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Abstract. It is well known that if the dimension of the Sasaki
cone t+ is greater than one, then all Sasakian structures in t+ are
either positive or indefinite. We discuss the phenomenon of type
changing within a fixed Sasaki cone. Assuming henceforth that
dim t+ > 1 there are three possibilities, either all elements of t+ are
positive, all are indefinite, or both positive and indefinite Sasakian
structures occur in t+. We illustrate by examples how the type
can change as we move in t+. If there exists a Sasakian structure
in t+ whose total transverse scalar curvature is non-positive, then
all elements of t+ are indefinite. Furthermore, we prove that if
the first Chern class is a torsion class or represented by a positive
definite (1, 1) form, then all elements of t+ are positive.

1. Introduction

The main purpose of this note is to understand how Sasakian struc-
tures change as one moves through the Sasaki cone. When the dimen-
sion of the Sasaki cone t+ is greater than 1, the type of a Sasakian
structure in t+ must be either positive or indefinite, that is, the basic
first Chern class c1(F⇠

) can be represented either by a positive definite
or an indefinite (1, 1)-form with respect to its transverse holomorphic
CR structure (D, J). We show by example that the type can change
as we move in the Sasaki cone. Thus, the type is an invariant of the
Sasakian structure, but not of the underlying CR structure.
Furthermore, it follows from the transverse Yau Theorem of El Kacimi-

Alaoui [EKA90] that every positive Sasakian structure can be de-
formed by a transverse homothety to a Sasakian structure with positive
Ricci curvature (cf. Theorem 7.5.20 of [BG08]). This procedure was
exploited in [BGN03a, BGN03b, BG06] to obtain results concerning
Sasakian structures with positive Ricci curvature. We should mention,
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2 Sasaki Join, Positive Ricci Curvature

however, that Propositions 2.6, 2.8 and Theorem 2.9 in [BGN03a] con-
cerning the necessity of being a spin manifold are incorrect. Non-spin
Sasaki manifolds can have Sasakian metrics of positive Ricci curva-
ture (cf Chapter 10 of [BG08]). The point is that the positive definite
transverse (1, 1)-form representing c1(F⇠

) need not necessarily be the
transverse Kähler metric of a Sasakian structure on M . In Appendix A
we give some new explicit examples of Sasaki manifolds with positive
Ricci curvature, including non-spin examples.

Acknowledgements. The authors are grateful to Vestislav Apostolov
for carefully reading our paper and suggesting some important clarifica-
tions. We also thank Hongnian Huang, and Eveline Legendre for their
interest in and comments on our work.

2. The Sasaki Cone

In what follows our Sasaki manifolds M are both oriented and co-
oriented, that is we fix both the orientation of M and the orientation
of contact bundle D. A CR structure (D, J) on a manifold M is said
to be of Sasaki type if there is a Sasakian structure whose underly-
ing CR structure is (D, J). CR structures of Sasaki type are strictly
pseudoconvex. The space of Sasakian structures belonging to a CR
structure (D, J) of Sasaki type has a subspace which is identified with
an open cone in the Lie algebra t

k

(D, J) of a maximal torus T in the
CR automorphism group Cr(D, J) where k is the dimension of T . This
subspace is called the unreduced Sasaki cone and is defined by

(1) t+
k

(D, J) = {⇠0 2 t
k

(D, J) | ⌘(⇠0) > 0}
where (⇠, ⌘,�, g) is a fixed Sasakian structure of (D, J). It is easy to see
that t+

k

(D, J) is a convex cone in t
k

= Rk. Then the reduced Sasaki cone
is defined by (D, J) = t+

k

(D, J)/W(D, J) where W(D, J) is the Weyl
group of Cr(D, J). The reduced Sasaki cone (D, J) can be thought of
as the moduli space of Sasakian structures whose underlying CR struc-
ture is (D, J). We shall often suppress the CR notation (D, J) when it
is understood from the context. We also refer to a Sasakian structure
S as an element of t+

k

(D, J). We view the Sasaki cone t+
k

(D, J) as a
k-dimensional smooth family of Sasakian structures.
We recall the type of a Sasakian structure [BGN03a, BG08]. A

Sasakian structure S = (⇠, ⌘,�, g) is positive (negative) if the basic
first Chern class c1(F⇠

) is represented by a positive (negative) definite
basic (1, 1)-form. It is null if c1(F⇠

) = 0, and indefinite if c1(F⇠

) is
otherwise. It is well known that for negative and null Sasakian struc-
tures the connected component of the Sasaki automorphism group is
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the circle group S1 generated by the Reeb vector field, thus, k = 1. So
when k = dim t+ > 1 the type of any element in t+ is either positive or
indefinite. The type is an invariant of the transverse homothety class
of ⇠, that is a⇠ and ⇠ have the same type for all a 2 R+. We denote
by p+ ⇢ t+ the subset of positive Sasakian structures, and call it the
positive Sasaki subset. It is convenient to introduce the notation � > 0
for elements � of the Abelian groups H1,1

B

(F
⇠

), H2(M,R), H2(M,Z) to
mean that � can be represented by a positive definite (1, 1)-form.

By a conical subset we mean that if ⇠ 2 p+ then so is a⇠ for any
a 2 R+.

Proposition 2.1. The positive Sasaki subset p+ is an open conical
subset of t+.

Proof. Positivity is an open condition, and p+ is conical since the trans-
verse Ricci form ⇢T

⇠

is invariant under scaling of ⇠. ⇤
So if t+ contains a positive Sasakian structure it contains an open

set of positive Sasakian structures; hence, p+ contains a quasi-regular
Sasakian structure. Our next result relates the existence of positive
Sasakian structures in t+ with the total transverse scalar curvature
defined by

(2) S
⇠

=

Z

M

sT
⇠

dv
⇠

where ⇠ 2 t+. We mention that, as with the volume, S
⇠

depends only
on the isotopy class of the Sasakian structure. Our results make use of
the remarkable Equation (32) from [BHL18] which stated as Lemma
5.2 and Proposition 5.3 there, becomes

Theorem 2.2 ([BHL18]). The following hold:

(1) If there exists a Sasakian structure ⇠0 2 t+ whose transverse
scalar curvature is positive almost everywhere, then S

⇠

> 0 for
all ⇠ 2 t+;

(2) If p+ is non-empty, the total transverse scalar curvature S
⇠

is
positive for all ⇠ 2 t+. Alternatively stated, if dim t+ > 1 and
there exists ⇠ 2 t+ whose total transverse scalar curvature S

⇠

is
non-positive, then all Sasakian structures in t+ are indefinite.

It is well known that the positivity of a Sasakian structure depends
only on the homothety class, that is it only depends on the ray in t+.
However, both the volume V

⇠

and the total transverse scalar curvature
S
⇠

vary with the point on the ray. It is, thus, convenient to consider
the Einstein-Hilbert functional H(⇠) [BHLTF17, BHL18]. Actually, it
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is more convenient to consider the ‘signed’ version

(3) H1(⇠) = sign(S
⇠

)
|S

⇠

|n+1

Vn

⇠

,

when the dimension of the Sasaki manifold is 2n+ 1. It was shown in
[BHL18] that H1(⇠) tends to +1 as ⇠ approaches the boundary, thus,
H1(⇠) has a global minimum ⇠

min

. The critical points of H1(⇠) in t+

are S
⇠

= 0 and the zeros of the Sasaki-Futaki invariant [BHLTF17]. In
terms of the Einstein-Hilbert functional, item (2) of Theorem 2.2 takes
the form

Theorem 2.3 ([BHL18]). If H1(⇠min

)  0, all Sasakian structures in
t+ are indefinite. Alternatively, if p+ is non-empty, H1(⇠min

) > 0.

The hypothesis here or that of (2) of Theorem 2.2 is significantly
weaker than that of (1) of Theorem 2.2. Thus, one may wonder whether
there exists contact structures of Sasaki type whose entire Sasaki cone
consists of indefinite Sasakian structures, but H1(⇠min

) > 0. The next
example indicates that this is fairly common.

Example 2.4. Let N = ⌃
g

be a Riemann surface of genus g � 2
and consider Examples 5.7 and 5.15 of [BTF14a] which describe the
S3
w join M

g�1,1,12,1 as an S3 bundle over ⌃
g

(see the next section for a
brief description of this join construction). It is the trivial S3 bundle
if g is odd, and the non-trivial bundle if g is even. Since in this case
N is not Fano and t+w = t+, Corollary 4.5 below implies that the entire
Sasaki cone consists of indefinite Sasakian structures. By Equation
(51) of [BTF14a] these Sasaki manifolds have a unique CSC ray which
by Example 5.15 has positive constant transverse scalar curvature1 8⇡
independent of g. By Theorem 2.2 we then know that S

⇠

> 0 for all ⇠ 2
t+ and so H1(⇠min

) > 0, and, by Theorem 1.4 of [BHLTF17] together
with Proposition 5.10 of [BTF14a], the unique CSC ray is the unique
critical point, ⇠

min

, of H1 (since we are on a five dimensional manifold,
H1 is just the Hilbert-Einstein functional here). Summarizing we have

Proposition 2.5. For each g � 2 the contact manifold M
g�1,1,12,1 of

Sasaki type has a Sasaki cone saturated by indefinite Sasakian struc-
tures and with H1(⇠min

) > 0.

We will see later by examples that although S
⇠

> 0 for all elements
⇠ 2 t+, there can be a range of positivity that is not all of t+, that is

1The transverse scalar curvature in Example 5.15 of [BTF14a] should be 8⇡ not
8⇡/3.
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p+ can be a proper subset of t+. Outside of the range of positivity the
Sasakian structures are indefinite.

Remark 2.6. A recent result of Nozawa [Noz14] shows that deforma-
tions of the transverse holomorphic foliation of a Sasakian structure do
not generally remain Sasakian. The obstruction lies in the basic Hodge
cohomology group H0,2

B

(F
⇠

). However, for positive Sasakian structures,
there is a vanishing theorem H0,q

B

(F
⇠

) = 0 [BGN03a], so such small
deformations of positive Sasakian structures remain positive which is
consistent with Corollary 4.5 below.
In the special case c1(D) = 0 we have

Theorem 2.7. Let (M,S) be a Sasaki manifold with c1(D)R = c1(D)⌦
R = 0 and suppose that its Sasaki cone t+ contains a positive Sasakian
structure. Then every element of the Sasaki cone is positive, that is
t+ = p+.

Proof. From the exact sequence in Lemma 7.5.22 of [BG08] we have
c1(F⇠

) = a[d⌘]
B

for some a 2 R. If a  0 for some Sasakian structure
S 2 t+ then dim t+ = 1 and c1(F⇠

)  0 which contradicts the hypoth-
esis that t+ contains a positive element. So we must have a > 0 with
c1(F⇠

) = a[d⌘]
B

for any ⇠ 2 t+. This implies that the entire cone is
positive. ⇤

We want to understand generally the e↵ect of c1(D) on the Sasakian
structures in t+. For the positive case we have

Theorem 2.8. Let (D, J) be a CR manifold of Sasaki type. If c1(D) >
0 then all Sasakian structures in t+ are positive, hence, t+ = p+.

Proof. From Lemma 7.5.22 of [BG08] for any Sasakian structure S =
(⇠, ⌘,�, g) in t+ we have the split exact sequence

0���!R
�

���!H2
B

(F
⇠

)
◆⇤

���!H2(M,R)���!H1
B

(F
⇠

),

with �(a) = a[d⌘]
B

and ◆⇤c1(F⇠

) = c1(D). Now c1(D) is represented by
a positive (1, 1)-form, and from the definition of ◆⇤ it is the same (1, 1)
form that represents c1(F⇠

). Thus, by El Kacimi Alaoui’s theorem
c1(D) can be represented by 1/2⇡ times the transverse Ricci form ⇢T

⇠

of a Sasakian structure S with underlying CR structure (D, J), cf.
Theorem 7.5.20 of [BG08]. Moreover, ⇢T

⇠

is positive. Since S is an
arbitrary element of t+, all Sasakian structures in t+ are positive. ⇤

We now consider the general case. Assume that dim t+ > 1 and
for simplicity that H1(M,R) = 0. Then from Proposition 7.2.3 of
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[BG08] H1
B

(F
⇠

) ⇡ H1(M,R) = 0, so there exists a monomorphism
s⇤ : H2(M,R)��!H2

B

(F
⇠

) and an a
⇠

2 R such that

(4) c1(F⇠

) = s⇤c1(D) + a
⇠

[d⌘]
B

.

If c1(D) = 0 we recover Theorem 2.7 and when c1(D) > 0 Thereom 2.8
forces c1(F⇠

) to be positive. For any other case c1(F⇠

) can be either
positive or indefinite depending on choices. This gives rise to type
changing which we discuss for the w subcone of an S3

w-join in Section
4.

Let us assume that p+ 6= ;. Given a non-zero first Chern class
c1(D) 2 H2(M,Z) assume that there exists a non-negative real number
B0 and a primitive class � 2 H2(M,Z) such that c1(D) +B0� > 0. We
define B by

(5) B = inf{B0 2 R�0 | c1(D) + B0� > 0}.
B is an invariant of the family of Sasakian structures defined by t+.
We give an explicit value of B > 0 for certain contact structures of
Sasaki type on S2 ⇥ S3 described in Proposition 4.2 below and show
that it is related to the map g in [BP14].

3. The Weighted S3
Join Construction

We give a brief review of the weighted S3
w join construction. We refer

to our previous papers [BTF14a, BTF15a, BTF16] for more details.
Our construction is given a regular Sasaki manifold M as the total
space of an S1-bundle over the Hodge manifoldN with primitive Kähler
class [!

N

], and a pair of relatively prime positive integers l = (l1, l2),
we define the l = (l1, l2)-join of M with S3

w to be the quotient of M⇥S3

by the S1-action

(6) (x, u; z1, z2) 7! (x, eil2✓u; e�il1w1✓z1, e
�il1w2✓z2)

where u denotes the fiber of the natural projection ⇡ : M��!N , and
|z1|2+ |z2|2 = 1 describes the unit sphere in C2. For this quotient to be
smooth we must impose gcd(l2, l1w1w2) = 1 and we denote the quotient
byMl,w = M ?lS

3
w. NowMl,w has an induced Sasakian structure whose

contact form ⌘l,w and Reeb vector field ⇠l,w satisfy

(7) ⇡⇤
L

⌘l,w = l1⌘M + l2⌘w, ⇠l,w = (⇡
L

)⇤
� 1

2l1
⇠
M

+
1

2l2
⇠w

�
,

where ⌘
M

, ⇠
M

, (⌘w, ⇠w) are the contact 1-form and Reeb vector field
on M, (S3), respectively. Since the kernel of (⇡

L

)⇤ is generated by the
vector field Ll,w = 1

2l1
⇠
M

� 1
2l2

⇠w, the Reeb vector field of ⌘l,w on Ml,w is
1
l2
⇠w. Furthermore, the quotient by the S1-action of Ml,w generated by
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⇠l,w is the projective algebraic orbifold N ⇥ CP1[w] with Kähler form
!l,w satisfying ⇡⇤!l,w = d⌘l,w. So the join fits into the commutative
diagram

(8)

M ⇥ S3
w

& ⇡
L???y⇡2 Ml,w

. ⇡1

N ⇥ CP1[w]

where the ⇡s are the obvious projections. Without loss of generality we
can take w1 � w2. Since CP1[w] has a Hamiltonian vector field which
lifts to Ml,w, the latter has a Sasaki cone of dimension at least two.
This two dimensional cone is generated by the lifted Hamiltonian vector
field and the Reeb vector field ⇠l,w and can be identified with the open
first quadrant of R2, described by {(v1, v2) | v1, v2 > 0}. It is called
the w-Sasaki cone and it denoted by t+l,w. We shall abuse notation
somewhat saying that v or a Sasakian structure belongs to t+l,w. This
w-Sasaki cone is associated to the underlying strictly pseudoconvex
CR structure (Dl,w, J).

Note that by taking ⇡⇤[!
N

] = l2� and ⇡⇤[!w] = �l1� for some gen-
erator � 2 H2(M

l1,l2,w,Z), where ⇡⇤!
N

= d⌘
M

, ⇡⇤!w = d⌘w, and ⇡ is
the obvious projection in each case, we have

(9) c1(Dl1,l2,w) = ⇡⇤c1(N)� l1|w|�.

If we choose a quasi-regular Reeb field in t+l,w, its quotient orbifold
is a ruled manifold of the form S

n

= P(1l� L
n

) where L
n

is a complex
line bundle of ‘degree’ n (see Section 2 of [BTF16] for the meaning of
‘degree’), and with an orbifold structure given by a branch divisor of
the form

(10) � = (1� 1

m1
)D1 + (1� 1

m2
)D2,

where D1(D2) are the zero (infinity) section of L
n

, respectively, and m
i

is the ramification index of the branch divisor D
i

. The pair (S
n

,�) is
called a log pair. The values n and m

i

are given by

(11) n =
l1
s
(w1v2 � w2v1), m

i

= mv
i

for i = 1, 2, where s = gcd(|w2v1 � w1v2|, l2), and m = l2
s

.
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4. Positivity in the w-Sasaki Cone

Here we study the so-called w-Sasaki cone for the 4-parameter class
of Sasaki manifolds Ml,w. In particular, we are interested in how the
type of a Sasaki manifold changes as we move in the Sasaki cone. We
denote by p+w the intersection of p+ with the subcone t+w.

4.1. corb1 and c1(F⇠

). Choose a basis {�
i

}k
i=0 of H2(N,Z)/Tor ⇡ Zk+1

that diagonalizes c1(N) and such that �0 = [!
N

]. We have

(12) c1(N) = b0[!N

] +
kX

i=1

b
i

�
i

,

and
(13)

corb1 (N ⇥CP1[w]) = c1(N)+ corb1 (CP1[w]) = b0[!N

]+
kX

i=1

b
i

�
i

+ |w|�
k+1

where �
k+1 =

[!0]
w1w2

is an integral class in the orbifold cohomology group
H2

orb

(CP1[w],Z) although it is a rational class in the ordinary cohomol-
ogy H2(CP1,Q). Note that corb1 (N ⇥ CP1[w]) is positive if and only if
c1(N) is positive. Now corb1 pulls back to c1(F⇠w) on Ml,w, so we have

(14) c1(F⇠w) = ⇡⇤corb1 (N ⇥ CP1[w]) =
k+1X

i=0

b
i

�
i

,

where �
i

= ⇡⇤�
i

form a basis of H2
B

(F
⇠

). Actually the forms �
i

are
(1, 1) forms on N ⇥ CP1[w], so the forms �

i

are basic (1, 1)-forms, i.e.
they are in H1,1

B

(F
⇠

). Furthermore, c1(F⇠w) is an integral class.
Now consider a general quasi-regular Sasakian structure Sv with

Reeb vector field ⇠v in the w-Sasaki cone t+w. The base orbifold (S
n

,�)
has orbifold first Chern class

(15) corb1 (S
n

,�) = c1(N) +
1

m1
PD(D1) +

1

m2
PD(D2),

where c1(N) is viewed as a pull-back to S
n

and the ramification in-
dices m

i

satisfy Equation (11). Now we have ⇡⇤
vc

orb

1 (S
n

,�) = c1(F⇠v),
so corb1 (S

n

,�) is positive if and only if c1(F⇠v) is positive. Moreover,
it follows from the analysis of Section 5.1 of [BTF16] that c1(F⇠v) is
smooth function on t+w.

Proposition 4.1. Consider the S3
w-join Ml,w. If c1(N) is positive,

then there is a positive Sasakian structure in the w-Sasaki cone t+w ⇢
t+, and S

⇠

> 0 for all ⇠ 2 t+; hence, H1(⇠min

) > 0.
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Proof. The first statement follows immediately from Equation (14),
and then the second statement follows from Theorem 2.2. ⇤

The converse to the first statement of Proposition 4.1 is also true,
which we prove in Proposition 4.2 below. Thus, if a Sasakian structure
Sv = (⇠v, ⌘v,�, g) 2 t+w is positive, then c1(F⇠w) is positive. However,
generally not all Sasakian structures in t+w will be positive which leads
to type changing in t+w.

4.2. Type Changing. We describe this type changing in the case of
the S3

w-join with a regular Sasaki manifold M . However, before doing
so we prove the converse of Proposition 4.1. This shows that N must
be Fano in which case we set b0 = I

N

which is referred to as the Fano
index in the monotone case. Note, however, that we do not restrict to
the monotone case. We have

Proposition 4.2. Let Ml,w be a smooth S3
w join as described in Section

3. If there is a positive Sasakian structure in the w-cone t+l,w, then
c1(N) is positive, that is, N is Fano. When N is Fano, the following
hold:

(1) The entire w-cone t+l,w is positive if and only if l2IN > l1w1.

Equivalently t+l,w is positive everywhere if and only if c1(Dl,w)+
l1w2� > 0.

(2) If IN l2

w2l1
< 1 the range of positivity p+w is

w1

w2
� l2IN

l1w2
<

v1
v2

<
w1

w2

1

1� l2IN
l1w2

.

(3) If 1  IN l2

w2l1
< w1

w2
then p+w is

w1

w2
� l2IN

l1w2
<

v1
v2
.

Proof. We prove this first in the quasi-regular case and then by a conti-
nuity argument as done in [BTF16] the irregular case follows. Given a
quasi-regular Reeb vector field ⇠v with v = (v1, v2) a pair of relatively
prime positive integers, we have a base orbifold of the form (S

n

,�)
where S

n

is a smooth projective variety of the form P(1l � L
n

) over a
Kähler manifold N with branch divisor �. Moreover, from Equation
(15) and the relations

(16) 2⇡(PD(D1)� PD(D2)) = [!
Nn ], !

Nn = 2⇡n!
N

,
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the orbifold first Chern class is given by
(17)

corb1 (S
n

,�) = c1(N)+
� 1

m1
� 1

m2

� [!
Nn ]

4⇡
+
� 1

m1
+

1

m2

�(PD(D1) + PD(D2))

2
.

Now we have an admissible Kähler class on (S
n

,�) as adapted from
[ACGTF08a] which can be written - up to a positive scaling factor - as

(18) ⌦r = [!
Nn ]/r + 2⇡PD[D1 +D2],

where 0 < |r| < 1, !
Nn = 2⇡n!

N

, and r · n > 0. Note that r, n and
!
Nn all have the same sign. Then Equation (17) gives

(19)

corb1 (S
n

,�) =
kX

i=1

b
i

�
i

+
�2b0
n

+
1

m1
� 1

m2

� [!
Nn ]

4⇡
+
� 1

m1
+

1

m2

�(PD(D1) + PD(D2))

2
.

We, therefore, see from the admissible classes (18) that corb1 (S
n

,�) is
positive if and only if b

i

> 0, the classes �
i

are represented by positive
definite (1, 1)-forms, and the following inequalities hold

(20)
(2b0

n

+ 1
m1

� 1
m2

) > ( 1
m1

+ 1
m2

) if n > 0

(2b0
n

+ 1
m1

� 1
m2

) < �( 1
m1

+ 1
m2

) if n < 0.

Thus, if b0  0 we get a contradiction since the m
i

are positive. This
implies the first statement that N must be Fano. So we set b0 = I

N

the
Fano index. Then using Equations (11) we can rewrite these conditions
as

(21) 0 <

(
I
N

l2v2 � l1(w1v2 � w2v1) if w1v2 � w2v1 > 0

I
N

l2v1 + l1(w1v2 � w2v1) if w1v2 � w2v1 < 0.

Note that sending n 7! �n the left hand inequalities become automatic.
From this one obtains the result. ⇤

Remark 4.3. If N is Fano and (m1,m2) = (1, 1) then the inequalities
(20) are due to Koiso [Koi90]. See also Theorem 3.1 in [ACGTF08b].

Remark 4.4. Notice that in all cases there is some range of positivity;
however, the range shrinks as l2IN

l1w2
tends to 0. From Proposition 4.2 we

have

Corollary 4.5. If N is Fano, then there is a connected open subcone of
positive Sasakian structures in t+w. If N is not Fano then all elements
of t+w are indefinite.
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Remark 4.6. The bound B described at the end of Section 2 is given
by l1w2 when N is Fano and has no Hamiltonian vector fields. Gener-
ally, if N has Hamiltonian vector fields, the bound l1w2 is only a bound
for the restriction of B to the w subcone t+w ⇢ t+.

4.3. Examples. The simplest case is when the a�ne cone (C(M) over
M is Gorenstein or Q-Gorenstein, or equivalently c1(D)Q = c1(D) ⌦
Q = 0. By Theorem 2.7 the entire Sasaki cone is positive so there is no
type changing. Moreover, it is well known [MSY08] that there is pre-
cisely one critical point of H1(⇠) and it is a minimum with H1(⇠min

) >
0. A particularly well known case is that of Y p,q [GMSW04]. It was
shown in Corollary 5.5 of [BP14] that for p fixed we have a �(p)-
bouquet of Sasaki cones where �(p) is the Euler phi function, and
all the Sasakian structures of the bouquet are positive. Recall [Boy13]
that bouquets occur by deforming the transverse complex structure.
The contact equivalence problem was studied in [BP14] for the case of

S3 bundles over S2. Even in this case the problem is far from completely
solved. The notation there is quite di↵erent from that used in [BTF16]
and here where the underlying contact CR structure is labeled by the
four integral parameters (l1, l2;w1, w2). In [BP14] the contact vector
bundle is label by the three integers k, j, l. Moreover, the primitive
generator ofH2(M,Z) that we call � here is �� in [BP14]. The relation
between the labels are

l1 = gcd(2k � j, j), l2 = l, l1w = (2k � j, j)

where j = 1, . . . , k. This implies j = l1w2 = B, and 2k = l1|w|. In
[BP14] the authors also defined a map g which associates a positive
integer i to the set {j = 1, . . . , k}. Theorem 4.11 of [BP14] shows that
the elements of the level sets of g are T 2 equivariantly equivalent but
not T 3 equivariantly equivalent. This implies that the level set g�1(i)
gives rise to a k-bouquet of Sasaki cones whose cardinality k is the
cardinality of g�1(i), see Corollary 5.3 of [BP14]. Note that the integer
i = g(j) = gcd(l, 2(k � j)) is the integer s for the almost regular Reeb
vector field, i.e. v = (1, 1).

Remark 4.7. The integer k should be an invariant of the contact
structure. If the problems involving transversality for the contact ho-
mology in this case can be resolved, Proposition 3.11 of [BP14] would
show that the integer k is a contact invariant. Nevertheless, Theorem
4.11 of [BP14] does give k as a lower bound to the number of conjugacy
classes of 3-dimensional tori in the contactomorphism group.
We illustrate type changing with several examples. The first two are

examples of bouquets. For the case of S2 ⇥ S3 discussed in Examples
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4.8 and 4.9 below, see Corollary 5.3 of [BP14]. The third example
does not explicitly involve bouquets. They are all joins of the form
S2p+1 ?

l1,l2 S
3
w. The first two have p = 1, whereas the third has p > 1.

From item (1) in Proposition 4.2 we see that if c1(D) is non-negative,
then all w-cones in a bouquet will be entirely positive. Hence, for
contact structures with c1(D) � 0 complete positivity of t+l,w depends
only on the bouquet and not on the Sasaki cones in the bouquet. In
particular this holds for the cohomologically Einstein case c1(D)R = 0
which depends only on the ray in t+.

Example 4.8. Consider the bouquet on S2⇥S3 described in [BTF15b],
namely

4-bouquet on S2 ⇥ S3

m l1 w B
0 4 (1,1) 4
1 1 (5,3) 3
2 2 (3,1) 2
3 1 (7,1) 1

Here we take l2 = 1 with m = 1
2 l1(w1 � w2), and we have g�1(1) =

{1, 2, 3, 4}. For all members of the bouquet we have c1(D) = �6�
where � is a positive generator of H2(S2 ⇥ S3,Z). Note that we have
j = l1w2 = B which give the four cases, and that B+m = k = 4 which
we believe to be a contact invariant. The positivity range p+w in the
four cases are:

m positivity range
0 1

2 < v1
v2

< 2
1 1 < v1

v2
< 5

2 2 < v1
v2

3 5 < v1
v2

We note that the regular ray v = (1, 1) occurring in each element of the
bouquet corresponds to an S1-bundle of S2 ⇥ S3 over the even Hirze-
bruch surfaceH2m form = 0, 1, 2, 3. Of course, only whenm = 0 is this
ray positive. It follows from Proposition 4.1 that H1(⇠min

) > 0 for all
Sasaki cones of the bouquet. Moreover, from Section 5.3 of [BHLTF17]
we have critical points of H1 that lie in the w subcone and which all
have constant scalar curvature. They are all minimum restricted to
their w-Sasaki cone, but we do not know whether they are a global
minimum. For m = 0, 1 the minima are positive Sasakian structures;
whereas, for m = 2, 3 they are indefinite Sasakian structures.
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Next we give an example where for one element of a bouquet the
entire w-cone is positive, but in the other it is not.

Example 4.9. Again our manifold is S2 ⇥ S3, but now l2 = 3 with
the contact structure satisfying c1(D) = �2�. We also need to satisfy
the smoothness condition [BTF16] gcd(3, l1w1w2) = 1. In this case we
have a regular two-bouquet:

2-bouquet on S2 ⇥ S3

m l1 w B
0 4 (1,1) 4
3 1 (7,1) 1

For m = 0 we have l2IN = 6 > 4 = l1w1, so the entire w-cone is
positive. However, for m = 3 we have l2IN = 6 < 7 = l1w1, so this has
positivity range 1 < v1

v2
.

Example 4.10. Consider what happens when we take the S3
w join

with an odd dimensional sphere S2p+1 of arbitrary dimension, namely,
S2p+1 ?

l1,l2 S
3
w. When p > 1 the integral cohomology ring is

(22) Z[x, y]/(w1w2l
2
1x

2, xp+1, x2y, y2)

where x is a 2-dimensional class and y is a 2p + 1 dimensional class.
So the topology of the manifold Ml,w depends on the product w1w2l

2
1.

Moreover, it follows from Sullivan’s rational homotopy theory [Sul77,
BTF14b] that with w1w2l

2
1 fixed there are a finite number of di↵eomor-

phism types as l2 varies through positive integers that are relatively
prime to l1w1w2. But generally the contact structure can also vary
with l2 as we have

c1(Dl1,l2,w) = (l2(p+ 1)� l1|w|)�.
The case c1(Dl1,l2,w) = 0 can be realized by taking l1 = p + 1 and
l2 = |w| = w1+w2 and was studied in Section 3.1.1 of [BTF15a]. Here
the entire w Sasaki cone t+ is positive by Theorem 2.7.
In this case we have little control over whether or not bouquets ex-

ist. Nevertheless, the type changing described by Proposition 4.2 still
occurs. Let us describe this with a simple example. Put p = 2 and
w1w2l

2
1 = 12. This gives manifolds M1,l2,12,1,M1,l2,4,3,M2,l2,3,1 with iso-

morphic cohomology ringsZ[x, y]/(12x2, xp+1, x2y, y2) with gcd(l2, 6) =
1. The corresponding contact structures satisfy
(23)
c1(D1,l2,12,1) = (3l2�13)�, c1(D1,l2,4,3) = (3l2�7)�, c1(D2,l2,3,1) = (3l2�8)�.

So the contact structure varies with l2. Notice that since l2 must be odd
the second Stiefel-Whitney class w2 vanishes for M1,l2,12,1 and M1,l2,4,3,
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and does not vanish for M2,l2,3,1 which implies that M2,l2,3,1 is not ho-
motopy equivalent to M1,l2,12,1 or M1,l2,4,3. We do not know at this
stage whether the manifolds M1,l2,12,1 and M1,l2,4,3 are di↵eomorphic,
homeomorphic, or even homotopy equivalent. Note, however, that we
have c1(D1,l02,12,1

) = (3l02 � 13)� = c1(D1,l2,4,3) = (3l2 � 7)� if and only
if l02 = l2 + 2.
One can easily determine the ranges of positivity for these contact

manifolds. For example for M1,l2,12,1 we have the positivity range as
follows p+w = t+w if l2 � 4, whereas, for l2 = 1, 2, 3, the positivity subcone
p+w is given by v1/v2 > 9, 6, 3, respectively. Similarly, for M1,l2,4,3 we
have p+w = t+w for l2 � 2 and p+w given by v1/v2 > 1/3 for l2 = 1. Notice
that M1,3,12,1 and M1,1,4,3 could belong to a bouquet, but we have not
proven this.
Other similar examples can easily be worked out.

Appendix A. Admissible metrics with positive Ricci

curvature

The purpose of this appendix is to demonstrate how one can easily
produce explicit admissible examples of Sasaki metrics with positive
Ricci curvature on certain joins. In order to do so, we need to first give
a quick introduction to admissible Kähler metrics (Section A.1). Then
we will use this to produce explicit orbifold admissible Kähler metrics
with positive Ricci curvature (Section A.2). Finally, we mention how
this construction can be lifted to the Sasaki level (Section A.3).
Smooth admissible Kähler metrics were defined in [ACGTF08a]. In

its full generality it combines the formalism of various constructions
[Gua95, Hwa94, HS02, KS86, LeB91, PP91, TF98, Sak86] that in turn
generalized a well-known construction, used by Calabi [Cal82] to con-
struct extremal Kähler metrics on the Hirzebruch complex surfaces.
Here we will not need the full generality of the admissible set-up (we
have only one piece in the base and no ”blow-downs”), but we will
extend to a mild orbifold case.

A.1. Preliminaries. Let !
N

be a primitive integral Kähler form of
a CSC Kähler metric on (N, J), 1l ! N be the trivial complex line
bundle, n 2 Z \ {0}, and let L

n

! N be a holomorphic line bundle
with c1(Ln

) = [n!
N

]. Consider the total space of a projective bundle
S
n

= P(1l�L
n

) ! N . Then S
n

is called admissible, or an admissible
manifold [ACGTF08a]. Now D1 = [1l� 0] and D2 = [0� L

n

] are the
so-called “zero” and “infinity” sections of S

n

! N .
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Let r be a real number such that 0 < |r| < 1, and such that r n > 0.
A Kähler class on S

n

, ⌦, is admissible if (up to scale)

⌦ =
2⇡n[!

N

]

r
+ 2⇡PD(D1 +D2).

In general, the admissible cone is a sub-cone of the Kähler cone.
In each admissible class we can now construct explicit Kähler met-

rics g (called admissible Kähler metrics) [ACGTF08a]. We can gen-
eralize this construction to the log pair (S

n

,�), where � denotes the
branch divisor � = (1�1/m1)D1+(1�1/m2)D2. If m = gcd(m1,m2),
then (S

n

,�) is a fiber bundle over N with fiber CP1[m1/m,m2/m]/Z
m

.
The admissible metric is smooth on S

n

\ (D1 [ D2) and has orbifold
singularities along D1 and D2.

More specifically, on S
n

\ (D1 [ D2), an admissible Kähler metric
with corresponding Kähler form is given up to scale by

(24) g =
1 + rz

r
g
Nn +

dz2

⇥(z)
+⇥(z)✓2, ! =

1 + rz

r
!
Nn + dz ^ ✓,

where (g
Nn ,!Nn) = (2⇡ng

N

, 2⇡n!
N

), z can be interpreted as a moment
map of the natural S1-action, ✓ is a connection 1-form, and ⇥ is a pos-
itive smooth function on (�1, 1) (for precise definitions, please consult
[ACGTF08a]). Now ⇥(z) must satisfy certain endpoint conditions in
order for g to extend as an orbifold metric on (S

n

,�):

⇥(±1) = 0,

⇥0(�1) = 2/m2 ⇥0(1) = �2/m1.

Define a function F (z) by the formula ⇥(z) = F (z)/p(z), where p(z) =
(1 + rz)dN . Since p(z) is positive for �1  z  1, the conditions on
F (z) are:

(25)

F (z) > 0, �1 < z < 1,

F (±1) = 0,

F 0(�1) = 2p(�1)/m2 F 0(1) = �2p(1)/m1.

From [ACG06] we have that the Ricci form of an admissible metric
given by (24) equals

(26) ⇢ = ⇢
N

� 1

2
ddc logF = ⇢

N

� 1

2

F 0(z)

p(z)
!
Nn � 1

2

⇣F 0(z)

p(z)

⌘0
dz ^ ✓.
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Note that r, n and !
Nn all have the same sign. Let us assume N is

KE so that ⇢
N

= s
Nn!Nn with s

Nn = I
N

/n. Then

(27) ⇢ =

✓
I
N

/n� 1

2

F 0(z)

p(z)

◆
!
Nn � 1

2

⇣F 0(z)

p(z)

⌘0
dz ^ ✓.

Since ! and 1+rz
r

⇡⇤!
Nn are both globally defined on S

n

, then so is dz^✓
(even though ✓ is not). Thus ⇢ is a globally defined (1, 1)-form.
On S

n

\ (D1 [D2), the (1, 1)-forms !
Nn and dz ^ ✓ are orthonormal

with respect to the orthogonal splitting TS
n

= H � V defined by
the global Kähler metric g, where V = Ker(⇡⇤) is the vertical space.
Specifically, dz^✓ 2 ^2V ⇤ and ⇡⇤!

Nn 2 ^2H⇤. This must then be true
globally by continuity. Therefore2, ⇢ is positive if and only if for all
z 2 [�1, 1]

(28)

✓
I
N

/n� 1

2

F 0(z)

p(z)

◆
· n > 0

and

(29)
⇣F 0(z)

p(z)

⌘0
< 0.

In particular, we must have that (28) holds at z = ±1, so we must
have that✓

I
N

/n� 1

m2

◆
· n > 0 and

✓
I
N

/n+
1

m1

◆
· n > 0.

We see right away, as is already obvious, that this will not happen if
I
N

 0. Thus moving forward we assume that I
N

> 0. Now, if
✓
I
N

/n� 1

m2

◆
· n > 0 and

✓
I
N

/n+
1

m1

◆
· n > 0,

then (28) holds at z = ±1 and then if (29) is also satisfied one can
check that (28) must hold for all z 2 [�1, 1]. All in all, ⇢ is positive if
and only if

✓
I
N

/n� 1

m2

◆
· n > 0,

✓
I
N

/n+
1

m1

◆
· n > 0,

⇣F 0(z)

p(z)

⌘0
< 0

Notice that if n > 0, then the middle condition is automatic while
if n < 0, the first equation is automatic. As we saw in the proof of
Proposition 4.2, the first two conditions in the box above are equivalent
to corb1 (S

n

,�) being positive.

2The authors would like to thank Vestislav Apostolov for his kind advice on this
argument.
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A.2. Explicit Positive Ricci Curvature Admissible Kähler Met-
rics. We now assume that corb1 (S

n

,�) is positive. The existence of
some positive Ricci curvature Kähler metric is well established by The-
orem 7.5.19 in [BG08], but to see an explicit admissible example we
need to produce a function F (z) satisfying (25) and (29). Obviously
admissible Kähler-Einstein metrics - should they exist - would work,
so we look to Kähler-Einstein constructions [KS86] for inspiration (See
also Proposition 5.4 in [BTF16]). What follows may be viewed as a
generalization (di↵erent from the usual generalizations) of admissible
Kähler-Einstein.

Consider the following function

g(t, k) =

8
><

>:

2
( 1
m1

+ 1
m2

)e�kt�( ek

m1
+ e�k

m2
)

e

k�e

�k if k 6= 0

1�t

m2
� 1+t

m1
if k = 0.

One may check that this is continuously di↵erentiable for all (t, k) 2 R2.
Further, for any value of k 2 R, g(t, k) is clearly a smooth function of
t 2 R.

Now observe that

•

@g(t, k)

@t
=

8
><

>:

�2k
( 1
m1

+ 1
m2

)e�kt

e

k�e

�k if k 6= 0

�( 1
m1

+ 1
m2

) if k = 0.

is always negative.
•

g(�1, k) =
2

m2
and g(1, k) =

�2

m1
.

• For �1 < t < 1,

lim
k!+1

g(t, k) =
�2

m1
, lim

k!�1
g(t, k) =

2

m2
,

and
@g(t, k)

@k
< 0.

Lemma A.1. There exists a unique k
m1,m2 2 R such that

Z 1

�1

g(t, k
m1,m2)p(t) dt = 0

Proof. Recall that p(z) > 0 for �1  z  1. Now we define the function

f(k) =

Z 1

�1

g(t, k)p(t) dt.
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Figure 1. g(t, k) for m1 = m2 = 1 and some k values
between -100 and 100

Out[4]=

-1.0 -0.5 0.5 1.0
t

-2

-1

1

2

The facts listed above gives us that f(k) is continuous for all k 2 R
and

lim
k!+1

f(k) =
�2

m1

Z 1

�1

p(t) dt < 0

while

lim
k!�1

f(k) =
2

m2

Z 1

�1

p(t) dt > 0.

Since moreover

f 0(k) =

Z 1

�1

@g(t, k)

@k
p(t) dt < 0,

we conclude that f(k) vanishes for precisely one k-value. This proves
the lemma. ⇤

Note that f(0) = 0 i↵
Z 1

�1

(
1� t

m2
� 1 + t

m1
)p(t) dt = 0.

In the event where we also know that

2rI
N

/n = (1 + r)/m2 + (1� r)/m1,

this corresponds to the existence of admissible Kähler-Einstein exam-
ples given by Proposition 5.4 in [BTF16].

In general, we may now define an admissible metric by choosing F (z)
as follows:

F (z) =

Z z

�1

g(t, k
m1,m2)p(t) dt.

Note that
F (±1) = 0,

F 0(z) = g(z, k
m1,m2)p(z),

and hence

F 0(�1) = 2p(�1)/m2 F 0(1) = �2p(1)/m1.
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Moreover, since p(t) > 0 and g(t, k
m1,m2) is a monotone function over

[�1, 1], which is positive at z = �1, negative at z = 1, and satisfies thatR 1

�1 g(t, km1,m2)p(t) dt = 0, we realize that F (z) > 0 for �1 < z < 1.
Thus F (z) satisfies all the conditions in (25). Finally

⇣F 0(z)

p(z)

⌘0
=

@g(z, k
m1,m2)

@z
< 0,

and so we have our explicit admissible example with positive Ricci
curvature.

A.3. Explicit Sasaki metrics with positive Ricci curvature. Now
consider the S3

w-join Ml,w and assume N is a positive KE manifold.
Let v = (v1, v2) 6= w be a weight vector with relatively prime integer
components and let ⇠v be the corresponding Reeb vector field in the
w-Sasaki cone t+w. Then from [BTF16], we know that the quotient
of M

l1,l2,w by the flow of the Reeb vector field ⇠v is a certain log pair
(S

n

,�) (where n 2 Z\{0} andm
i

= mv
i

) with admissible Kähler class.
Assume that (v1, v2) is such that corb1 (S

n

,�) is positive. Then the ex-
plicit orbifold Kähler metrics with positive Ricci curvature produced in
Section A.2, gives us (after an appropriate homothety transformation)
explicit quasi-regular admissible Sasaki metrics with positive Ricci cur-
vature in the ray of ⇠v. Further, since for the explicit ⇥(z) = F (z)p(z),
produced in Section A.2, we have that m⇥(z) is independent of m and
varies smoothly with (v1, v2), we can lift the admissible construction to
the Sasakian level (as in Section 6 of [BTF16]) and get explicit irregular
examples as well.
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