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SASAKI-EINSTEIN METRICS ON A CLASS OF 7-MANIFOLDS

CHARLES P. BOYER AND CHRISTINA W. TØNNESEN-FRIEDMAN

Abstract. In this note we give an explicit construction of Sasaki-Einstein metrics
on a class of simply connected 7-manifolds with the rational cohomology of the 2-fold
connected sum of S2 × S5. The homotopy types are distinguished by torsion in H4.

Introduction

Sasaki-Einstein metrics on 7-manifolds continue to play an important role in M-
theory as well as black hole physics [Spa11, GLPS17, MT18]. An important reason for
this is that Sasaki-Einstein manifolds admit supersymmetry and are used in the AdS-
CFT correspondence. For such reasons it seems important to have a large list of explicit
examples of Sasaki-Einstein 7-manifolds that can be used as possible models. Since these
SE metrics are toric, general existence of such metrics in well known [FOW09, Leg16].
What is new here is an explicit construction of such metrics, their relation with Bott
manifolds (orbifolds), and the topological description of the 7-manifolds. We give an
explicit construction of toric Sasaki-Einstein (SE) 7-manifolds which can be represented
as S1 orbibundles over 2-twist stage 3 Bott orbifolds. All of these are obtained by adding
orbifold structures to certain stage 3 Bott manifolds which were studied in [BCTF18].
The 7-manifolds all have the rational cohomology of the 2-fold connected sum 2(S2×S5)
and are generalizations of the SE 7-manifolds given by Theorem 1.2 of [BTF15].

Acknowledgements. The authors would like to thank David Calderbank for his com-
ments and his interest in this work. In particular, the second author would like to
express her gratitude to David for our many helpful conversations about orbifold metric
constructions.

1. Stage Three Bott Towers and Orbifolds

Following [GK94] and [BCTF18] we consider Bott towers which in arbitrary dimension
is represented by a lower triangular unipotent matrix A over Z. Here we deal only with
stage 3 Bott towers, so the matrix A in [GK94, BCTF18] takes the form

(1) A =

⎛

⎝

1 0 0
a 1 0
b c 1

⎞

⎠
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2 CHARLES BOYER AND CHRISTINA TØNNESEN-FRIEDMAN

with a, b, c ∈ Z. The Bott manifold can be realized as the quotient of S3 × S3 × S3 by
the T3 action

(2) (z0j , z
∞
j )3j=1 #→ (tjz

0
j ,

3
∏

i=1

t
Ai

j

i z∞j ).

The quotient M3 which is called a Bott manifold can be represented as a sequence, called
a Bott tower

(3) M3
π3−→ M2

π2−→ M1
π1−→ M0 = pt ,

where the jth S3 is written as |z0j |
2 + |z∞j |2 = 1. Then Mk is the compact complex

manifold arising as the total space of the CP1 bundle πk : P(1l⊕ Lk) → Mk−1. At each
stage we have zero and infinity sections σ0

k : Mk−1 → Mk and σ∞
k : Mk−1 → Mk which

respectively identify Mk−1 with P(1l⊕0) and P(0⊕Lk). We consider these to be part of
the structure of the Bott tower (Mk, πk, σ0

k, σ
∞
k )nk=1. Here in our case M3 = M3(a, b, c)

is a stage 3 Bott manifold, M2(a) is a Hirzebruch surface Ha = P(1l ⊕ O(a))−−→CP1,
and M1 = CP1. M3(a, b, c) can be viewed as the total space of CP1 bundle over the
Hirzebruch surface Ha, and also a bundle of Hirzebruch surfaces over CP1 with fiber
Hc. Bott towers form the object set BT0 of a groupoid whose morphisms BT1 are
biholomorphisms [BCTF18], and elements of the quotient space BT0/T1 are identfied
with biholomorphism classes of Bott manifolds. Since Bott manifolds are toric, they
are described by a fan, and it follows from the Bott tower description (3) that the fan
of the Bott tower M3(a, b, c) is described by the primitive collections (cf. [CLS11])

(4) {v1, u1}, {v2, u2}, {v3, u3}

with normal vectors u1 = −v1 − av2 − bv3, u2 = −v2 − cv3, u3 = −v3, and thus has
the combinatorial type of a cube. The symmetry group of a cube is the Coxeter group
BC3

∼= Sym3 ! Z3
2 where Sym3 is the symmetric group on 3 letters. However, not all

elements of BC3 are induced by equivalences. We refer to [BCTF18] and references
therein for details.

The structure of Bott towers implies the existence of 3 pairs of T3 invariant divisors

{Dvj , Duj
} which are the zero and infinity sections ofMj

πj
−→ Mj−1 with j = 1, 2, 3. Thus,

elements of the subgroup Z3
2 are induced by the fiber inversion maps that interchange

the zero and infinity sections, so these equivalences always exist. However, elements of
Sym3 are induced by equivalences only in special cases (see Lemma 1.11 and Example
1.6 of [BCTF18] for details).

Recall (Definition 1.6 of [BCTF18]) that the holomorphic twist of an n dimensional
Bott tower is the number t ∈ {0, . . . , n− 1} of holomorphically nontrivial CP1 bundles
in the tower. So for n = 3 there are only 3 possibilities t = 0, 1, 2. Of course, t = 0
is the well understood product CP1 × CP1 × CP1, whereas t = 1 leads to the Koiso-
Sakane case, so here we restrict our attention to t = 2. For the t = 2 case we have a
nontrivial holomorphic bundle over a Hirzebruch surface Ha with a ̸= 0 whose fiber is
CP1. The case of interest to us can be obtained as an S3

w-join with the Y p,q structures
of [GMSW04] on S2 × S3, that is, (S2 × S3) ⋆l1,l2 S

3
w. So the stage 3 Bott manifold has

an additional orbifold structure which we now describe.
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1.1. Invariant Divisors. Here we consider the T3 invariant divisors Dvi, Dui
defined

by the normal vectors vi, ui with equivalences

Dv1 ∼ Du1
, Dv2 ∼ aDu1

+Du2
, Dv3 ∼ bDu1

+ cDu2
+Du3

.

We have 4 sets of distinguished invariant bases of the Chow group A2(M3) of invariant
divisor classes

{[Du1
], [Du2

], [Du3
]},(5)

{[Du1
], [Du2

], [Dv3 ]},(6)

{[Du1
], [Dv2 ], [Du3

]},(7)

{[Du1
], [Dv2 ], [Dv3 ]}.(8)

This gives rise to the 4 sets of dual bases of cohomology classes in H2(M3,Z), viz

{x1, x2, x3},(9)

{x1, x2, y3},(10)

{x1, y2, x3},(11)

{x1, y2, y3},(12)

where xi is dual to [Dui
] and yi is dual to [Dvi ]. Both the ample and Kähler cones can

be easily worked out, see Example 3.3 of [BCTF18].

1.2. Bott Orbifolds and log pairs. We are interested in these Bott manifolds, but
with an additional special orbifold structure along the T3-invariant divisors Dvi , Dui

.
The orbifold structure on M3(a, b, c) that we are interested in is given by the log pair
(M3(a, b, c),∆m) where ∆m is the branch divisor
(13)
(

1−
1

m0
1

)

Dv1+
(

1−
1

m∞
1

)

Du1
+
(

1−
1

m0
2

)

Dv2+
(

1−
1

m∞
2

)

Du2
+
(

1−
1

m0
3

)

Dv3+
(

1−
1

m∞
3

)

Du3

where m0
j , m

∞
j ∈ Z+ are the ramification indices. We define ∆m3

= ∆m and

∆m2
=

(

1−
1

m0
1

)

Dv1 +
(

1−
1

m∞
1

)

Du1
+
(

1−
1

m0
2

)

Dv2 +
(

1−
1

m∞
2

)

Du2

∆m1
=

(

1−
1

m0
1

)

Dv1 +
(

1−
1

m∞
1

)

Du1
.

Clearly we have
∆m1

⊂ ∆m2
⊂ ∆m3

.

From [GK94] or [BCTF18] one easily sees that

Lemma 1.1. We have the sequence of Bott towers of log pairs

(14)
(

M3(a, b, c),∆m3

) π3
−−−→

(

M2(a),∆m2

) π2
−−−→

(

M1,∆m1
)

π1
−−−→({pt}, ∅),

where M2(a) = Ha is a Hirzebruch surface, M1 = CP1, and πi is the natural projection.

The invariant branch divisors are related to the section maps by

Dv3 = σ0
2(Ha), Du3

= σ∞
2 (Ha), Dv2 = π−1

3 (σ0
1(CP

1)), Du2
= π−1

3 (σ∞
1 (CP1))
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and

Dv1 = (π2 ◦ π3)
−1(σ0

1({pt})), Du1
= (π2 ◦ π3)

−1(σ∞
1 ({pt})).

We denote by BOA the set of all such Bott orbifolds.

1.3. The Orbifold First Chern Class. We can now compute the orbifold canonical
divisor Korb and dually the orbifold first Chern class. We compute the orbifold first
Chern class corb1 in the {xj} basis for any n-dimensional Bott manifold Mn(A);

corb1 (Mn(A),∆m) = c1(Mn(A))−
n

∑

i=1

(

(

1−
1

m0
i

)

yi +
(

1−
1

m∞
i

)

xi

)

=
n

∑

i=1

(xi + yi)−
n

∑

i=1

(

(

1−
1

m0
i

)

yi +
(

1−
1

m∞
i

)

xi

)

=
n

∑

j=1

( 1

m0
j

yj +
1

m∞
j

xj

)

=
n

∑

i=1

(

(
1

m0
i

+
1

m∞
i

)xi +
i−1
∑

j=1

Aj
i

m0
i

xj

)

=
n−1
∑

j=1

( 1

m0
j

+
1

m∞
j

+
n

∑

i=j+1

Aj
i

m0
i

)

xj +
( 1

m0
n

+
1

m∞
n

)

xn.(15)

In dimension n there are 2n−1 invariant bases in which to compute corb1 . This becomes
much more manageable for n = 3. We have corb1 (M3(a, b, c),∆m) in the four bases
(9)-(12), respectively

( 1

m0
1

+
1

m∞
1

+
a

m0
2

+
b

m0
3

)

x1 +
( 1

m0
2

+
1

m∞
2

+
c

m0
3

)

x2 +
( 1

m0
3

+
1

m∞
3

)

x3,(16)

( 1

m0
1

+
1

m∞
1

+
a

m0
2

−
b

m∞
3

)

x1 +
( 1

m0
2

+
1

m∞
2

−
c

m∞
3

)

x2 +
( 1

m0
3

+
1

m∞
3

)

y3,(17)

( 1

m0
1

+
1

m∞
1

−
a

m∞
2

+
b− ac

m0
3

)

x1 +
( 1

m0
2

+
1

m∞
2

+
c

m0
3

)

y2 +
( 1

m0
3

+
1

m∞
3

)

x3,(18)

( 1

m0
1

+
1

m∞
1

−
a

m∞
2

−
b− ac

m∞
3

)

x1 +
( 1

m0
2

+
1

m∞
2

−
c

m∞
3

)

y2 +
( 1

m0
3

+
1

m∞
3

)

y3.(19)

Note also that as a cohomology class corb1 (M3(a, b, c),∆m) as an element ofH1,1(Mn(a, b, c),R)
makes perfect sense for all m0

j , m
∞
j ∈ R+. We shall make use of this fact shortly.

Equations (16)-(19) implies

Lemma 1.2. Let (M3(a, b, c),∆m) be a Bott orbifold. Then the following are equivalent:

(1) (M3(a, b, c),∆m) is log Fano,
(2) corb1 (M3(a, b, c),∆m) lies in the Kähler cone K(M3(a, b, c)),
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(3) the inequalities

1

m0
1

+
1

m∞
1

+
a

m0
2

+
b

m0
3

> 0,
1

m0
2

+
1

m∞
2

+
c

m0
3

> 0

1

m0
1

+
1

m∞
1

+
a

m0
2

−
b

m∞
3

> 0,
1

m0
2

+
1

m∞
2

−
c

m∞
3

> 0

1

m0
1

+
1

m∞
1

−
a

m∞
2

+
(b− ac)

m0
3

> 0,
1

m0
2

+
1

m∞
2

+
c

m0
3

> 0

1

m0
1

+
1

m∞
1

−
a

m∞
2

−
(b− ac)

m∞
3

> 0,
1

m0
2

+
1

m∞
2

−
c

m∞
3

> 0

hold.

2. M7 as the join Y p,q ⋆l1,l2 S
3
w

Not every S1 orbibundle over a Bott orbifold can be realized as a join; however, the
2 twist stage 3 Bott orbifolds that we study here can be realized as Kähler quotients of
the join Y p,q ⋆l1,l2 S

3
w where Y p,q are the well known SE structures on S2×S3 discovered

by the physicists [GMSW04]. In fact, since Y p,q is itself a join of two S3’s, it is an
iterated join of three S3’s which in the terminology of [BHLTF18] is completely cone
decomposable. Now from Example 6.8 of [BTF16] we have

(20) Y p,q = S3 ⋆l,p S
3
p+q
l

, p−q
l

where l = gcd(p + q, p − q) which equals 2 if p, q are both odd, and equals 1 if p, q
have opposite parity. Note that we choose the standard SE structure on the lefthand
S3 factor, whereas it is the weighted Sasakian structure with weights (p+q

l
, p−q

l
) on the

righthand S3.
If we assume that p > q ≥ 1 are such that

√

4p2 − 3q2 ∈ N, then the Sasaki-
Einstein structure on Y p.q is quasi-regular [GMSW04]. Indeed, the η-Einstein structure
corresponds to a ray in the so-called w subcone is determined by co-prime solutions
(v02, v

∞
2 ) of

(21)

∫ 1

−1

((v02−v∞2 )−(v02+v∞2 )z)(((p+q)v∞2 +(p−q)v02)+((p+q)v∞2 −(p−q)v02)z) dz = 0

(from e.g. (68) in [BTF16]). Following Theorem 3.8 in [BTF16], for any choice of quasi-
regular ray determined by the co-prime pair (v02, v

∞
2 ), the quotient Hirzebruch orbifold

is (Ha,∆m2
) where ∆m2

= (1− 1
m0

2

)Dv2 + (1− 1
m∞

2

)Du2
is the branch divisor with

(22)

m2 = (m0
2, m

∞
2 ) = m2(v02 , v

∞
2 ),

m2 = p

gcd(p,| p+q
l

v∞
2

− p−q
l

v0
2
|)
,

a = (p+q)m∞

2 −(p−q)m0
2

p
.
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The join Ml1,l2,w = Y p,q ⋆l1,l2 S
3
w, where Y p,q has a quasi-regular Sasaki structure as

above, can then be obtained as the quotient of the following T2 action on S3×S3×S3:
(23)
(x, u; u1, u2; z1, z2) #→ (x, eipl2θu; ei(l2m2v02φ−(p+q)θ)u1, e

i(l2m2v∞2 φ−(p−q)θ)u2; e
−il1w1φz1, e

−il1w2φz2).

First we notice that without loss of generality we can assume that gcd(l1, m2) = 1, for
otherwise we can redefine φ. So our gcd conditions are gcd(l1, l2m2) = 1, gcd(w1, w2) =
1 = gcd(v02, v

∞
2 ), and gcd(p, q) = 1. Note that p+ q and p−q can have a common factor

if and only if both p and q are odd, in which case the common factor is 2. However,
Ml1,l2,w may not be a smooth manifold. we have

Lemma 2.1. The join Ml1,l2,w = Y p,q ⋆l1,l2 S
3
w, with Sasakian structure on Y p,q given by

the Reeb field ξv2
with v2 = (v02, v

∞
2 ), is a smooth manifold if and only if gcd(l2m2vi2, l1wj) =

1 for i = 0,∞ and j = 1, 2, where m2 =
p

gcd(p,| p+q
l

v∞2 − p−q
l

v02 |)
.

Proof. From Proposition 7.6.7 of [BG08]Ml1,l2,w is smooth if and only if gcd(l1Υ2, l2Υ1) =
1 where Υ1 is the order of Y p,q and Υ2 is the order of S3

w. The latter is Υ2 = w1w2 with
w1, w2 coprime. The order Υ1 with quasi-regular Reeb field ξv2

is Υ1 = m2v02v
∞
2 . !

The analysis in Section 3 of [BTF16] holds equally well when the manifold M in the
join M ⋆l1,l2S

3
w has any quasi-regular Sasakian structure. The major difference is having

more complicated computations. For example we need the Fano index of of Y p,q. As
described above, the quotient of any quasi-regular Sasakian structure in the w subcone
of Y p,q is a Hirzebruch orbifold of the form (Ha,∆m2

). We have

Lemma 2.2. Let ξv2
be a quasiregular Reeb vector field with quotient Hirzebruch orbifold

(Ha,∆m2
) with a > 0. Then its Fano index Iv2

is given by

Iv2
= gcd(2m2v

0
2 + a)v∞2 , v02 + v∞2 )

where m2 = m2(v02, v
∞
2 ) and v02, v

∞
2 are coprime.

Proof. Recall (Definition 4.4.24 of [BG08]) that the Fano index I of an orbifold Z is the
largest positive integer k such that p∗corb1 /k is an element of H2

orb(Z,Z) = H2(BZ,Z).
Now the classifying map p : BZ−−→Z is an m2v02v

∞
2 -fold cover, and corb1 is

(24) corb1 = (2 +
a

m2v02
)x1 +

v02 + v∞2
m2v02v

∞
2

x2 =
1

m2v02v
∞
2

(

(2m2v
0
2 + a)v∞2 x1 + (v02 + v∞2 )x2

)

.

So p∗corb1 = (2m2v02 + a)v∞2 p∗x1 + (v02 + v∞2 )p∗x2 from which the result follows. !

From now on we assume that p > q ≥ 1 are such that
√

4p2 − 3q2 ∈ N and Y p,q

has the quasi-regular Sasaki-Einstein structure. Thus co-prime (v02, v
∞
2 ) are chosen such

that (21) is satisfied. We then present a version of Theorem 3.8 of [BTF16] that allows
the join Ml1,l2,w = Y p,q ⋆l1,l2 S

3
w

Theorem 2.3. Consider the join Ml1,l2,w = Y p,q ⋆l1,l2 S
3
w where Y p,q has a quasi-regular

Sasaki-Einstein structure determined by the co-prime pair (v02, v
∞
2 ) satisfying Equation

(21). Let Sv3
= (ξv3

, ηv3
,Φv3

, gv3
) be a quasi-regular Sasakian structure that lies in the

w subcone of the Sasaki cone with v3 = (v03, v
∞
3 ) where v03, v

∞
3 are coprime. Then the



SASAKI-EINSTEIN METRICS ON A CLASS OF 7-MANIFOLDS 7

quotient of Ml1,l2,w by the S1 action generated by ξv3
is the Bott orbifold given by the

log pair (M3(a, b, c),∆m), where a is determined by (22),

b = nb̂ = n (2m2v
0
2+a)v∞2
Iv2

c = nĉ = n (v02+v∞2 )
Iv2

,

n = l1
w1v∞3 −w2v03

gcd(|w1v∞3 −w2v03 |,l2)
, Iv2

is given by Lemma 2.2, and ∆m is the branch divisor

(

1−
1

m0
1

)

Dv1+
(

1−
1

m∞
1

)

Du1
+
(

1−
1

m0
2

)

Dv2+
(

1−
1

m∞
2

)

Du2
+
(

1−
1

m0
3

)

Dv3+
(

1−
1

m∞
3

)

Du3

with (m0
1, m

∞
1 ) = (1, 1), (m0

2, m
∞
2 ) given by (22), and

(m0
3, m

∞
3 ) = m3(v

0
3, v

∞
3 ) =

l2
gcd(|w1v∞3 − w2v03|, l2)

(v03, v
∞
3 ).

Proof. We can follow the proof of Theorem 3.8 of [BTF16] with the caveat that N is a
Hirzebruch orbifold (Ha,∆m2

). As in Equation (3) of [BTF16] we have the commutative
diagram

(25)

S3 × S3 × S3
⏐

⏐

⏐

.

Y p,q × S3
w

↘ πL
⏐

⏐

⏐

.

π2 Y p,q ⋆l1,l2,w S3
w

↙ π1

(Ha,∆m2
)× CP1[w]

where the πs are the obvious projections, and the orbifold (Ha,∆m2
) is the quotient

by the locally free S1 action on Y p,q generated by the quasi-regular Reeb vector field
ξm2

where m2 = m2(v02, v
∞
2 ) and a is given in Equations (22). The holomorphic line

bundle Ln = Ln now becomes the holomorphic line orbibundle with L determined by
the “primitive” Kähler class in H2((Ha,∆m),Q), namely

(26)
corb1 (Ha,∆m2

)

Iv2

=
1

m2v02v
∞
2

(

(2m2v02 + a)v∞2 x1 + (v02 + v∞2 )x2

)

Iv2

.

We make note of the fact that Y p,q−−→(Ha,∆m2
) is an m2v02v

∞
2 -fold covering map.

Now as in Section 3.5 of [BTF16] we want to describe the base orbifold Bl,v,w of the
S1 orbibundle generated by the locally free action of the quasi-regular Reeb vector field
ξm3

of the SE structure on the join Y p,q ⋆ℓ S3
w. We see that the analysis of Section

3.5 of [BTF16] goes through verbatim through Remark 3.7 with M = Y p,q and N =
(Ha,∆m2

). In particular, from Lemma 3.6 of [BTF16] we obtain the base orbifold
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Bℓ,v,w ≈ (Bℓ,1,w′,∆) with

∆ =
(

1−
1

m0
3

)

Dv3 +
(

1−
1

m∞
3

)

Du3
, w′ = (v∞3 w1, v

0
3w2),

and from Theorem 3.8 of [BTF16] we have

(27) m3 = m3(v
0
3, v

∞
3 ), s = gcd(|w1v

∞
3 − w2v

0
3 |, l2), l2 = sm3, n =

l1
s
(w1v

∞
3 − w2v

0
3).

Then from the proof of Theorem 3.8 we see that the quotient is the total space of the
projective orbibundle P(1l⊕ Ln) over (Ha,∆m2

) whose invariant divisors are generally
branch divisors of an orbifold. But then using Lemma 1.1 this is precisely a stage 3 Bott
orbifold (M3(a, b, c),∆m) for some b, c and where a is given in Equations (22). The fact
that Y p,q as a join has the form of Equation (20) with the standard regular Sasakian
structure on the first S3 implies that the ramification indices m1 = (1, 1).

It remains to check the equations for b and c. For this we make use of an orbifold
version of Proposition 1.5 in [BCTF18]. Explicitly, we have

Lemma 2.4. The pullback of c1(Ln) of the orbifold line bundle Ln to M3(a, b, c) is
bx1 + cx2 where n is given in Equations (27).

We know that Ln is the nth tensor product of the line orbibundle L which is deter-
mined by the Kähler class

(28)
corb1 (Ha,∆m2

)

Iv2

=

(

(2m2v02 + a)v∞2 x1 + (v02 + v∞2 )x2

)

m2v02v
∞
2 Iv2

.

Now the projection p : (M3(a, b, c),∆)−−→(Ha,∆m2
) is a m2v02v

∞
2 -fold covering map.

So pulling back we have c1(Ln) = nc1(L) = np∗
(

corb1 (Ha,∆m2
)

Iv2

)

. The equations for b and

c then follow by equating coefficients in this and in Lemma 2.4. !

Remark 2.5. The Poincaré dual to corb1 (M3(a, b, c),∆m) is a Q-divisor on M3(a, b, c)
which is ample when corb1 (M3(a, b, c),∆m) is positive. Such a class gives a polariza-
tion to the orbifold (M3(a, b, c),∆m), and a T3 invariant orbifold 2-form representing
corb1 (M3(a, b, c),∆m) gives an orbifold Kähler metric ga,b,c,m on M3(a, b, c).

Remark 2.6. Note that the real cohomology class corb1 (M3(a, b, c),∆m) makes perfect
sense for m0

j , m
∞
j ∈ R+, and we denote the set of all such classes by BLA. In this case

(M3(a, b, c),∆m) can be understood as having Kähler metrics with conical singularities
along the corresponding R-divisorsDvi andDui

with cone angle 2π
m0

i
and 2π

m∞

i
, respectively

[Don12, CDS15]. By this we mean that there is a Kähler metric ω which is smooth on
Mn(a, b, c)\∆m which extends to Mn(a, b, c) as a closed positive (1, 1) current satisfying
certain uniformity requirements. See Definition 1.3 of [CDS15] for the precise statement.
For arbitrary m we say that corb1 (M3(a, b, c),∆m) represents a cone singularity along
the divisor ∆m. The rational entries in the interval (0, 1) are related to the so-called
‘ramifolds’ [RT11]. As in this reference we shall also assume hereafter that m0

j , m
∞
j ∈

(0,∞). We denote by LFA the subset of BLA whose Kähler metrics are log Fano and
have cone singularities along the divisor ∆m. Then the natural map from LFA to the
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Kähler cone K(M3(a, b, c)) is surjective, and the conclusion of Lemma 1.2 holds for all
(M3(a, b, c),∆m) ∈ LFA.

Remark 2.7. We consider the action of the affine monoid M(R) on (R+)6 defined by
the affine linear map

(29) (m0
j , m

∞
j ) #→ (λ0jm

0
j + a0j ,λ

∞
j m∞

j + a∞j ) = (m̃0
j , m̃

∞
j )

with 1 ≤ λj < ∞ and 0 ≤ aj < ∞. Restricting to the positive integers gives an action of
the submonoid M(Z) on (Z+)6. One easily checks that this induces an action of M(R)
on BL that leaves the subset LFA invariant for all λ0j ,λ

∞
j ∈ [1,∞) and a0i , a

∞
j ∈ [0,∞)

sending corb1 (M3(a, b, c),∆m) to corb1 (M3(a, b, c),∆m̃).

3. The Topology of M7 = Y p,q ⋆l1,l2 S
3
w

It is important to remember that generally the topology of a join depends on the
choice of Sasakian structure (through its Reeb vector field) of each factor. We assume
that (p, q) are relatively prime with 1 ≤ q < p and that l1, l2, w1, w2 are chosen such
that M7 is smooth. We show first that our Sasaki 7-manifolds M7 have the rational
cohomology of the 2-fold connected sum (S2×S5)#(S2 ×S5). The integer cohomology
groups are only distinguished by torsion in H4. Moreover, the torsion depends on the
choice of quasi-regular Sasakian structures on Y p,q and S3. For the most generality
we choose arbitrary quasi-regular Sasakian structure in the so-called w subcone of the
Sasaki cones for both Y p,q and S3 (of course, the w cone of S3 is its entire Sasaki cone).

First we note that any quotient of a quasi-regular Reeb vector field ξm in the w cone
of Y p,q has the form of a Hirzebruch orbifold (Ha,∆m). Moreover, Y p,q is itself the
join S3 ⋆l1,p S

3
w with w = (p+q

l1
, p−q

l1
). Here l1 = 2 if p, q are both odd, and l1 = 1

is p, q have opposite parities. In any case the relation with the ramification indices is
m = m(v0, v∞) with v0, v∞ coprime and m = p.

The purpose of this section is to prove

Theorem 3.1. Let Y p,q have a quasi-regular Sasakian structure with Reeb vector field
ξm. Then the 7-manifolds M7 = Y p,q ⋆l1,l2 S3

w have the rational cohomology of the
connected sum (S2 × S5)#(S2 × S5). Furthermore, the only torsion that occurs is
H4(M7,Z) ≈ Zv0v∞m2l22

⊕ Zw1w2l21
.

We begin with some lemmas.

Lemma 3.2. The 7-manifolds M7 = Y p,q ⋆l1,l2 S
3
w satisfy the following conditions:

(1) H1(M7,Z) = π1(M7) = 0,
(2) π2(M7) = Z2,
(3) H2(M7,Z) = H2(M7,Z) = Z2,
(4) H3(M7,Z) is torsion free.
(5) b3(M7) = b4(M7) is even.

Proof. From the long exact homotopy sequence for the fibration

(30) T2−−→S3 × S3 × S3−−→M7

we conclude that M7 is simply connected and that π2(M7) = Z2. Thus, by Hurewicz
H2(M7,Z) = Z2 which implies (4) by universal coefficients, and then by item (1)
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H2(M7,Z) = Z2. Item (5) follows from Poincaré duality and the fact that M7 admits
a Sasakian structure.

!

Actually we have

Lemma 3.3. H3(M7,Z) = 0.

Proof. First by (4) of Lemma 3.2 H3(M7,Z) is torsion free, so it suffices to work with Q
coefficients. Since M7 is simply connected and is an S1 orbibundle over a stage 3 Bott
orbifold (M3(a, b, c),∆m) we can apply the Leray-Serre Theorem with Q coefficients.
The differential d2 : E

0,1
2 −−→E2,0

2 = H2(M7,Q) sends the class α of the fiber S1 to the
Kähler class c1x1 + c2x2 + c3x3 where ci ∈ Q+. So by naturality we have d2(α ⊗ xi) =
(c1x1+c2x2+c3x3)xi. Suppose there would exist a class w = w1x1+w2x2+w3x3 ∈ E2,0

2

such that d2(α ⊗ w) = 0. Then the 3-class α ⊗ w would survive to the limit giving a
nonzero element in H3(M7,Q) by the Leray-Serre Theorem. Now the cohomology ring
of M3(a, b, c) is [CMS10]

Z[x1, x2, x3]/
(

x2
1, x2(ax1 + x2), x3(bx1 + cx2 + x3)

)

.

So computing the d2 differential we have

0 = d2(α⊗ w) = d2(α)⊗ w = (c1x1 + c2x2 + c3x3)(w1x1 + w2x2 + w3x3)

= (c1w2 + c2w1 − c2w2a)x1x2 + (c1w3 + c3w1 − c3w3b)x1x3 + (c2w3 + c3w2 − c3w3c)x2x3

which gives

(31)

⎛

⎝

c2 c1 − c2a 0
c3 0 c1 − c3b
0 c3 c2 − c3c

⎞

⎠

⎛

⎝

w1

w2

w3

⎞

⎠ = 0.

Since the coefficients c1, c2, c3 are all positive, the rank of the matrix

C =

⎛

⎝

c2 c1 − c2a 0
c3 0 c1 − c3b
0 c3 c2 − c3c

⎞

⎠

is either 3 or 2 which can be seen by putting C in Jordan canonical form. If the rank
of C were 2 there would be exactly one solution to Equation (31) which is an element
of E1,2

2 and since E3,0
2 = H3(M3(a, b, c),Q) = 0, there would be precisely one generator

in H3(M7,Q) which contradicts the fact that b3(M7) is even. !

Proof of Theorem 3.1: It follows from Lemmas 3.2 and 3.3 and the fact that the homol-
ogy (cohomology) of a connected sum is the direct sum of the homology (cohomology) of
the two factors that M7 has the rational homology (cohomology) of the connected sum
(S2 × S5)#(S2 × S5). By Poincaré duality and Lemma 3.2 it follows that H5(M7,Z)
and H6(M7,Z) have no torsion. So it suffices to compute the torsion in H4(M7,Z).
First
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Lemma 3.4. We have

Hr
orb((Ha,∆m),Z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Z if r = 0

Z2 if r = 2

Z⊕Zm0 ⊕Zm∞ if r = 4

Zm0 ⊕Zm∞ if r = 6, 8, · · ·

0 if r is odd.

Proof. The Leray sheaf of the map

p : B(Ha,∆m)−−−→ Ha

is the derived functor sheaf RspZ, that is, the sheaf associated to the presheaf U #→
Hs(p−1(U),Z). For s > 0 the stalks of RspZ at points of U vanish if U lies in the
regular locas of (Ha,∆m) which is the complement of the union of the zero e0 and
infinity e∞ sections of the natural projection Ha−−→CP1. However, at points of e0 and
e∞ the fibers of p are (up to homotopy) the Eilenberg-MacLane spaces K(Zm0 , 1) and
K(Zm∞ , 1), respectively. So at points of e0(e∞) the stalks are the group cohomology
Hs(Zm0 ,Z)

(

Hs(Zm∞ ,Z)
)

. This is Z for s = 0 and Zm0(Zm∞) at points of e0(e∞) when
s > 0 is even; it vanishes when s is odd. The E2 term of the Leray spectral sequence of
the map p is

Er,s
2 = Hr(Ha, R

spZ)

and by Leray’s theorem this converges to the orbifold cohomology Hr+s
orb ((Ha,∆m),Z).

Now Er,0
2 = Hr(Ha,Z) and Er,s

2 = 0 for r or s odd. For r = 0 since RspZ has its
support in the orbifold singular locus e0 ∪ e∞, the only continuous section of RspZ is
the 0 section which implies that E0,s

2 = 0 for all s. Now we have E2r,2s
2 = 0 for r > 1

and
E2,2s

2 = H2(Ha, R
2sp) = H2(e0,Zm0)⊕H2(e∞,Zm∞) = Zm0 ⊕Zm∞ .

One easily sees this spectral sequence collapses whose limit is the orbifold cohomology
Hr

orb((Ha,∆m),Z) which implies the result. !

To continue the proof of Theorem 3.1, as in [BTF16, BTF15], we use the commutative
diagram of fibrations

(32)

Y p,q × S3
w −−−→ Ml1,l2,w −−−→ BS1

⏐

⏐

⏐

.

=

⏐

⏐

⏐

.

⏐

⏐

⏐

⏐

.

ψ

Y p,q × S3
w −−−→ B(Ha,∆m)× BCP1[w] −−−→ BS1 × BS1.

Here BG is the classifying space of a group G or Haefliger’s classifying space [Hae84] of
an orbifold if G is an orbifold. The lower exact fibration is a product of fibrations. We
denote the orientation classes of Y p,q × S3 = S2 × S3 × S3 by α, β, γ, respectively. As
in 3.2.2 of [BTF15] we have d4(γ) = w1w2s22. For the fibration

Y p,q−−−→B(H,∆m)−−−→BS1

we have d4(β) = m2v0v∞s21. The map ψ in Diagram (32) is induced by the map eiθ #→
(eil2θ, e−il1θ), so ψ∗s1 = l2s and ψ∗s2 = −l1s the result follows by the commutativity of
Diagram (32). ✷
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Remark 3.5. Although the case (p, q) = (1, 0) does not fit directly into the Y p,q

scheme of [GMSW04], it can, nevertheless, be identified with the homogeneous Sasaki-
Einstein structure on S2 × S3. Then if we take (v0, v∞) = (w1, w2) = (l1, l2) = (1, 1)
and m = 1 we obtain the homogeneous Sasaki-Einstein structure on an S1 bundle over
CP1 × CP1 × CP1 which is a 7-manifold with the integral cohomology of the 2-fold
connected sum 2(S2 × S5). See Sections 11.1.1 and 11.4.2 of [BG08] for details. The
general S3

w join with Y 1,0 was treated in Section 3.2.2 of [BTF15].

4. A Generalized Orbifold Calabi construction

We now discuss a family of explicit examples or orbifold Kähler-Einstein metrics
that we may view as arising from a special case of the generalized Calabi construction
as presented in [ACGTF04, Section 2.5] and further discussed in [ACGTF11, Section
2.3] and [BCTF18, Section 5.1] - here generalized to allowing certain mild orbifold
singularities.

The base of the construction will in this case be a Kähler-Einstein Hirzebruch orb-
ifold (Ha,∆m2

). This is the Kähler quotient of the quasi-regular Sasaki-Einstein Y p,q

examples produced in [GMSW04]). Now Y p,q may be viewed as the total space of

a S1 principal orbi-bundle, P , over (Ha,∆m2
) defined by the class

corb1 (Ha,∆m2
)

Iv2
=

(2m2v02+a)v∞2 x1+(v02+v∞2 )x2

m2v02v
∞

2 Iv2
, where the notation is as in Lemma 2.2. In particular, the index

of (Ha,∆m2
) is Iv2

= gcd(2m2v02 + a)v∞2 , v02 + v∞2 ), where (m0
2, m

∞
2 ) = m2(v02, v

∞
2 ) and

v02, v
∞
2 are coprime. Let gbase denote the Kähler-Einstein orbifold metric whose Kähler

form, ωbase, satisfies that
[ωbase

2π

]

=
(2m2v02 + a)v∞2 x1 + (v02 + v∞2 )x2

m2v02v
∞
2 Iv2

.

As we saw in Example 6.8 of [BTF16], the metric gbase is explicit and ”admissible” in
the sense of [ACGTF08]. Note that the Ricci form of gbase is given by ρbase = Iv2

ωbase.
We consider the generalized Calabi construction of orbifold Kähler metrics on the

bunde P ×S1 CP1
m0

3,m
∞

3

→ (Ha,∆m2
). This may also be viewed as an admissible con-

struction - extended to mild orbifold cases.

Definition 4.1. Generalized orbifold Calabi data for our purposes.

(1) A log pair (Ha,∆m2
) with Kähler-Einstein structure (ωbase, gbase) such that

[

ωbase

2π

]

= (2m2v02+a)v∞2 x1+(v02+v∞2 )x2

m2v02v
∞

2 Iv2
.

(2) The weighted projective line (CP1
m0

3,m
∞

3

= CP1
v03 ,v

∞

3

/Zm3
, gm3

,ωm3
) with rational

Delzant polytope [−1, 1] ⊆ R∗ and momentum map z : CP1
m0

3,m
∞

3

→ [−1, 1]. Here

(m0
3, m

∞
3 ) = m3(v03, v

∞
3 ) and v03, v

∞
3 are coprime.

(3) A principal S1 orbi-bundle, Pn → (Ha,∆m2
), with a principal connection of

curvature nωbase ∈ Ω1,1((Ha,∆m2
),R), where S1 acts on CP1

m0
3,m

∞

3

, n ∈ Z\{0},

and gcd(n,m3) = 1. Note that n ∈ spanZ{v03, v
∞
3 } (since v03, v

∞
3 are coprime),

so m3n ∈ spanZ{m0
3, m

∞
3 }.

(4) A constant 0 < |r3| < 1 of same sign as n
[ensuring that the (1, 1)-form (1/r3 + z)nωbase is positive for z ∈ [−1, 1]].
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From this data we may define the orbifold

M3 = Pn ×S1 CP1
m0

3,m
∞

3
= M̊3 ×C∗ CP1

m0
3,m

∞

3
→ (Ha,∆m2

),

where M̊3 = Pn×S1 (z−1(−1, 1)). Since the curvature 2-form of Pn has type (1, 1), M̊3 is
a holomorphic principal C∗ bundle with connection θ ∈ Ω1(M̊3,R) and M3 is a complex
orbifold.

On M̊3 we define Kähler structures of the form

(33)

g = (1/r3 + z)n gbase +
1

Θ(z)
dz2 +Θ(z)θ2

ω = (1/r3 + z)nωbase + dz ∧ θ

dθ = nωbase,

where 1
Θ(z) =

d2U
dz2

and U is the symplectic potential [Gui94] of the chosen toric Kähler

structure gm3
on CP1

m0
3,m

∞

3

.

The generalized Calabi construction arises from seeing (33) as a blueprint for the con-
struction of various orbifold Kähler metrics on M3 by choosing various smooth functions
Θ(z) on (−1, 1) satisfying that

• [boundary values] the following endpoint conditions are satisfied

(34) Θ(±1) = 0 and Θ ′(−1) = 2/m∞
3 and Θ ′(1) = −2/m0

3;

• [positivity] the function Θ(z) is positive for z ∈ (−1, 1).

Then (33) extends to an orbifold Kähler metric on (M(a, b, c),∆m), where b = n (2m2v02+a)v∞2
Iv2

,

c = nv02+v∞2
Iv2

, and m = (1, 1, m0
2, m

∞
2 , m0

3, m
∞
3 ). Metrics constructed this way are called

compatible Kähler metrics with compatible Kähler classes parametrized by r3. From
[ACG06] (and specifically to our notation from [BTF16, Proposition 5.4]) we have that
the compatible metric defined by Θ(z) is Kähler-Einstein exactly when

(35) 2r3Iv2
/n = (1 + r3)/m

∞
3 + (1− r3)/m

0
3

and

(36)

∫ 1

−1

((1− z)/m∞
3 − (1 + z)/m0

3)(1 + r3z)
2 dz = 0.

5. Explicit Sasaki-Einstein metrics

We now look more closely for explicit Sasaki-Einstein examples arising from the join
from Theorem 2.3. The arguments in Sections 6.1 and 6.2 of [BTF16] (see specifically
page 1053) carry through so that we have an adapted version of Theorem 1.4 of [BTF16]:

Theorem 5.1. Consider the join M7 = Y p,q ⋆l1,l2 S
3
w where Y p,q has a quasi-regular

Sasaki-Einstein structure with quotient Hirzebruch orbifold (Ha,∆v2
) with a > 0 and

l1, l2 are given by

l1 =
Iv2

gcd(|w|, Iv2
)
, l2 =

|w|

gcd(|w|, Iv2
)
.
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Then for each vector w = (w1, w2) ∈ Z+ × Z+ with relatively prime components satis-
fying w1 > w2 there exist a Reeb vector field ξv3

in the 2-dimensional w-Sasaki cone on
M7 such that the corresponding Sasakian structure is Sasaki-Einstein.

Specifically, using equation (59) from [BTF16], we know that if the ray defined by co-
prime (v03, v

∞
3 ) is quasi-regular, then we ought to look at the Kähler class determined by

r3 =
w1v

∞

3 −w2v
0
3

w1v∞3 +w2v03
. Now with this r3, and the above choice of (l1, l2), (35) is automatically

solved and (36) becomes (similarly to (68) in [BTF16])

(37)

∫ 1

−1

(

(v03 − v∞3 )− (v03 + v∞3 )z)
)

((w1v
∞
3 + w2v

0
3) + (w1v

∞
3 − w2v

0
3)z)

2dz = 0.

This equation defines a priori a quasi-regular Sasaki η-Einstein ray (and thus, up to
transverse homothety, a Sasaki-Einstein structure), but, by the same arguments as in
Section 6.1 of [BTF16], any solution (v03, v

∞
3 ) ∈ R+ × R+ of (37) defines a Sasaki η-

Einstein ray in the w-cone, which is irregular unless v∞3 /v03 ∈ Q. This gives

Corollary 5.2. For any pair of relatively prime positive integers (w1, w2) satisfying
w1 > w2, we obtain an SE metric by solving the cubic equation

(38) 3w2k
3 + (2w2 − w1)k

2 − (2w1 − w2)k − 3w1 = 0.

The ray of the Reeb vector field of the SE metric is then given by

(39)
v∞3
v03

=
3 + 2k + k2

(1 + 2k + 3k2)
= k

w2

w1
.

The SE metric is quasi-regular when k is a rational root of (38) and irregular when it
is an irrational root.

It follows from the analysis in Section 6.2 of [BTF16] that the positive real root k lies
in the open interval (1,∞).

5.1. Quasi-regular examples. Changing our point of view we see that for any k ∈
(1,+∞) ∩Q we can choose (w1, w2) such that

(40) w2/w1 =
3 + 2k + k2

k(1 + 2k + 3k2)

and then the Sasaki-Einstein metric from Theorem 5.1 is quasi-regular with ray v3

defined by Equation (39). We now give some examples.

Example 5.3. Here we give an example that builds on a bouquet of Sasaki cones
from Example1 6.8 of [BTF16]. Corollary 5.5 of [BP14] describes the well known Y p,q

structures [GMSW04] on S2×S3 as a |φ(p)|-bouquet of Sasaki cones where |φ(p)| denotes
the order of the Euler phi function φ(p). Let us consider the example when p = 13.
Since 13 is prime the bouquet consists of p − 1 = 12 Sasaki cones labeled by the 12
positive integers 1 ≤ q < 13 and as such contains 12 Sasaki-Einstein metrics. However,
in order to construct SE metrics on our 7-manifolds, we need the SE structure on Y p,q

to be quasi-regular. It is easy to check that for the bouquet
⋃

{Y 13,q}12q=1 the only values
of q where the SE metric is quasi-regular is for q = 7, 8, all the other SE metrics in the
bouquet are irregular. Let us look at these two cases a bit closer.

1Example 6.8 in this reference has a small typo, namely v02 and v∞2 got switched.
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In the case Y 13,8 we have a = 70, v02 = 7, v∞2 = 5, m2 = 13, so m0
2 = 91 and m∞

2 = 65.
This gives us that Iv2

= 12. If we put k = 2 in the quasi-regular SE prescription
above given by Equation (38), we see that (w1, w2) = (34, 11), so l1 = 4 and l2 = 15,
and (v03, v

∞
3 ) = (17, 11). Now we calculate that s = gcd(|w1v∞3 − w2v03 |, l2) = 1 so

n = l1
w1v∞3 −w2v03

s
= 748, and (m0

3, m
∞
3 ) = 15(17, 11). Then the quotient is the Bott

orbifold given by the log pair (M(a, b, c),∆m), where

a = 70,

b = nb̂ = n (2m2v
0
2+a)v∞2
Iv2

= 78540,

c = nĉ = nv02+v∞2
Iv2

= 748,

m = (1, 1, 91, 65, 255, 165).

In the case where p = 7 in Y p,q we have a = 36, v02 = 4, v∞2 = 3, m2 = 13, so
m0

2 = 52 and m∞
2 = 39. This gives us that Iv2

= 7. Again we put k = 2 in Equation
(38) which gives (w1, w2) = (34, 11) and (v03, v

∞
3 ) = (17, 11) respectively. Now l1 = 7

and l2 = 45, and s = gcd(|w1v∞3 − w2v03|, l2) = 1 so n = l1
w1v

∞

3 −w2v
0
3

s
= 1309, and

(m0
3, m

∞
3 ) = 45(17, 11). Then the quotient is the Bott orbifold given by the log pair

(M(a, b, c),∆m), where

a = 36,

b = nb̂ = n (2m2v
0
2+a)v∞2
Iv2

= 78540,

c = nĉ = nv02+v∞2
Iv2

= 1309,

m = (1, 1, 52, 39, 765, 495).

One can easily check from the torsion in Theorem 3.1 that the two SE 7-manifolds
Y 13,8 ⋆4,15 S3

(34,11) and Y 13,7 ⋆7,45 S3
(34,11) are not homotopy equivalent. For both of these

7-manifolds the Reeb field that gives the SE metric is quasi-regular. Moreover, they are
both induced from the same Reeb ray, namely {ξa(17,11)}a>0 of the same S3

(34,11), and b
is the same for the quotient orbifolds.

For each choice of the rational number k > 1 we obtain a pair of quasi-regular SE 7-
manifolds induced by the S3

w join and its Reeb field ξv3
where w and v3 are determined

by Equations (38) and (39).

Example 5.4. Here we give a 1-parameter family of smooth quasi-regular examples.
First, let k2 ∈ Z≥0 be given (using the subscript ”2” to indicate that this is a choice at
the second stage). Then from [GMSW04]) we get a quasi-regular Sasaki-Einstein Y p,q

example by choosing

p = 12k2
2 + 18k2 + 7 and q = 12k2

2 + 16k2 + 5.

It is not hard to check that gcd(p, q) = 1 and gcd(p + q, p − q) = 2. Accordingly we
recognize from (20) that

Y p,q = S3 ⋆l,p S
3
p+q
l

, p−q
l

= S3 ⋆2,(12k22+18k2+7) S
3
(2+3k2)(3+4k2),(1+k2)
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and that the quotient Hirzebruch orbifold of the quasi-regular Sasaki-Einstein metric is
(Ha,∆m2

) where, using (21) and (22),

m2 = (m0
2, m

∞
2 ) = (12k2

2 + 18k2 + 7)((3 + 4k2), 2(1 + k2)),

m2 = 12k2
2 + 18k2 + 7,

a = 6(1 + k2)(1 + 2k2)(3 + 4k2).

We can calculate from Lemma 2.2 that Iv2
= 5 + 6k2.

Now choosing k = 3 in (38) and (39), we have, from Theorem 5.1, a quasi-regular
Sasaki-Einstein structure on M7 = Y p,q ⋆l1,l2 S

3
w with quotient log pair (M3(a, b, c),∆m)

given by Theorem 2.3. Indeed, we have

a = 6(1 + k2)(1 + 2k2)(3 + 4k2)

b = 4(1 + k2)(2 + 3k2)(3 + 4k2)n

c = n

m = (m0
1, m

∞
1 , m0

2, m
∞
2 , m0

3, m
∞
3 )

(m0
1, m

∞
1 ) = (1, 1)

(m0
2, m

∞
2 ) = (12k2

2 + 18k2 + 7)((3 + 4k2), 2(1 + k2))

(m0
3, m

∞
3 ) = m3(v03, v

∞
3 ),

where
n = l1

102
gcd(102,l2)

m3 = l2
gcd(102,l2)

l1 =
Iv2

gcd(20,5+6k2)

l2 = 20
gcd(20,5+6k2)

(w1, w2) = (17, 3)

(v03, v
∞
3 ) = (17, 9).

Using Lemma 2.1, we know that the corresponding Sasaki structure is a smooth
manifold if and only if

gcd(l2(12k2
2 + 18k2 + 7)(3 + 4k2), 17l1) = 1

gcd(l2((12k2
2 + 18k2 + 7)(3 + 4k2), 3l1) = 1

gcd(l2(12k2
2 + 18k2 + 7))2((1 + k2)), 17l1) = 1

gcd(l2(12k2
2 + 18k2 + 7)2(1 + k2), 3l1) = 1
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In order to get smooth examples, let us now assume k2 = 255 t+10 with t ∈ Z+. Then
we have

Iv2
= 5(306 t+ 13)

l1 = 306 t+ 13

l2 = 4

n = 51(306 t+ 13)

m3 = 2

and then the corresponding Sasaki structure is a smooth manifold if and only if

gcd(4(1387 + 65790t+ 780300t2)(1020 t+ 43), 17(306 t+ 13)) = 1
gcd(4(1387 + 65790t+ 780300t2)(1020 t+ 43), 3(306 t+ 13)) = 1
gcd(8(1387 + 65790t+ 780300t2))(255 t+ 11), 17(306 t+ 13)) = 1
gcd(8(1387 + 65790t+ 780300t2))(255 t+ 11), 3(306 t+ 13)) = 1.

if and only if

gcd((1387 + 65790t+ 780300t2)(1020 t+ 43), (306 t+ 13)) = 1
gcd((1387 + 65790t+ 780300t2))(255 t+ 11), (306 t+ 13)) = 1.

Since ∀t ∈ Z+,

6(255 t+ 11)− 5(306 t+ 13) = 1

10(306 t+ 13)− 3(1020 t+ 43) = 1

3 (780300t2 + 65790t+ 1387)− (7650t+ 320)(306t+ 13) = 1,

we have that this is always satisfied. Note that with k2 = 255 t+ 10 we get

a = 6(255 t+ 11)(510 t+ 21)(1020 t+ 43)

b = 204(255 t+ 11)(765 t+ 32)(1020 t+ 43)(306 t+ 13)

c = 51(306 t+ 13)

m = (m0
1, m

∞
1 , m0

2, m
∞
2 , m0

3, m
∞
3 )

(m0
1, m

∞
1 ) = (1, 1)

(m0
2, m

∞
2 ) = (1387 + 65790t+ 780300t2)(1020 t+ 43, 2(255 t+ 11))

(m0
3, m

∞
3 ) = 2(17, 9).

Finally, the p and q in Y p,q are here given by

p = 780300t2 + 65790t+ 1387
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and
q = 15(170t+ 7)(306t+ 13),

so the smooth Sasaki Einstein structures live on

Y 780300t2+65790t+1387,15(170t+7)(306t+13) ⋆306 t+13,4 S
3
17,3.
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