,
the theory is due to Haefliger and Salem [Hae,HS]. Let us briefly describe the orbifold
cohomology and homotopy groups [Hae]. Let X be an orbifold of dimension n, and let
P denote the bundle of orthonormal frames on X. It is a smooth manifold on which
the orthogonal group O(n) acts locally freely with the quotient X. Let EO(n)— BO(n)
denote the universal O(n) bundle. Consider the diagonal action of O(n) on EO(n) x P
and denote the quotient by BX. Now there is a natural projection of BX onto X with
generic fiber the contractible space EO(n), and Haefliger defines the orbifold cohomology,
homology, and homotopy groups by

2.14 H!

orb

(X,Z)= H(BX,7), H{®(X,Z)= H;(BX,Z), n{"®X)=m;(BX).

This definition of 7" is equivalent to Thurston’s better known definition, and when X
is a smooth manifold these orbifold groups coincide with the usual groups. Now with
this in hand for the orbifold category, the circle V-bundles over S are classified [HS] by

H?2 (8, 7). Of course, rationally there is no difference since H? ;(S,Z)®Q ~ H'(S,Z)®Q.
For example, the ratlonal Gysin sequence

o —>Hp(87 Q) _>Hp+2 (87 Q) —>Hp+2 (H(S)a Q) —>Hp+1(85 Q)—)

applies. Combining this with known results of 3-Sasakian manifolds [BGM1,GS] one finds

PROPOSITION 2.15: Let H(S) be a circle bundle over a 3-Sasakian orbifold S of dimension
4n — 1. Then the following relations for the Betti numbers of H(S) hold:

(i) ban(H(S)) = 0.

(ii) bap—2(H(S)) < bop—1(H(S)) = ban—2(S).
(iii) bap+1(H(S)) < bop(S) for 1 <p<n—1.
(iv) bap(H(S)) < bgp(S) for 1 <p<n-—1.
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(v) b1(H(S)) =0,1.

. C (be(S) =1 ifbi(H(S))
(vi) ba(H(8)) = {b2(8) if by (H(S))

PROOF: Left to the reader. ]
We have the following immediate corollaries:

COROLLARY 2.16: Let & be a 3-Sasakian orbifold of dimension 7, and H(S) a smooth
circle bundle over 8. If b1 (H(S)) = 0, then we have

|

0;
1

|

by(H(S)) =

;O

1

-1 ifp=2,

i 3
whereas if by (H(S)) = 1, then

bp(H(S) =4 0 ifp=4:

{1 ifp=20,1,7,8;
k ifp=23,56.

Thus, there are two types of hypercomplex circle bundles H(S) in dimension 8, and
the rational homology of each type is completely determined by the second Betti number.
In the first type above the bundle cannot be flat and H(S) cannot be locally conformally
hyperkahler, whereas the second type has the rational homology of the trivial bundle which
includes the class of flat bundles. Our next corollary gives important complex analytic
information.

COROLLARY 2.17: H(S) has no symplectic structure. In particular, H(S) admits no
Kahler metric.

Let C(X) denote the meromorphic function field of a complex space X, and let
a(X) denote the algebraic dimension of X. Consider the (singular) elliptic fibration 7 :
H(S)—Z. Since Z is a projective algebraic variety of dimension 2n—1 [BG], a(Z) = 2n—1
and 7 induces a monomorphism 7* : C(2)—C(H (S)). We have

PROPOSITION 2.18: Ifm (H(S)) is finite, then a(H(S)) = 2n—1 and n* : C(2)—C(H(S))

is an isomorphism.

PrROOF: We know that 2n — 1 < a(H(S)) < 2n, and we must show that H(S) cannot
be Moishezon. Since 7y is finite, H(S) has a finite simply connected unbranched cover
with the same algebraic dimension. So it suffices to prove the result when H(S) is simply
connected. Suppose H(S) were Moishezon, then by a theorem of Moishezon [M] there is
a finite sequence of blow-ups making H(S) projective algebraic, i.e., there is a dominant
map ¢ : X— H(S), where X is a projective algebraic variety. But since Hy(H(S),Z) =0
every elliptic curve E, = 7~ !(2) is homologous to 0 in H(S). But then ¢*E, is an elliptic
curve of X that is homologous to 0 in X. Thus, ¢*F, - H = 0, where H is the restriction
to X of a hyperplane divisor. But this is impossible in a projective algebraic variety. 1

Let py(H(S)) = h?™0 = h9%2" denote geometric genus and hP*? the Hodge numbers
of H(S). Then
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PROPOSITION 2.19: py(H(S)) = 0.

PROOF: Let w be a holomorphic section of the canonical line bundle K on H(S). Then
dw = Ow + 0w = 0 so w is also d-closed. But by Corollary 2.15 H?"*(H(S),R) = 0, so w
must be exact. Thus, by Stokes Theorem

/wA@:Q

and this implies that w = 0. ]

We now turn our attention to the subclass of the class of bundles H(S), namely flat
bundles. Using results of [OrPi,V] we have

PROPOSITION 2.20: Suppose H(S) is smooth and the orbifold bundle 7= : H(S) — S is
flat. Then H(S) is locally conformally hyperkéhler. In particular, H'(H(S),Q) = Q.

Thus locally conformally hyperkahler geometry appears as a special category in our
construction. The diagram 2.10 is well-known both in the context of generalized Hopf
manifolds [Vai] as well as locally conformally hyperkéhler spaces [OrPi]. Another interest-
ing case is when H(S) is hypercomplex homogeneous, that is the group of hypercomplex
symmetries of H(S) acts transitively. One can then use arguments similar to the ones
employed in [BGM2] to show that

PROPOSITION 2.21: Suppose H(S) is hypercomplex homogeneous. Then all the leaves of
the U(2) action have to be diffeomorphic. In particular both § and O are smooth and
homogeneous.

Using the above result one can easily classify all the hypercomplex homogeneous circle
bundles. We get a result first announced in [BGM5]:

COROLLARY 2.22: Suppose H(S) is hypercomplex homogeneous. Then H(S) is one of the
following:

(i) H(S) =V ,.
(i) H(S) =V 5 /Zy, with 2 < k € Z*.

(iii) H(S) is locally conformally hyperkéhler and then it is one of the spaces: (G/H) x S*
with G/H equal to S4"~1, RP"~, SU(m)/S(U(m—2)xU(1)),m > 1, SO(k)/SO(k—
% 8p(1), k > 7, Ga/Sp(1), F1/Sp(3), Fa/SU(6), Fr/Spin(12), Fs/Fx; or the unique
non-trivial principal S'-bundle over RP*"~'. All these bundles are flat.

In all of the above cases there is a real one parameter family of hypercomplex structures.

The homogeneous hypercomplex structures of VSQ were studied by many authors
[Joy2, Bat, BGM2, PP, PPS] in more than one context. Ornea and Piccini [OrPi] show
that all locally conformally hyperkahler homogeneous spaces are precisely those given in
(iii) above. Results of Borel and Remmert [BR], and Tits [Ti| say that any compact
homogeneous complex manifold X is the total space of a bundle (a Tits bundle) with
parallelizable fibers over a generalized flag manifold G/P, where G is a complex Lie group
acting transitively and holomorphically on X, and P is a parabolic subgroup. This clearly
applies to hypercomplex geometry as well, although for a general homogeneous hyper-
complex manifold the associated complex structures may not all be equivalent, so there
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may be many Tits bundles associated to the same homogeneous hypercomplex manifold.
However, for the circle bundles H(S), the complex structures are all equivalent, and there
is a unique Tits bundle whose parallelizable fibers are elliptic curves and whose generalized
flag base space is a twistor space. In fact, Theorem 2.11 can be thought of as an analogue
of the Tits bundle construction in the inhomogeneous case. The simplest examples of
inhomogeneous hypercomplex structures on compact manifolds that are not hyperkahler
are the inhomogeneous hypercomplex Hopf surfaces. In [BGM2] and [BGM4], the authors
described a n-parameter family of inhomogeneous hypercomplex structures on the Stiefel
manifolds V(S,z- It was recently shown by Pedersen and Poon [PP] that in a neighborhood
of a homogeneous hypercomplex structure on Vgg, the family of hypercomplex structures
given in [BGM2,BGM4] is precisely the subfamily of T3-equivariant deformations, and
that the full versal deformation space is n?-dimensional. In the following chapter we use
hypercomplex reduction to construct many more new examples of inhomogeneous hyper-
complex structures. They are somewhat different as there is no underlying homogeneous
structure.

§3. Hypercomplex and 3-Sasakian Toral Quotients

Let u = (u,...,u,) € H" be the quaternionic coordinates on the n-dimensional
quaternionic vector space H" equipped with the flat metric. Consider the unit sphere

S l=fueH | Y Uauq =1}
a=1

with its canonical metric g.q, obtained from the flat metric by the inclusion S**—! C H".
This sphere has two natural 3-Sasakian structures determined by whether one treats H" as
a right or left quaternionic vector space. We choose the left module structure on H" and
this chooses the right 3-Sasakian vector fields £2. The subgroup of the isometry group O(n)
of the (S*"1, gean) that normalizes this structure is Sp(n) - Sp(1) = (Sp(n) x Sp(1))/Z.,
where the Sp(1) is the group generated by the 3-Sasakian vector fields 2. The group
Sp(n) - Sp(1) acts on the sphere as:

Sp(n) x Sp(1) x §4"~1 - gin—1

3.1 ((B,J);u) —» Buo !,

where B € Sp(n) is the quaternionic n X n matrix of the defining representation of Sp(n),
and o € Sp(1) is a unit quaternion. The diagonal Zy subgroup defined by A = —I,0 = —1
acts trivially, and the factor group Sp(n) - Sp(1) acts effectively on the S**~1. The
group Sp(n) is precisely the subgroup of the isometry group which commutes with the
3-Sasakian Sp(1) action, i.e., the group of automorphisms preserving the 3-Sasakian struc-
ture. Associated to any subgroup G C Sp(n), there is a 3-Sasakian moment map [BGM1]
pa @ 84" 1 —g* @ R3, where g* denotes the dual of the Lie algebra g of G.

In this paper we shall consider a maximal torus 7™ C Sp(n) and its subgroups acting
on S$4"~1 The maximal torus that we choose is that given in terms of its action on H"
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by @a — Tale. Then every quaternionic representation of a k-torus 7% on H™ can be
described by a diagonal matrix of the form

(ﬁﬁ]’i 0 \
i=1

3.2 . . : 3
. .

K 0 HTial"/

=1

where (71, ..,7;) € S x -+- x ST = T* are the complex coordinates on T*, and az €Z.In
turn this representation defines a k£ x n integral weight matrix

al ay ... a} ... al

ai a3 ... a2 ... a2
3.3 Q= .

a¥ o ... af ... df

Let t;, denote the Lie algebra of the k-torus T* for any k. Then invariantly Q defines an
element of homy(t,, t) ~ t ® t}. This Z-module parameterizes the quaternionic repre-
sentations of T% on H™. Such a representation gives rise to a moment map pug : S**~1 —
tr ® R3, and for “good” representations the quotient ugl(O) /T* is well-behaved, that is,
at worst an orbifold. We shall give the precise conditions below. In terms of the quater-

nionic coordinates of H" the moment map is given by the simple quadratic expression
[BGMR]puq = 3_; pige;j, where

3.4 1 (u) = Z U107 U,

and {e;}5_, denotes the standard basis for R* ~ ¢;.

Two weight matrices Q, Q' € Mgxn(Z) are equivalent if there are A € GL(k,Z) and
w € W(Sp(n)) such that Q' = AQw. Equivalent weight matrices give rise to isomorphic
3-Sasakian quotients g (0)/TF(Q) ~ pg'(0)/T*(2). Actually, if ' = AQ for A €
GL(k,Z) the quotients coincide; hence, S(€2) depends only on the equivalence class [2].

The conditions on €2 that guarantee “nice” behavior of the quotient are given by

THEOREM 3.5: [BGMRI1,BGM3| If all the k by k minor determinants A, o, of Q are
non-vanishing then the quotient S(Q) = ug'(0)/T*(Q) is a 3-Sasakian orbifold, where
the sequence 1 < a; < -+ < a < n label the columns of ). Let g denote the kth
determinantal divisor of Q. Then S(f2) is a smooth manifold if and only if, in addition
ged(Ag Ay byeapgrr o Dageay) =9

2 Qg1

for all sequences 1 < a1 < -+ - < g < -+ < Qgy1 < N.
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An Q for which all £ by £ minor determinants are non-vanishing is called non-
degenerate, and if the ged condition of Theorem 3.5 also holds €2 is called admissible.
From now on we shall assume that Q is non-degenerate so that the T%(Q2) action on
115" (0) is locally free, and the quotient S(€2) is an orbifold. In [BGM3] a mod 2 reduction
to smoothness was obtained. Namely, if £ > 1 then dim § = 7,11,15, and if £ > 4 then
dim & = 7. Moreover, the following was proved in [BGMR] for the case dim & = 7, and
by Bielawski [Bi] for general dimension:

THEOREM 3.6: The second Betti number by of the 3-Sasakian quotients S(£2) of Theorem
3.5is k.

The circle V-bundles H(S) over S(Q2) are classified by H2 ,(S(2),Z). We shall show
in Theorem 4.1 below that when dim H(S) = 8 this group is Z*. For now our aim is to
construct hypercomplex structures on the total space of these bundles. Choose a subgroup
T*—1 C T*. This gives an exact sequence (as Z-modules)

3.7 0—tp_1—tp,—>t1—0
and tensoring with the free Z-module t;, gives the exact sequence
3.8 0— i1 ® ) — 1, ® £, —> 1 —0.

A k —1 by n submatrix £2; of €2 corresponds an element of t;_; ® t; and a splitting of 3.8
corresponds to writing

(P
3.9 Q‘(m)’

where p is an integral point of t. Now consider the action of the subtorus T 31_1 on 5" (0).
It is locally free and the quotient ug'(0)/ Tgl_l is a circle V-bundle over §(2). Now t;, @t
is also a GL(k,Z)-module and the subgroup K C GL(k,Z) that stabilizes t,_1 ® t; as
Z-submodules is the subgroup of GL(k,Z) consisting of elements of the form

1 g2 -+ gk
0
: B
0

with ¢; € Z and B € GL(k—1,Z). So the circle V-bundles over S(£2) are parameterized by
the coset space GL(k,Z)/K ~ ZF. If Q = (p, 1)t and Q' = (p’,})? differ by an element
of the subgroup K, then H(p, 1) and H(p’, 2}) are isomorphic circle bundles. We believe
in this case that the hypercomplex structures that we construct are inequivalent but we
shall not prove this here.

We prove the existence of hypercomplex structures on these V-bundles by applying
the hypercomplex quotient construction of Joyce [Joy2] to the zero set of the circle moment,
map pyp : S~ 1—R3, where p is the integer point of £ of 3.9. If all the components p; of
p are non-zero then 5 '(0) is diffeomorphic [BGM1] to the Stiefel manifold Vi, 5 of complex
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2-planes in C" and has a natural hypercomplex structure [BGM2] labeled by p. In the
case that some components p vanish, pig 1(0) is a singular stratified space. Nevertheless,
we show that it has a natural hypercomplex structure to which the reduction procedure
can be applied. We denote by N (p) the Stiefel manifold (as well as the singular stratified
version) with the hypercomplex structure defined by p, and the corresponding circle action
will be denoted by S!(p). By a transformation in the Weyl group W(Sp(n)) if necessary,
we can always take this point to lie in the positive Weyl chamber C™. Furthermore, by a
transformation of GL(k,Z) we can take p to be the first row of Q.

The (k — 1)-torus T*~1(Q,) is a subgroup of the group Aut N(p) of hypercomplex
automorphisms of N (p). Let v, : N(p)—tx_1 ® R? denote the restriction to N (p) of
the projection of ugq onto the last k — 1 coordinates of tx. Now T*~1(£2;) also acts locally
freely on 1/511 (0) = pg'(0), so the quotient space 1/511 (0)/T*=1(£2;) is also an orbifold.
We shall denote this orbifold by H(p,21). The circle group S!(p) acts locally freely on
H(p, ;) and the quotient is just the orbifold S(€2).

THEOREM 3.10: The orbifold H(p, ;) is a circle V-bundle over the 3-Sasakian orbifold
S(Q2) and has a naturally induced hypercomplex structure which is compatible with the
3-Sasakian structure on §(2). Furthermore, if the gcd condition of Theorem 3.5 is satisfied
H(p, ) is a hypercomplex manifold.

PROOF: Recall Joyce’s [Joy2] hypercomplex reduction procedure. If a Lie group G acts
locally freely on a hypercomplex manifold (M, I®) preserving the hypercomplex structure
then we look for a moment map p : M—g* ® R3, where g* denotes the dual of the Lie
algebra g of G satisfying the two conditions

(i) Idp! = IPdp?® = I3dud.
(ii) For every & € g, I°dpg(E) # 0 for all a = 1,2,3, where = is the vector field on M

corresponding to £ € g.

We apply Joyce’s reduction to the moment map vg, : N (p)—tr_1 ® R3. First we
consider the non-singular case when all components of p are non-vanishing. Notice that
for each a = 1,2,3, dv® is a section of t;_1 @T*N (p) which is the restriction of a quadratic
1-form written in the flat quaternionic coordinates on H". Now by viewing N (p) as the

total space of a U(2) principal V-bundle over a quaternionic Kahler orbifold [BGM2], one
sees that a certain choice of U(2)-connection gives an exact sequence of vector bundles on

N(p)

3.11 0—V*(p)—T*N(p)—Q* (p)—0,

where V*(p) is spanned by the connection 1-form. From Theorem 1.14 of [BGM2] the
hypercomplex structure Z%(p) coincides on Q*(p) with the restriction of the flat hyper-
complex structure I on H" associated with right quaternionic multiplication. Let v;
denote the jth component of v, with respect to the basis of ¢;_; determined by the k —1
rows of ; and let Z;(£2) be the corresponding vector field on N (p), where j = 2,--- k.
Let 79 (€2) be the 1-form dual to the vector field Z;(€2) with respect to the restriction g of
the flat metric in H” to N (p) N 1/511 (0). Then a straightforward computation shows that
for each a = 1,2, 3 we have
To(p)dv? = —1().
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This immediately shows that condition (i) above is satisfied.

To check the transversality condition we notice that

Z%(p)dvj (8;(€)) = —g(E;(Q), E;(©))

for each a = 1,2, 3. Now the vector fields Z;(Q2) can vanish on N (p), so the transversal-
ity condition (ii) does not hold on all of N (p). However, since T*~! acts locally freely
on yéll(O)[BGMR], the norms g¢(=;(£2), Z;(2))are non-vanishing there, so condition (ii)
does hold on the zero set of the moment map. Thus, by continuity, condition (ii) holds
on a tubular neighborhood Wq of 1/511 (0) since no k by k minor determinant of Q van-
ishes. Applying Joyce’s theorem to the moment map vq, on Wq we see that the quotient
1/511 (0)/T*~1 is a hypercomplex orbifold and it will be a hypercomplex manifold when the
ged condition of Theorem 3.5 is satisfied.

Now consider the singular case when some components of p vanish. Since €2 is non-
degenerate, there are at most £ — 1 components of p that vanish. Let [ denote the number
of non-vanishing components of p. Then we must have | > n — k + 1. From the moment
map equations the singular locus of A (p) consists precisely of the subset, where the [
quaternionic coordinates corresponding to the non-vanishing components of p vanish. Let
N(p)o denote the smooth locus of N (p). This has a hypercomplex structure precisely
as in the non-singular case. Now the zero set v '(0) lies entirely in N (p)o, since on

1/511 (0) = pg'(0) at most n — k — 1 quaternionic coordinates can vanish [BGMR], and
I > n — k. Since N (p)o is a smooth manifold which is dense and open in NV (p), there is
a tubular neighborhood W of y§11 (0) lying entirely in N (p)o, and the remainder of the
proof goes through as before. ]

Next we consider conditions under which the hypercomplex orbifold H(p,€;) is a
smooth manifold. We assume as before that €2 is reduced, non-degenerate, and that its
first row is p = (p1, -+, Pn). The argument here follows closely the proof of Lemma 2.15
of [BGMR]. We note that on ug'(0) C S4*~1 there are at most n — k — 1 quaternionic
coordinates that can simultaneously vanish. Thus, at least k 4+ 1 quaternionic coordinates
are non-vanishing. So the conditions that determine a fixed point of the T*~! action on

15 (0) are

k )
3.12 HTZ.%:I foreach =0y, j=1,---k+ 1.
=2

Here the o label the k + 1 non-vanishing quaternionic coordinates. So these conditions
must hold for every sequence o = (v, -, ars1) of length k + 1 with the lexicographic
ordering 1 < a1 < --- < agy1 < n. Let M, denote the £k — 1 by k£ + 1 submatrix of
(2, obtained by choosing the k£ + 1 columns corresponding to o = (a1,---,ag4+1), and
let Ay(c) denote the ¥k — 1 by k£ — 1 minor determinants of M, for some given order
a=1,---, @ Then as in [BGMR] the conditions 3.12 are equivalent to the conditions
that for each such sequence o we have

TZ-A“(Q) =1
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We have thus arrived at

THEOREM 3.13: The hypercomplex orbifold H(p, 1) is a smooth manifold if and only if
for each ordered sequence « as above the condition

ng(Al(a)a v aA@(a)) =1

holds.

We concentrate on the two cases. The case that n = k + 2 so dim H(p, ;) = 8, and
the case k = 2 for any dimension (0 mod 4). An analysis similar to that given in [BGM3]
will show that there are smoothness bounds on both the dimension if £ > 2, and on £ if
the dimension is greater than 8. Of course, if S(€2) is smooth then any circle bundle over
it will be smooth. So it follows from the results of [BGMR] and [BGM3] that

COROLLARY 3.14: There are infinite families of smooth hypercomplex toral quotients
H(p, ) in dimension 8 for all k. Moreover, there are infinite families of smooth hyper-
complex toral quotients H(p, ;) for k =2,3,4 and dim H(p, ;) = 12 or 16.

The conditions in Theorem 3.12 are easy when k£ = 2, and we have

COROLLARY 3.15: Let k = 2 and write ) as

0. ( . pn)
Qg - Gn )’
then the 4(n — k) dimensional hypercomplex orbifold H(p,q) is smooth if and only if
ged(gi, 5, 1) = 1 for all triples of components of q.

REMARK 3.16: Note that we can relax the requirement that the entries of p are integral.
If we take p € R™ then the orbifold H(p, ;) exists as Joyce’s hypercomplex quotient of
N (p) by the T*~! torus with the action defined by ©; as long as the matrix Q is non-
degenerate. Just as in the case of the Stiefel manifold N (p), for general p, we lose the
bundle structure H(p, ;) — S(2). The foliation given by the circle action associated
to the weight vector p may have non-compact leaves and the quotient will not be an
orbifold. However, if all the components of p are rational, it follows from Proposition 2.12
for A € Rt that H(p,:1) and H(\p, Q) describe inequivalent hypercomplex structures
on the same manifold. Thus, for each circle bundle H (p, €2;) there is at least a 1 parameter
family of inequivalent hypercomplex structures. When p and q are not proportional and
both define a non-singular k£ x n matrix €2, it is not clear whether in general the topology
of H(p, ;) depends on p, or whether H(p,2;) is diffeomorphic to H(q, ).

By construction, all our spaces H(p,{2;) have a locally free U(2) action such that
the space of leaves O(Q2) is a quaternionic Kéhler orbifold of positive scalar curvature.
When H(p, ) is 8-dimensional O(Q2) is a self-dual Einstein orbifold of positive scalar
curvature. Using the orbifold version of the Gysin sequence one can show that b2 (O(Q2)) =
k. All the 4-dimensional orbifolds O(2) are examples of T2-symmetric self-dual Einstein
metrics. The U(2) action on H(p, ;) is only locally free and, in fact, never free if
k > 1. It has the characteristic property investigated by Pedersen, Poon, and Swann in
the context of quaternionic geometry [PPS]. Consider the central U(1) C U(2) and let X
be the corresponding vector field for this action. Then: (1) X preserves the hypercomplex
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structure (i.e., the central U(1) is a hypercomplex symmetry), (2) the triple {IX, JX, KX}
generates the action of SU(2) C U(2), and (3) this SU(2) rotates the hypercomplex
structures {I,J, K}. One one can easily generalize Theorem 2.1 of [PPS] to show the
following orbifold analogue:

PROPOSITION 3.17: Let M be a compact hypercomplex manifold with a locally free U(2)
action satisfying conditions (1-3). Then the space of leaves O ~ M/U(2) is a compact
orbifold which admits a quaternionic structure. Furthermore, if there exists a hyperhermi-
tian metric g on M such that the U(2) action is isometric and SU(2) defines a 3-Sasakian
structure on the orbifold S = M/U(1) then O is a quaternionic Kéhler orbifold. In this
case M is our circle bundle H(S).

When O is smooth one can invert this construction and show that (up to double cover)
any such M can be reconstructed from a self-dual manifold O [PPS]. One takes the compact
quaternionic associated bundle V(O) of O and twists it by an instanton bundle P. It is clear
that there also exists an appropriate orbifold analogue of this twisting construction. The
construction can be used to obtain inhomogeneous hypercomplex structures on V(kCP?)
twisted by some instanton bundle P. When k£ = 1, one only gets SU(3)/Zs. When
k = 2 there are many different twisted bundles Vp (2CP?), some of them simply connected

[PPS]. In principle, one could use this construction to obtain hypercomplex structures on
Vp (kCP?).

The bundles Vp(kCP?) share a lot of topological and geometric properties of our 8-
dimensional spaces H(p, ;). They have the same Betti numbers and the same symmetry
group. However, our H(p,{2;) do not seem to have any free U(2)-action and the orbifold
character of the construction is crucial here. A complete study of the relevant spectral
sequences should detect any differences. In the next section we describe the relevant
spectral sequence for our 8-manifolds H (p, 21) but only up to total homological dimension
2. As will be seen, even this is quite intricate.

84. The Topology of the 8-dimensional Toral Quotients

The purpose of this section is to describe some of the topology of both S(£2) and
H(p, ) in the case that n = k + 2, that is, when dim S(Q) =7 and dim H(p, ;) = 8.
Our methods are based on those of [BGMR] and so only work for these dimensions.
However, in contrast to [BGMR], where only rational information was obtained, here we
work with Z coefficients. Explicitly, we prove:

THEOREM 4.1: Let Q be non-degenerate, S(2) and H(p, ;) be the 3-Sasakian and hy-
percomplex quotients defined in section 3 of dimensions 7 and 8, respectively. Further
assume that H(p, ;) is a manifold. Then

(i) m(H(p, Q1)) = 0.
(ii) m2(H(p, 1)) = Hy(H(p, 1), Z) = ZF~1,
(iii) m1(8(2)) = ={™(S(2) = 0.

(iv) m3°(S(Q)) = HE™(S(Q),2) ~ H;

orb

(8(Q),Z) ~ Z*.

PROOF: Since 2 is non-degenerate, the zero set ug'(0) is a compact smooth submanifold
[BGMR] of S~ of dimension 4n — 3k — 1 = k + 7. Following the notation of [BGMR] we
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denote this zero set by N(Q). Moreover, the right action of Sp(1) on S4"~! descends to an
action on N (), since t} ® R® is just k copies of the adjoint representation of Sp(1), and
0 € tf ® R® is invariant. Furthermore, this induced action of Sp(1) is free, since it is free
on S"~1. Let B(Q) denote the quotient manifold. So we have a principal Sp(1)-bundle

4.2 Sp(1)—s N () — B(Q).

Now N(£) also has an action of a (k + 2)-torus T%+2 and in [BGMR] it was shown
that the quotient space Q(£) of N(Q2) by T%+2 x Sp(1) is a closed polygon with &k + 2
vertices. The action of T%*+2 factors through the principal Sp(1) bundle N(Q) to give a
smooth surjective map

4.3 m: B(Q)—Q(Q)

whose generic fiber is T%*2. We now analyze the structure of this map. Recall from
[BGMR] (Lemma 3.11) that Q(2) consists of 3 strata Q;(Q2) with i = 1,2,3. We have
Q(2) = Qo(2) L Q1(2) LI Q2(£2), where Q(2) is homeomorphic to the closed disc D2. The
regular values of 7 consists of the generic stratum Q2(2) which is homeomorphic to the
open disc D?. The singular values of 7 consists of Q1(£2) U Qo(£2) and is homeomorphic
to the boundary 0D? ~ S'. ;(Q) is homeomorphic to the disjoint union of k + 2 copies
of the open unit interval and Qo(2) is a set of k + 2 points. For k = 1,2,3 we define
B;(Q) = m71(Q4(€)). We then have

LEMMA 4.4: There is a stratification
4.4 B(Q2) = Bo(2) LU B1(Q2) L B2(R2)

and the fibers of B;(2) are tori T*+%,
Next,
LEMMA 4.5: m1(B(R2)) is Abelian.

PROOF: Let <y be a loop in B(2) representing a class of w1 (B(€2)). We can take v to be
smooth. The inverse image of the singular values of m is B1 () U By(2), and this has
codimension 2 in B(2). Thus, by general position, v can be homotoped to a loop in the
generic stratum By ((2). But since the base is contractible, it can be homotoped to a fibre
T**+2 which has Abelian fundamental group. i

We can actually prove much more:
LEMMA 4.6: H1(B(Q2)) = H2(B(£2)) = 0.

As the proof of this lemma is very technical and quite tedious, we shall return to it
at the end of the section. We have a corollary of these two lemmas which is of interest in
its own right.

COROLLARY 4.7: Both N(f2) and B(f2) are 2-connected.
PROOF: First consider B(Q2). By Lemma 4.5 71 (B(2)) is Abelian, so 1 (B(Q2)) = H1(B(2))
which vanishes by Lemma 4.6. But then by the Hurewich Theorem w9 (B(2)) = H(B(2))

which again vanishes by Lemma 4.6. So B({2) is 2-connected. Then by applying the long
exact sequence in homotopy to the fibration 4.2 shows that N(Q2) is also 2-connected. 1
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We continue with the proof of Theorem 4.1 assuming Lemma 4.6. Applying the long
exact homotopy sequence to the principal fibration T*~1—s N (Q)— H (p, 2;) and using
Corollary 4.7 gives (i) and (ii) of the Theorem. To prove (iii) and (iv) we apply Corollary
4.7 together with the long exact homotopy sequence of Haefliger and Salem [HS] to the
orbifold bundle T%(£)— N (£2)—S(£2). This gives 7{"?(S(2)) = 0 and 757°(S(Q)) ~ ZF.
But then (i) and Corollary 5.9 of [HS] proves that S is simply connected proving (iii). To
finish one easily sees from the definition 2.14 that the Universal Coefficient Theorem and
Hurewicz Theorem apply equally well to the orbifold groups. So (iv) follows. This proves
Theorem 4.1. ]

PrROOF OrF LEMMA 4.6: We analyze the Leray spectral sequence associated to the map
4.3 with the stratification 4.4. This is analogous to the spectral sequence in [BGMR], but
now we need Z coefficients and must compute some differentials.

Define Yy = Qo(2), Y1 = Qo(2) U Q1(2), and Yy = Q(2). Then, we filter B(2) by
X; = n(B;) to obtain the increasing filtration

X() = B()(Q), X1 = B()(Q) U Bl(Q), and X2 = B(Q)

The Leray spectral sequence associated to this filtration has E! term given by
E;y = Hey(Xe, Xy 132)

with differential dy : Hsy4( X, Xp—1;2Z) —> Hgr4—1(X¢—1, X¢—2;7Z), where we use the
convention that X_1 = 0.

To compute these E! terms notice that all the pairs (X;, X;_1) are relative manifolds
so that one can apply the Alexander-Poincaré duality theorem. Hence, by Lemma 4.4,

HS(XO;Z) = Hs(l—lk+2Tk;Z);
Hy (X1, X:Z) = HE275(U, TR 7);
Hy(X2, X1;Z) = HMM75(T2,7),

where I_IjTl means the disjoint union of j copies of T*. Hence, the E;,t term of the spectral
sequence is described by the diagram

S
° °
7,() (k+2) oz (I k) (")
7,k(k+2) .Z(k+1)(k+2) o 7,k+2
Zk+2 Zk—|—2 7

. t

Diagram 4.8
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Next we compute the d; differentials of this spectral sequence. In order to do so, we
need some more details from [BGMR). First, we mention that, although the equations for
the moment map 3.4 have coefficients in Z, we can pass to the field of fractions Q and
consider a normalized Q' such that pg'(0) = pgy *(0), with

1 0 ... 0 ft gt
Lo o 01 ... 0 f2 g2
0 0 ... 1 fk gk

where f;,g; € Q — {0}. Recall [ BGMR] that at most one quaternionic coordinate u, can
vanish, and this determines the vertices of the polygon. Suppose ugy2 # 0 (if this is
the coordinate that vanishes interchange the role of ugy; and ug4s). We analyze the
moment map equations 3.4 by considering a slice of the Sp(1) action. In terms of complex
coordinates uy, = 2o + Wqj, Wwe choose a part of the slice by putting wg2 = 0. (Note that
there is still an S’s worth of freedom). With this choice the edges of the polygon are
determined by the vanishing of precisely one complex coordinate in each pair (z4,wq) for
a=1,---,k+ 2. Exactly which edge corresponds which configuration of the vanishing of
Za OT W 's is determined by the relative sizes of the 2 by 2 minor determinants f;g; — f;9i-
For convenience of exposition we make the choice f; = 1 for all ¢ = 1,---,k, and 0 <
g1 < --- < gr as the general case is just a renaming. Then the moment map equations 3.4
become
o 5 = sl + Lz = [wsa? + gylansal® = 0,

W;zj + Wgy12k+1 = 0,
for j = 1,---,k. An analysis of these equations shows that one must have the ordering of
vertices and edges as indicated in Diagram 4.11 below. We can assign a sign pattern to
each edge as follows: On a given edge we assign to each quaternionic coordinate u, a +
sign if z,, # 0 and w, = 0, and a — sign if z, = 0 and w, # 0. Then we have the following

assignments: e; ~ (+,---,+,—, -+, —,+) for j =1,---, k, where the “---” indicate j plus
signs and k 4+ 1 — j minus signs; egy1 ~ (—, -+, —,+,+), and egqa ~ (—, - -, —, —, +).
Vg,
. €k
p U +2
P €k42
V2 b V41
€1 €k+1
U1

Diagram 4.11.
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The d; differential in the bottom row of Diagram 4.8 can now be easily computed.
They are just the geometrical boundary of the relevant simplices. (As in [BGMR] the
labeling of the filtration in the spectral sequence has been shifted so that the d; differentials
move horizontally from right to left.) Letting o2 denote the 2 simplex, we see that the
boundary map gives:

8(02)=€1+"'+ek+2; 8(ei):vi+1—vi forizl---,k—l,

4.12 O(ex) = Vkt2 — vk,  O(ex+1) = v1 — Vgt1,  O(ek+2) = Vkt1 — Vkto.

We see easily from this that the bottom row of the E? term is as shown in diagram 4.14
below.

The computation of the dy differential on the next row (s = 1) is much more tedious.
The homology classes on the first row are of the form z; ® v, at t =0, y; ® e, at t =1,
and z; ® o9 at t = 2, where z; € H,(T*,Z), y; € Hi(T**1,Z), and z; € H (T**2,Z). The
boundary maps are given by

0(zj ® 02) = pa(zj) ® (e1 + - - - + exy2), 0(z; ®ve) =0,

4.13 0(y; ® ea) = p1(y;) ® 0(€a),

where 0(eq) is given by 4.12, and p2(2;), p1(y;) are the corresponding images in homology
under the fibre mappings
T2 2yt g1 o it B k2 2 ok

The explicit expressions for p(z;) and p(y;) depend on these fibre mappings and on the
sign assignments given above. After a somewhat lengthy computation, one shows that the
map ZFH2—7zE+DE+2) §s injective while the map ZF+HDE+2)_75(k+2) g surjective.
This implies that the Ell,t:O,1,2 are all zero. Similarly one shows that the map from

7 (") E+2) 7 () (k+2) 4 surjective. Thus, the Eg’t term is

S
° °
0 ° °
0 e 0 o0
-Z eO eO t

Diagram 4.14
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Now E?, = EZ5 which converges to Hs1+(B(f2),Z), so this proves the lemma. [

Now by combining Theorem 4.1, Theorem 3.13, and Proposition 1.12 we arrive at
Theorem A of the Introduction. |

Given a simply connected hypercomplex circle bundle H(S), we can follow the con-
struction of section 5 of [BGM2] to obtain hypercomplex circle bundles with cyclic fun-
damental group. Let 6 denote the action of S on H(S) generated by the vector field =,
and consider the action 6’ of ST on H(S) x S, where the action on the first factor is 6
and the action on the second is the standard map of degree [ € Z*. If this action is free,
then, since H(S) is simply connected, the quotient H(S); has fundamental group Z;. For
example, let H(p, 1) be one of the smooth hypercomplex 8-manifolds of Theorem A and
suppose further that the associated S is smooth. Then the action ' is free, since 6 is a
free action. Then the quotient H(p,1,1) is a hypercomplex manifold with m = [, and
by = k. This gives Corollary B in the Introduction. As in [BGM2] even when S(£2) is an
orbifold it is possible to choose [ such that the quotient H(p, 2;,[) is a smooth manifold.
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