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SASAKIAN GEOMETRY ON SPHERE BUNDLES II: CONSTANT
SCALAR CURVATURE

CHARLES P. BOYER AND CHRISTINA W. TØNNESEN-FRIEDMAN

Abstract. In a previous paper [BTF21] the authors employed the fiber join con-
struction of Yamazaki [Yam99] together with the admissible construction of Apos-
tolov, Calderbank, Gauduchon, and Tønnesen-Friedman [ACGTF08a] to construct
new extremal Sasaki metrics on odd dimensional sphere bundles over smooth projec-
tive algebraic varieties. In the present paper we continue this study by applying a
recent existence theorem [BHLTF23] that shows that under certain conditions one can
always obtain a constant scalar curvature Sasaki metric in the Sasaki cone. Moreover,
we explicitly describe this construction for certain sphere bundles of dimension 5 and
7.

1. Introduction

A central problem in Riemannian geometry is to determine conditions for a metric to
have constant scalar curvature. This is particularly true in Kähler geometry as well as in
its odd dimensional sister Sasaki geometry. Specifically, we combine our construction of
extremal Sasaki metrics on odd dimensional sphere bundles [BTF21] using Yamazaki’s
fiber join [Yam99] with the admissible conditions [ACGTF08a] as applied in [BHLTF23]
to obtain constant scalar curvature (CSC) Sasaki metrics. This involves the introduction
of a refinement of the admissibility conditions that we call strongly admissible whose
precise definition is given below in 3.6. Previously [BTF21], we gave a stronger condition
called super admissible; however, we show here that the less stringent condition, strongly
admissible, is enough. Explicitly, in Section 3.4 we prove our main theorem which is
Theorem 3.11 and is restated here for the convenience of the reader.

Theorem 1.1. Let Mw be a strongly admissible Yamazaki fiber join whose regular quo-
tient is a ruled manifold of the form P(E0 ⊕ E∞) −→ N where E0, E∞ are projectively
flat hermitian holomorphic vector bundles on N of complex dimension (d0+1), (d∞+1)
respectively, and N is a local Kähler product of non-negative CSC metrics. Then t+sph
has a 2-dimensional subcone of extremal Sasaki metrics (up to isotopy) which contains
at least one ray of CSC Sasaki metrics.

Then in Section 4 we present detailed descriptions of strongly admissible sphere bun-
dles of dimension 5 and 7 which are obtained by Yamazaki’s fiber join construction.
We obtain existence results (Propositions 4.2, 4.3 and 4.4) of CSC and extremal Sasaki
metrics even when the conditions of Theorem 1.1 are not all met.
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2. Brief Review of K-Contact and Sasaki Geometry

Recall that an oriented and co-oriented contact manifold M2n+1 has a contact metric
structure S = (ξ, η,Φ, g) where η is a contact form with contact bundleD = ker η, ξ is its
Reeb vector field, J = Φ|D is an almost complex structure on D, i.e. (D, J) is an almost
CR contact structure, and g = dη ◦ (1×Φ) + η⊗ η is a compatible Riemannian metric.
S is K-contact if ξ is a Killing vector field for g, and it is Sasakian if in addition the
almost CR structure is integrable. A manifold with a K-contact (Sasakian) structure is
called a K-contact (Sasaki) manifold. Unless otherwise stated we shall assume that our
contact manifolds M2n+1 are oriented, co-oriented, compact, connected, and without
boundary. We refer to [BG08] for the fundamentals of Sasaki geometry.

2.1. The Sasaki Cone. Let (M,S) be a K-contact manifold. Within the underlying
contact almost CR structure (D, J) there is a conical family of K-contact structures
known as the Sasaki cone and denoted by t+(D, J) or just t+ when the underlying
almost CR structure is understood. We are also interested in a variation within this
family. To describe the Sasaki cone we fix a K-contact structure So = (ξo, ηo,Φo, go)
on M whose underlying CR structure is (D, J) and let t denote the Lie algebra of a
maximal torus T in the automorphism group of So. Since for K-contact (Sasakian)
structures, the Reeb vector field ξ is a Killing vector field, we have dim t+(D, J) ≥ 1.
Moreover, it follows from contact geometry that dim t+(D, J) ≤ n+1. The (unreduced)
Sasaki cone [BGS08] is defined by

(1) t+(D, J) = {ξ ∈ t | ηo(ξ) > 0 everywhere on M},

which is a cone of dimension k ≥ 1 in t under the transverse scaling operation defined
by

(2) S = (ξ, η,Φ, g) *→ Sa = (a−1ξ, aη,Φ, ga), ga = ag + (a2 − a)η ⊗ η, a ∈ R+.

We remark also that Sa is a K-contact or Sasakian structure for all a ∈ R+. The
reduced Sasaki cone κ(D, J) is t+(D, J)/W where W is the Weyl group of the maximal
compact subgroup of CR(D, J) which, as described in [BGS08], is the moduli space of
K-contact (Sasakian) structures with underlying CR structure (D, J). However, it is
more convenient to work with the unreduced Sasaki cone t+(D, J).

Note that each choice of Reeb vector field ξ ∈ t+(D, J) gives rise to an infinite
dimensional contractible space S(M, ξ) of Sasakian structures [BG08], and we often
have need to obtain a particular element of S(M, ξ) by deforming the contact structure
D *→ Dϕ by a contact isotopy η *→ η + dcϕ where ϕ ∈ C∞(M)T is a smooth function
invariant under the torus T. We note that the Sasaki cone t+(D, J) is invariant under
such contact isotopies in the sense that t+(Dϕ, Jϕ) ≈ t+(D, J). We shall often make
such a choice S = (ξ, η,Φ, g) ∈ S(M, ξ) and identify it with the element ξ ∈ t+(D, J).

Remark 2.1. When dim t+(D, J) = n + 1 we have what in [BG00] was called a toric
contact manifold of Reeb type. This is actually a toric K-contact manifold, and in
[BG00] a Delzant [Del88] type theorem was proved, that is, any toric K-contact manifold
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is Sasaki. Moreover, as in the symplectic case there is a strong connection between the
geometry and topology of (M,S) and the combinatorics of t+(D, J) [BM93, Ler02,
Ler04, Leg11, Leg16]1. Much can also be said in the complexity 1 case (dim t+(D, J) =
n) [AH06].

It is important to realize that there are two types of Reeb orbits, those that are closed
(i.e periodic orbits) and those that are not. On a closed K-contact manifold a Reeb
vector field in the Sasaki cone t+ is C∞-close to a Reeb vector field all of whose orbits
are periodic. What can one say about Reeb vector fields in the complement of t+? The
famous Weinstein conjecture says that every Reeb vector field on a compact contact
manifold has a periodic orbit, and this is known to hold on a compact simply connected
K-contact manifold [Ban90]. See also [Gin96, AGH18].

We end this section with the following observation that applies to our examples.

Proposition 2.2. Let CP1 → Sn → N be a projective bundle where N is a smooth
projective algebraic variety of complex dimension dN ≥ 2, and let M2dN+3 be the total
space of a Sasaki S1 bundle over Sn. Then M2dN+3 is a nontrivial lens space bundle
(with fiber F ) over N . Furthermore, F = S3 if and only if the natural induced map
π2(M) −→ π2(N) is an epimorphism, and the natural induced map π1(M) −→ π1(N)
is a monomorphism. In particular, if N is simply connected there is a choice of Kähler
class on Sn such F = S3.

Proof. By composition we have a smooth bundle F → M2dN+3 → N , and by construc-
tion the S1 action on M2dN+3 only acts on the fibers F . Moreover, since the total space
of this bundle is Sasaki, the bundle is nontrivial. So its restriction to F is also nontrivial.
It follows that F is a lens space and we have the commutative diagram

(3)

S1 −→ F −→ CP1








"

id







"







"

S1 −→ M2dN+3 −→ Sn






"







"

N
id
−→ N.

Now since N is Kähler its third Betti number b3(N) is even. Furthermore, since M2dN+3

is Sasaki of dimension at least 7, its third Betti number b3(M) must also be even which
implies that the Euler class of the lens space bundle cannot vanish implying that the
bundle is nontrivial.

Since F is a lens space, π2(F ) = 0, so the long exact homotopy sequence becomes

(4) 1 −→ π2(M) −→ π2(N) −→ π1(F ) −→ π1(M) −→ π1(N) −→ 1.

So when the induced map π2(M) −→ π2(N) is an epimorphism, and the induced map
π1(M) −→ π1(N) is a monomorphism we have π1(F ) = 1 which gives F = S3 in this
case. The converse is also clear from the homotopy exact sequence.

1The combinatorics studied in these references is that of the moment cone which is dual to the
Sasaki cone t+(D, J).
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Now if N is simply connected so is Sn. Thus, by choosing a primitive Kähler class
on Sn, we can take M2d+3 to be simply connected. Furthermore, we can choose the
Kähler class on Sn such that its restriction to CP1 is primitive. It then follows that
F = S3. !

3. Yamazaki’s Fiber Join

Yamazaki [Yam99] constructed his fiber join in the category of regular K-contact
manifolds which as shown in [BTF21] restricts to the Sasakian case in a natural way.
We refer to ob.cit for details. Here we briefly recall that the fiber join is constructed by
considering d+ 1 regular Sasaki manifolds Mj over a smooth algebraic variety N with
d + 1 Kähler forms ωj on N that are not necessarily distinct. One then constructs a
smooth manifold M = M1 'f · · ·'f Md+1 as the unit sphere in the complex vector bundle
E = ⊕d+1

j=1L
∗

j where Lj denotes the complex line bundle on N associated to Mj such that
c1(Lj) = [ωj] and L∗

j is its dual. We shall refer to such a fiber join as a Sasaki-Yamazaki
fiber join. Topologically, we have

Proposition 3.1. Let M be a Sasaki-Yamazaki fiber join as described above. Then

(1) M is a S2d+1 bundle over N with a d+ 1 dimensional Sasaki cone. Moreover,
(2) if d ≥ n then M has the cohomology groups of the product S2d+1 ×N ; whereas,
(3) if d < n then the Euler class of the bundle does not vanish, and the Betti numbers

satisfy b2d+2i(M) = b2d+2i(N)− 1 where i = 1, . . . , n− d.

Proof. That M is an S2d+1 bundle follows from the construction, and Theorem 3.4 in
[BTF21] shows that M admits a d+1 dimensional family of Sasakian structures. When
d ≥ n the Euler class of the bundle vanishes and the Leray-Serre spectral sequence
collapses giving the product groups in the limit. However, if d < n with M having a
Sasakian structure, the odd Betti numbers less than half the dimension must be even
(cf. [BG08]). Moreover, the odd Betti numbers of N are also even, and the even Betti
numbers are greater than zero. So if the Euler class vanishes the orientation class α
of the sphere which lies in the E0,2d+1

2 term of the spectral sequence would survive to
infinity which would imply that the Betti number b2d+1 is odd. This contradicts the
fact that M has a Sasakian structure since 2d + 1 < 2n < 1

2 dim M . Thus, the Euler
class, which is represented by the differential d2d+2(α), cannot vanish in this case. So
the real class d2d+2(α) ∈ E2d+2,0

∞
is killed which reduces the (2d+2)th Betti number by

one. The other equalities follow from this and naturality of the differential. !

The Euler class of the bundle is ωd+1 where ω is an integral Kähler form on N . We
want to determine the conditions under which a sphere bundle is a fiber join. It is
convenient to think of this in terms of G-structures. An oriented S2d+1-bundle over N
is an associated bundle to a principal bundle with group SO(2d+ 2).

Proposition 3.2. An S2d+1-bundle S(E) over a smooth projective algebraic variety N is
of the form S(⊕iLi) if and only if the group of the corresponding principal bundle is the
maximal torus Td+1

C . Moreover, this is a Sasaki-Yamazaki fiber join if there is a choice
of complex line bundles Li such that c1(L∗

i ) is positive definite for all i = 1, . . . , d+ 1.

Proof. The only if part is clear. Conversely, let M be the total space of the unit sphere
bundle in a complex vector bundle E over a smooth projective algebraic variety N .
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Assume that the structure group of E reduces to a maximal torus Td+1
C . Then E is

isomorphic to a sum of complex line bundles ⊕d+1
i=1Li. Assume further that the Li can

be chosen such that c1(L∗

i ) is positive definite for i = 1, . . . , d+1. But this gives precisely
the fiber join of the corresponding S1 bundles over N . !

LetM be a Sasaki-Yamazaki fiber join. Then as discussed aboveM is an S2d+1 bundle
over a smooth projective algebraic variety N for some d ≥ 1. The Sasakian structure
on M restricts to the standard weighted Sasakian structure on each fiber S2d+1. When
the weights are integers, it is convenient to describe this by the following commutative
diagram of S1 actions labelled by a weight vector w:

(5) S1
w

id
!!

"" S2d+1

!!

"" CPd[w]

!!

S1
w

"" Mw
""

!!

Pw(⊕
d+1
j=1L

∗

j )

!!

N
id

"" N.

3.1. Quasi-regular Quotients when d = 1. For the case d = 1 and co-prime w =
(w1, w2) ∈ (Z+)2, we want to understand Pw(⊕

d+1
j=1L

∗

j ) in the diagram (5). To this end
we will follow the ideas in Section 3.6 of [BTF14].

Let M3
i → N denote the primitive principal S1-bundle corresponding to the line

bundle Li. Here we assume that N is a smooth projective algebraic manifold. So c1(L∗

i )
equals some (negative) integer di times a primitive cohomology class that in turns defines
M3

i . [Recall that Li has to be a positive line bundle over N .] Consider the S1×S1×C∗

action Aw,L1,L2
on M3

1 ×M3
2 × C2 defined by

(6) Aw,L1,L2
(λ1,λ2, τ)(x1, u1, x2, u2; z1, z2) = (x1,λ1u1, x2,λ2u2; τ

w1λd11 z1, τ
w2λd22 z2),

where λ1,λ2, τ ∈ C∗ and |λi| = 1. Then Pw(L∗

1 ⊕ L∗

2) should equal

M3
1 ×M3

2 × C2/Aw,L1,L2
(λ1,λ2, τ).

Now, we also can define a w1w2-fold covering map h̃w : M3
1×M3

2×C2 → M3
1×M3

2×C2

by
h̃(x1, u1, x2, u2; z1, z2) = (x1, u1, x2, u2; z

w2

1 , zw1

2 )

and this gives a commutative diagram

(7) M3
1 ×M3

2 × C2

h̃w

!!

Aw,L1,L2
(λ1,λ2,τ)

−−−−−−−−−−→ M3
1 ×M3

2 × C2

h̃w

!!

M3
1 ×M3

2 × C2
A

1,L
w2
1

,L
w1
2

(λ1,λ2,τ
w1w2 )

−−−−−−−−−−−−−−−→ M3
1 ×M3

2 × C2

and so we have a fiber preserving biholomorphism hw : Pw(L∗

1⊕L∗

2) → P((L∗

1)
w2⊕(L∗

2)
w1)

and we can write Pw(L∗

1 ⊕ L∗

2) as the log pair (P((L∗

1)
w2 ⊕ (L∗

2)
w1),∆w), where ∆w =

(1−1/w1)D1+(1−1/w2)D2 and D1, D2 are the zero and infinity sections, respectively,
of the bundle P((L∗

1)
w2 ⊕ (L∗

2)
w1) → N .
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Remark 3.3. Note that if w = (1, 1) this checks out with the usual regular quotient.
If the principal bundles M3

1 and M3
2 are equal, we can choose (w1, w2) = (d1, d2)/a with

a = − gcd(|d1|, |d2|) to get that (L∗

1)
w2 = (L∗

2)
w1 and so P((L∗

1)
w2 ⊕ (L∗

2)
w1) is trivial and

the quasi-regular quotient is a product as expected from Proposition 3.8 of [BTF21]

By utilizing the set-up in Section A.3 of [BTF21] we can also determine the quasi-
regular Kähler class (up to scale) in the case with d = 1 and co-prime w = (w1, w2) ∈
(Z+)2 as above. Indeed, from (9) of [BTF21] we have that

(8) w1w2dηw = w2(r
2
1dη1 + 2(r1dr1 ∧ (η1 + dθ1))) + w1(r

2
2dη2 + 2(r2dr2 ∧ (η2 + dθ2))),

where (rj, θj) denote the polar coordinates on the fiber of the line bundle L∗

j (chosen
via a Hermitian metric on the line bundle).

As explained in Section A.3 of [BTF21], we can say that z0 :=
1
2r

2
1 and z∞ := 1

2r
2
2 are

the moment maps of the natural S1 action on L∗

1 and L∗

2, respectively. On 2 = z0 + z∞,
the function z := z0−1 = 1−z∞ descends to a fiberwise moment map (with range [-1,1])
for the induced S1 action on P(1 ⊕ (L1)w2 ⊗ (L∗

2)
w1) → N . Using that r21 = 2(z + 1),

r22 = 2(1− z), r1 dr1 = dz, and r2 dr2 = −dz, we rewrite (8) to

w1w2dηw = 2(w2dη1 + w1dη2) + 2d(zθ),

where θ := w2(η1+dθ1)−w1(η2+dθ2) is a connection form on (L1)w2⊗(L∗

2)
w1. Now this

descends to a Kähler form on P((L∗

1)
w2 ⊕ (L∗

2)
w1) = P(1⊕ (L1)w2 ⊗ (L∗

2)
w1) → N with

Kähler class 2(2π(w2[ω1] +w1[ω2]) +Ξ) where c1(Lj) = [ωj] and Ξ/(2π) is the Poincare
dual of (D1 +D2).

We can summarize our findings for d = 1 in the following proposition.

Proposition 3.4. For d = 1 and co-prime w = (w1, w2) ∈ (Z+)2, the quasi-regular
quotient of Mw with respect to ξw is the log pair Bw,w := (P((L∗

1)
w2 ⊕ (L∗

2)
w1),∆w),

where ∆w = (1−1/w1)D1+(1−1/w2)D2 and D1, D2 are the zero and infinity sections,
respectively, of the bundle P((L∗

1)
w2 ⊕ (L∗

2)
w1) → N . Moreover, up to scale, the induced

transverse Kähler class on Bw,w is equal to 2π(w2[ω1] +w1[ω2]) +Ξ where c1(Lj) = [ωj ]
and Ξ/(2π) is the Poincare dual of (D1 +D2).

Remark 3.5. We can do the following sanity check: If colinearity (see [BTF21] for the
definition) holds on top of the above assumptions, we have according to Proposition 15
of [BTF21] that the fiber join is just a regular S3

w̃-join as in [BTF16]. Here ωi = biωN for
[ωN ] a primitive integer Kähler class. Connecting with the notation in [BTF16] (setting
wi from [BTF16] equal to w̃i) we have l1(w̃1, w̃2) = (b1, b2) and l2 = 1. Now Proposition
3.4 is consistent with Theorem 3.8 of [BTF16] (with vi = wi) saying that the quotient
of ξw has n = b1w2 − b2w1. Moreover, the transverse Kähler class is then

2π(w2[ω1] + w1[ω2]) + Ξ = 2π(b1w2 + b2w1)[ωN ] + Ξ =
1

r
[ωNn] + Ξ

with ra =
b1w2−b2w1

b1w2+b2w1
and [ωNn ] := 2πn[ωN ] = c1((L1)w2 ⊗ (L∗

2)
w1). This is consistent with

(44) and (59) in [BTF16].
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3.2. The General d Case. For the fiber join Mw we have in particular that the com-
plex manifold arising as the quotient of the regular Reeb vector field ξ1 is equal to
P
(

⊕d+1
j=1L

∗

j

)

→ N . Recall from [BTF21] that this is an admissible projective bundle as
defined in [ACGTF08a] exactly when the following all hold true:

(1) The base N is a local product of Kähler manifolds (Na,ΩNa), a ∈ A ⊂ N, where
A is a finite index set. This means that there exist simply connected Kähler
manifolds Na of complex dimension da such that N is covered by

∏

a∈A Na. On
each Na there is an (1, 1) form ΩNa , which is a pull-back of a tensor (also denoted
by ΩNa) on N , such that ΩNa is a Kähler form of a constant scalar curvature
Kähler (CSCK) metric ga.

(2) There exist d0, d∞ ∈ N ∪ {0}, with d = d0 + d∞ + 1, such that E0 := ⊕d0+1
j=1 L∗

j

and E∞ := ⊕d0+d∞+2
j=d0+2 L∗

j are both projectively flat hermitian holomorphic vector
bundles. This would, for example, be true if L∗

j = L0 for j = 1, ..., d0 + 1 and
L∗

j = L∞ for j = d0+2, ..., d0+ d∞+2, where L0 and L∞ are some holomorphic
line bundles. That is, E0 = L0⊗Cd0+1 and E∞ = L∞⊗Cd∞+1. More generally,
c1(L∗

1) = · · · = c1(L∗

d0+1) and c1(L∗

d0+2) = · · · = c1(L∗

d0+d∞+2) would be sufficient.

(3) c1(E∞)
d∞+1 − c1(E0)

d0+1 =
∑

a∈A[εaΩNa ], where εa = ±1.

The Kähler cone of the total space of an admissible bundle P (E0 ⊕ E∞) → N has a sub-
cone of so-called admissible Kähler classes (defined in Section 1.3 of [ACGTF08a]).
This subcone has dimension |A|+ 1 and, in general, this is not the entire Kähler cone.
However, by Remark 2 in [ACGTF08a], if b2(Na) = 1 for all a ∈ A and b1(Na) /= 0 for
at most one a ∈ A, then the entire Kähler cone is indeed admissible.

3.3. Admissibility. As briefly discussed in [BTF21], it is convenient to have refined
notions of admissibility.

Definition 3.6. Any fiber join Mw where the quotient of the regular Reeb vector field
ξ1 is an admissible projective bundle will also be called admissible. If further the
transverse Kähler class of the regular quotient is a pullback of an admissible Kähler
class, then we call Mw strongly admissible.

Remark 3.7. Note that in Definition 4.1 of [BTF21] we introduced the condition of
being super admissible. There we required the entire Kähler cone of the regular
admissible quotient to be admissible. Of course, if that is the case then in particular
the transverse Kähler class of the regular quotient is a pullback of an admissible Kähler
classes. Thus Mw is strongly admissible if it is super admissible. In fact we have

Proposition 3.8. Generally the inclusions

super admissible ⊂ strongly admissible ⊂ admissible

are proper.

The proof of this proposition is a consequence of either of the Examples 3.1 or 3.2
below.

Example 3.1. Let Σg be a Riemann surface of genus g > 1 and let ωΣg denote the unit
area Kähler form of the constant scalar curvature Kähler metric on Σg. Now consider
N = Σg × Σg (i.e. N1 = N2 = Σg) and let πa denote the projection from N to the ath
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factor. Then γa := [π∗

aωΣg ] ∈ H2(N,Z). Let δ ∈ H2(N,Z) denote the Poincaré dual of
the diagonal divisor in N defined by the diagonal curve {(x, x) | x ∈ Σg}. Then from
Theorem 3.1 of [Shu06] (which uses Nakai’s criterion for ample divisors), we know that
ls := (s− 1)(γ1 + γ2) + δ ∈ H2(N,Z) is in the Kähler cone of N if and only if s > g.

Now we form a d = 1 Yamazaki fiber join by choosing line bundles L1 and L2 over
N such that c1(L1) = [ω1] = lg+2 and c1(L2) = [ω2] = lg+1. In the above setting
L∗

1 = E0 and L∗

2 = E∞ and we easily see that the fiber join is indeed admissible with
c1(E∞) − c1(E0) = c1(L1) − c1(L2) = lg+2 − lg+1 = γ1 + γ2. Specifically, the regular
quotient equals the admissible bundle

Sg := P (L∗

1 ⊕ L∗

2) → N = P (1⊕ L1 ⊗ L∗

2) → N = P (1⊕ O(1, 1)) → Σg × Σg.

Note that with the above notation [ΩNa ] = γa (and εa = +1). On Sg, the admissible
Kähler classes are up to scale of the form

1

x1
[ΩN1

] +
1

x2
[ΩN2

] + Ξ,

where 0 < xa < 1 (following Section 1.3 of [ACGTF08a]). According to Proposition 3.4,
the regular transverse Kähler class is, up to scale, the pull-back of 2π([ω1] + [ω2]) + Ξ.
This equals

2π(lg+2+lg+1)+Ξ = 2π((2g+1)(γ1+γ2)+2δ)+Ξ = 2π
(

(2g+1)[ΩN1
]+(2g+1)[ΩN2

]+2δ
)

+Ξ

which due to the “2δ” bit is not an admissible Kähler class. Therefore, the fiber join is
not strongly admissible.

Furthermore, it is possible to chose the line bundles L1 and L2 so that the fiber join
is strongly admissible (cf. Section 5), but it will never be super admissible due to the
fact that the Kähler cone of N consist of more than just product classes and thus there
are non-admissible Kähler classes on the total space of the CP1-bundle of the regular
quotient. Hence, the inclusions in Proposition 3.8 are proper.

Example 3.2. Another example of admissible but not strongly admissible is the fol-
lowing case. Let N = P(1 ⊕ O(1,−1)) → CP1 × CP1. Let ΩFS denote the standard
Fubini-Study Kähler form on CP1, let πi denote the projection from N to the ith factor
in the product CP1 ×CP1, and let χ denote the Poincaré dual of 2π(DN

1 +DN
2 ), where

DN
1 , D

N
2 are the zero and infinity sections of N → CP1 × CP1. Now consider the two

CSC Kähler forms ω1 and ω2 on N with Kähler classes

[ω1] = 2
(

3[π∗

1ΩFS] + 3[π∗

2ΩFS] +
χ

2π

)

and
[ω2] = 2[π∗

1ΩFS] + 2[π∗

2ΩFS] +
χ

2π
,

respectively. (See e.g. Theorem 9 in [ACGTF08a] to confirm that [ω1] and [ω2] are
indeed represented by CSC Kähler forms.)

Now we form a d = 1 Yamazaki fiber join by choosing line bundles L1 and L2 over N
such that c1(L1) = [ω1] and c1(L2) = [ω2]. In the above setting L∗

1 = E0 and L∗

2 = E∞

and we easily see that the fiber join is indeed admissible with c1(E∞) − c1(E0) =
c1(L1) − c1(L2) = 4[π∗

1ΩFS] + 4[π∗

2ΩFS] +
χ
2π . Specifically, the regular quotient equals

the admissible bundle
S : P (1⊕ L) → N
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such that c1(L) = [ΩN ] := 4[π∗

1ΩFS] + 4[π∗

2ΩFS] +
χ
2π and ΩN is a CSC Kähler form on

N . Note that S is a so-called stage four Bott manifold given by the matrix

A =









1 0 0 0
0 1 0 0
1 −1 1 0
5 3 2 1









.

[See e.g. Section 1 of [BCTF19] for details.] It is important to note that the CSC Kähler
manifold (N,ΩN ) is irreducible in the sense that for (1) at the beginning of Subsection
3.2, A must be just {1}.

Following Section 1.3. in [ACGTF08a], we have that on S, the admissible Kähler
classes are up to scale of the form

2π

x
[ΩN ] + Ξ,

where 0 < x < 1, Ξ denote the Poincare dual of 2π(D1 +D2), and D1, D2 are the zero
and infinity sections, respectively, of the bundle P(1⊕ L) → N .

According to Proposition 3.4, the regular transverse Kähler class is, up to scale, the
pull-back of 2π([ω1] + [ω2]) + Ξ. This equals

2π(8[π∗

1ΩFS] + 8[π∗

2ΩFS] + 3
χ

2π
) + Ξ

which cannot be written as (the rescale of) 2π
x
[ΩN ] + Ξ for any 0 < x < 1. Thus this is

not an admissible Kähler class and therefore the fiber join is not strongly admissible.

3.4. The Main Theorems. For Theorems 3.9 and 3.11 below, we only need the
strongly admissible condition. In [BTF21] we used the above observations together
with existence results in [Gua95], [Hwa94], and [HS02] (specifically, the slight general-
ization in the form of Propostion 11 of [ACGTF08a]) to prove the following theorem:

Theorem 3.9 ([BTF21]). Let Mw be a strongly admissible fiber join whose regular
quotient is a ruled manifold of the form P(E0⊕E∞) −→ N where E0, E∞ are projectively
flat hermitian holomorphic vector bundles on N of complex dimension (d0+1), (d∞+1)
respectively, and N is a local Kähler product of non-negative CSC metrics. Then the
Sasaki cone of Mw has an open set of extremal Sasaki metrics (up to isotopy).

Together with E. Legendre and H. Huang we recently obtained the following result
on admissible Kähler manifolds:

Theorem 3.10 (Theorem 3.1 in [BHLTF23]). Suppose Ω is a rational admissible Kähler
class on the admissible manifold Nad = P(E0 ⊕ E∞) −→ N , where N is a compact
Kähler manifold which is a local product of nonnegative CSCK metrics. Let (M,S)
be the Boothby-Wang constructed Sasaki manifold given by an appropriate rescale of Ω.
Then the corresponding Sasaki-Reeb cone will always have a (possibly irregular) CSC-ray
(up to isotopy).

The proof of this theorem (Section 3.1 of [BHLTF23]) reveals that this CSC Sasaki
metric lies in a 2-dimensional subcone of t+(S) which is exhausted by extremal Sasaki
metrics. Further, since this subcone is constructed via Killing potentials coming from
a moment map induced by a fiber wise S1-action on the admissible bundle, it is clear
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that this is also a subcone of t+sph (and all of t+sph when d = 1). Recall from Section 2.2 of
[BTF21] that t+sph is defined to be the natural (d+1)-subcone of the Sasaki-Reeb cone of
Mw coming from considering the standard Sasaki CR structure on S2d+1. In light of all
this, we can thus easily improve Theorem 3.9 to give Theorem 1.1 in the Introduction,
namely

Theorem 3.11. Let Mw be a strongly admissible Yamazaki fiber join whose regular
quotient is a ruled manifold of the form P(E0⊕E∞) −→ N where E0, E∞ are projectively
flat hermitian holomorphic vector bundles on N of complex dimension (d0+1), (d∞+1)
respectively, and N is a local Kähler product of non-negative CSC metrics. Then t+sph
has a 2-dimensional subcone of extremal Sasaki metrics (up to isotopy) which contains
at least one ray of CSC Sasaki metrics.

4. Further Examples

In this section we work out the details of examples of fiber joins in dimensions 5 and
7. We consider only the case with d = 1, i.e. d0 = d∞ = 0. So we have an S3 bundle
M , which we shall assume to be strongly admissible, over a smooth projective algebraic
variety N . We begin with the simplest case, namely where N is a Riemann surface,
so the simplest fiber join is of dimension 5. Even in this case the geometry is quite
involved. Note that the genus g = 0 case is a straightforward special case of Theorem
3.11 whose Sasaki cone is strictly larger than t+sph; hence, we concentrate on g ≥ 1.

In this case the fiber CPd[w] is the log pair (CP1,∆w) with branch divisors

∆w =
(

1−
1

w1

)

D1 +
(

1−
1

w2

)

D2.

Here we have c1(L∞) − c1(L0) =
∑

a[εaΩa]. In order to construct a non-colinear fiber
join of this kind we must have the Picard number ρ(N) ≥ 2. In this case we may
see the rays determined by ξw explicitly as CR-twists of the regular quotient [AC21].
Indeed, following the notation of Section 3 of [BHLTF23], on the regular quotient,
Nad = P

(

1 ⊕ (L∗

0 ⊗ L∞)
)

→ N , we have a moment map z : Nad → [−1, 1]. A choice
of c ∈ (−1, 1) creates a new Sasaki structure (with Reeb vector field ξc) on Mw via the
lift of f = cz + 1 from S to Mw. In turn, this lift may be identified with c z + 1, where
z := z0 − 1 = 1 − z∞ is given in the discussion above Proposition 3.4. In particular,
z0 and z∞ are the moment maps of the natural S1 action on L∗

1 and L∗

2, respectively.
Thus, the weighted combination, w1z0 + w2z∞, should define the Reeb vector field ξw
and since

w1z0 + w2z1 = (w1 − w2)z + (w1 + w2) = (w1 + w2)(
w1 − w2

w1 + w2
z + 1),

we see that (up to scale) ξw corresponds to choosing c = w1−w2

w1+w2
in the CR-twist.

4.1. N = Σg, a compact Riemann surface of genus g ≥ 1. It is well known that if
N = Σg, a Riemann surface of genus g, then an odd dimensional sphere bundle M over
N is diffeomorphic to the trivial bundle S2d+1 × Σg or the unique non-trivial bundle
S2d+1×̃Σg [Ste51]. We will consider d = 1 fiber joins over N = Σg. Since these are
necessarily colinear, they have earlier been treated as S3

w joins [BTF14], but not in the
setting of Yamazaki fiber joins. Let ωΣg denote the unit area Kähler form of the constant
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scalar curvature Kähler metric on Σg and let k1 > k2 > 0 be integers (the case 0 < k1 <
k2 is completely similar) and let L1, L2 be holomorphic line bundles over Σg such that
c1(Li) = ki[ωΣg ]. The corresponding d = 1 Yamazaki fiber join, Mk = S(L∗

1⊕L∗

2) → Σg

has regular quotient Sn = P
(

1⊕O(k1 − k2)
)

→ Σg and regular transverse Kähler class
equal (up to scale) to the admissible Kähler class 2π(k1 + k2)[ωΣg ] + Ξ, which we can
write as 1

x

(

2π(k1 − k2)[ωΣg ]
)

+ Ξ with x = k1−k2
k1+k2

. [See Remark 3.5.] Note that since

g ≥ 1, we have that the Sasaki cone equals the 2-dimensional cone t+sph
We now follow Section 3 of [BHLTF23]. On the regular quotient, Sn, we have a

moment map z : Sn → [−1, 1]. A choice of c ∈ (−1, 1) creates a new Sasaki structure
(with Reeb vector field ξc = f ξ1) on Mw via the lift of f = cz+1 from Sn to Mw. From
the discussion in the beginning of Section 4 we know that c = k1−k2

k1+k2
= x corresponds

to the Reeb vector field of the S3
w̃
join, M5

g,l,w̃ = S3
g 'l,1 S

3
w̃
from Section 3.2 of [BTF14]

with S3
g being the Boothby-Wang constructed smooth Sasaki structure over (Σg, [ωΣg ]),

l = gcd(k1, k2), and (w̃1, w̃2) = (k1
l
, k2

l
). Since this Reeb vector field is extremal by

construction, we know a priori that the set of extremal Sasaki rays in the Sasaki cone,
t+sph is not empty.

Proposition 3.10 of [BHLTF23] tells us that the Reeb vector field determined - up to
homothety - by c ∈ (−1, 1) (as explained in the beginning of Section 4) is extremal (up
to isotopy) if and only if Fc(z) > 0, for −1 < z < 1, where the polynomial Fc(z) is given
as follows:
Let s = 2(1−g)

k1−k2
, x = k1−k2

k1+k2
and define

αr,−4 =
∫ 1
−1(ct+ 1)−4tr(1 + xt) dt

αr,−5 =
∫ 1

−1(ct+ 1)−5tr(1 + xt) dt

βr,−3 =
∫ 1
−1(ct+ 1)−3xstr dt

+ (−1)r(1− c)−3(1− x) + (1 + c)−3(1 + x).

Then,

(9) Fc(z) = (cz+ 1)3
[

2(1− x)

(1− c)3
(z+ 1) +

∫ z

−1

Q(t)(z− t) dt

]

,

where

Q(t) =
2xs

(ct + 1)3
−

(A1t+ A2)(1 + xt)

(ct+ 1)5

and A1 and A2 are the unique solutions to the linear system

(10)
α1,−5A1 + α0,−5A2 = 2β0,−3

α2,−5A1 + α1,−5A2 = 2β1,−3.

Further, if the positivity of Fc(z) is satisfied, then the extremal Sasaki structure is CSC
exactly when

(11) α1,−4β0,−3 − α0,−4β1,−3 = 0
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is satisfied. The left hand side of (11) equals 4h(c)
3(1−c2)5 , with polynomial

h(c) = x(sx−2)+(5+x2−sx)c−x(6+sx)c2−(1−sx−3x2)c3 and h(±1) = ±4(1∓x)2.
Thus, since h(c) is negative at c = −1 and positive at c = 1, (11) always has at least
one solution c ∈ (−1, 1).

We calculate Fc(z):

Fc(z) =
(k1 + k2)2(1− z2)p(z)

4((1− c)2k2
1 + (1 + c)2k2

2 + 4(1− c2)k1k2)
,

where p(z) is a polynomial of degree 2 whose coefficients depend on k1, k2, g and c, but
is more conveniently written as

p(z) = c2sx+ 3c2x2 − c2 − 2csx2 + 3cx3 − 7cx+ sx3 − 4x2 + 6

+ 2x (3c2x2 − c2 − 4cx− x2 + 3) z

+ (c− x) (−csx+ 3cx2 − c+ sx2 − 2x) z2,

where s = 2(1−g)
k1−k2

, x = k1−k2
k1+k2

. Clearly Fc(z) > 0 for all z ∈ (−1, 1) exactly when p(z) > 0
for all z ∈ (−1, 1). We have arrived at

Proposition 4.1. Consider the d = 1 fiber join S3 −→ Mk −→ Σg over a Riemann
surface Σg of genus g ≥ 1 with its natural Sasakian structure Sc as described above.
Then Sc is extremal (up to isotopy) if and only if p(z) > 0 for all z ∈ (−1, 1).

Note that
p(−1) = 8k2((1−c)2k21+(1+c)2k22+4(1−c2)k1k2)

(k1+k2)3
and p(1) = 8k1((1−c)2k21+(1+c)2k22+4(1−c2)k1k2)

(k1+k2)3
> 0,

thus p(±1) > 1, so we see right away that when c = x, p(z) (which is now of degree
one) is positive for −1 < z < 1. This confirms our expectation from above that ξc is
extremal when c = k1−k2

k1+k2
= x.

It is easy to check that for g > 31k21+14k1k2+k1+k22+k2
k1+k2

and c = k1
k1+k2

, p(0) < 0. Thus we

see that for any fixed choice of integers k1 > k2 > 0, t+sph is not exhausted by extremal
rays when g is very large. This is expected in light of Theorem 5.1 in [BTF14].

From [BTF14] we have the following results:

(1) (Proposition 5.5 in [BTF14] combined with Theorem 3 in [ACL21]) There is a
unique ray in t+sph with a CSC Sasaki metric (up to isotopy).

(2) (Proposition 5.10 in [BTF14]) If g ≤ 1+3k2 then every ray in t+sph has an extremal
Sasaki metric (up to isotopy). In particular, this is true whenever g ≤ 4.

Statement (1) means that (11) has a unique solution c ∈ (−1, 1) (i.e. the cubic h(c)
above has a unique real root c ∈ (−1, 1)) and for this unique solution, p(z) > 0 for all
z ∈ (−1, 1). An easy way to see the uniqueness of the real root directly from the present
setup is to make a change of variable2 c = φ(b) = 1−b

1+b
[φ : (0,+∞) → (−1, 1)] Then

h(c) transforms to h̃(b), where

h̃(b) =
4

(b+ 1)3
(

(1− x)2 + (1− x)(2 + 2x− sx)b− (1 + x)(2(1− x)− sx)b2 − (1 + x)2b3
)

.

2Note that b is exactly what c is in (51) of [BTF14]. This follows from our discussion in Section 3.
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Since the polynomial coefficients of the cubic

(1− x)2 + (1− x)(2 + 2x− sx)b− (1 + x)(2(1− x)− sx)b2 − (1 + x)2b3

change sign exactly once (recall sx ≤ 0 and 0 < x < 1), we have (using Descartes’ rule of
signs) exactly one positive root b ∈ (0,+∞) (corresponding to a unique root c ∈ (−1, 1)
of h(c)). Then too see that this c value (let us call it ĉ) satisfies that p(z) > 0 for all z ∈
(−1, 1) we can first observe that since h(x) = 3x(1−x2)2 /= 0, ĉ /= x. With that settled
we may (solve for s in h(ĉ) = 0 and) write s = 3ĉ3x2

−ĉ3−6ĉ2x+ĉx2+5ĉ−2x
(1−ĉ2)x(ĉ−x) . Substituting this

into p(z) (and using that x = k1−k2
k1+k2

) gives us p(z) = 4((1−ĉ)2k21+(1+ĉ)2k22+4(1−ĉ2)k1k2)(1+ĉz)(1−ĉx−ĉz+xz)
(1−ĉ2)(k1+k2)2

.

Since 0 < x < 1 and −1 < ĉ < 1, it easily follows that p(z) > 0 for −1 < z < 1.
Similarly, statement (2) is (re)verified if we show that for g ≤ 1+3k2, p(z) > 0 for all

c, z ∈ (−1, 1). This is done easily by writing p(z) in a new variable y: z = ψ(y) = 1−y
1+y

(0 < y < +∞) along with using the above transformation c = φ(b) = 1−b
1+b

. After
multiplying by (1+ b)2(1+y)2, this results in a polynomial in the two variables b, y > 0.
The coefficients of this polynomial are all non-negative (with some strictly positive)
precisely when g ≤ 1 + 3ki for i = 1, 2. Since (we assumed without loss of generality
that) k1 > k2, this is manifested by g ≤ 1 + 3k2.

Example 4.1. Assume now that k2 = 1 and g = 5 or g = 6. Thus g ≤ 1 + 3k2 is false
and Statement (2) cannot be applied. Nevertheless we shall see that positivity of p(z)
for −1 < z < 1 still holds for all k1 > 1: With g = 5, k2 = 1, c = φ(b) = 1−b

1+b
, and

z = ψ(y) = 1−y
1+y

, p(z) rewrites to

32 (b2k2
1(k1 − y + y2) + 3bk2

1y + 4bk2
1 + 4bk1y2 + 11bk1y + (3k1 − 4)y + k1 + y2)

(b+ 1)2(k1 + 1)3(y + 1)2
.

Since k1 ≥ 2 and y, b > 0, it is easy to see that this is always positive.
With g = 6, k2 = 1, c = φ(b) = 1−b

1+b
, and z = ψ(y) = 1−y

1+y
, p(z) rewrites to

32 (b2k2
1(k1 − 2y + y2) + 3bk2

1y + 4bk2
1 + 4bk1y2 + 13bk1y + (3k1 − 5)y + k1 + y2)

(b+ 1)2(k1 + 1)3(y + 1)2

Since k1 ≥ 2 and y, b > 0, we see also in this case that this is always positive.
On the other hand, for k2 ≥ 2, then 1 + 3k2 ≥ 7 and since 7 is larger than both 5

and 6, we already know from Statement (2) above that positivity of p(z) for −1 < z < 1
holds. In conclusion, when g ≤ 6 we have that for all integers k1 > k2 > 0, every ray in
t+sph has an extremal Sasaki metric (up to isotopy). This improves the result we had in
[BTF14].

Finally notice that when g = 7, k1 = 2, k2 = 1 and c = −299
301 , we get that p(−1

5) =
− 7794656

61155675 < 0 and so positivity of p(z) fails in this case.

The case k1 = k2 and g ≤ 6 was already handled in Example 5.11 of [BTF14] (recall
that (k1, k2) = l(w̃1, w̃2) in the S3

w̃
join, M5

g,l,w̃ = S3
g 'l,1 S

3
w̃
). Similarly to the example

above we had that every ray in t+sph has an extremal Sasaki metric (up to isotopy). We
can thus state the following result.

Proposition 4.2. Let k = (k1, k2) with k1 ≥ k2 > 0 being integers and consider the
Yamazaki fiber join Mk as described above. For 1 ≤ g ≤ 6 or 1 ≤ g ≤ 1 + 3k2 we have
that the entire Sasaki cone is extremal (up to isotopy).
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4.2. N = CP1 × CP1. Let Ωi denote the standard area forms on the ith copy of
CP1. With slight abuse of notation, we denote the pull-back of their Kähler classes
to H2(N,Z) by [Ω1] and [Ω2]. The Kähler cone of N then equals spanR+{[Ω1], [Ω2]}.
Let Mw be a d = 1 Yamazaki fiber join formed from a choice of Kähler classes which
are represented by Kähler forms

(12) ωj = k1
jΩ1 + k2

jΩ2, k1
j , k

2
j ∈ Z+,

for j = 1, 2. The line bundles L1, L2 satisfy that c1(Lj) = [ωj ] = k1
j [Ω1] + k2

j [Ω2]. So the
choices of Kähler forms is given by the 2 by 2 matrix

(13) K =





k1
1 k2

1

k1
2 k2

2,





and the fiber join is non-colinear exactly when detK /= 0. Now the quotient complex
manifold of Mw arising from the regular Sasakian structure with Reeb vector field ξ1 is
equal to the following CP1 bundle over CP1 × CP1:

P
(

L∗

1 ⊕ L∗

2) = P
(

1⊕ L1 ⊗ L∗

2

)

= P
(

1⊕ O(k1
1 − k1

2, k
2
1 − k2

2)
)

→ CP1 × CP1.

We assume here that ki
1 /= ki

2 for i = 1, 2. If we don’t make this assumption our regular
quotient could be a product of CP1 with a Hirzebruch surface. This is not a problem
per se, but needs to be treated slightly differently, so we will avoid this here.

Every Kähler class on P
(

1 ⊕ L1 ⊗ L∗

2

)

is admissible in the broader sense of the
definition given in [ACGTF08a]. Thus the fiber join is super admissible and therefore
strongly admissible. This case is hence a special case of Theorem 3.11, with t+sph a proper
subcone of the (unreduced) Sasaki cone. Nevertheless we shall study this example in
details since it will illustrate two different approaches for locating CSC ray(s) in t+sph.
At the end of the section we will also discuss which polarized Kähler manifolds (Sn, [ω])
of the form Sn = P

(

1⊕O(n1, n2)
)

→ CP1×CP1 appear as regular quotients of a Sasaki
Yamazaki fiber join.

For n1, n2 ∈ Z\{0}, a Kähler class on the complex manifold Sn = P
(

1⊕O(n1, n2)
)

→
CP1 ×CP1 is, up to scale, of the form 2π(n1

x1
[Ω1] +

n2

x2
[Ω2]) +Ξ), where 0 < |xi| < 1 and

xini > 0. As we saw in Section 5.3.3 of [BTF21], as well as in Section 3.1 of the current
paper, here we can calculate the quotient Kähler class up to scale and all in all we get
a smooth admissible Kähler manifold with admissible data

(14) n1 = k1
1 − k1

2, n2 = k2
1 − k2

2, x1 =
k1
1 − k1

2

k1
1 + k1

2

, x2 =
k2
1 − k2

2

k2
1 + k2

2

.

Indeed, more generally, using Proposition 3.4 we have that for co-prime w = (w1, w2) ∈
(Z+)2 the quasi-regular quotient of Mw with respect to ξw is the log pair
Bw,w := (P(1⊕O(w2k1

1 −w1k1
2, w2k2

1 −w1k2
2)),∆w). Together with the quotient Kähler

class (up to scale, also from Proposition 3.4) this gives (assuming w2ki
1 − w1ki

2 /= 0)
admissible data

(15) n1 = w2k
1
1−w1k

1
2, n2 = w2k

2
1−w1k

2
2, x1 =

w2k1
1 − w1k1

2

w2k1
1 + w1k1

2

, x2 =
w2k2

1 − w1k2
2

w2k2
1 + w1k2

2

.

Note that if w2ki
1−w1ki

2 = 0 for one of (or both) i = 1, 2, we get a product of CP1 with
a so-called Hirzebruch orbifold.
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From the discussion above we can see the rays, given up to scale by ξw, as CR-twists
of the regular quotient [AC21]. So choosing c = w1−w2

w1+w2
creates a new Sasaki structure

via the lift of f = cz+1 from Sn to Mw. With this correspondence in mind we can take
two different approaches when seeking out rays in t+sph with constant scalar curvature.
From the CR-twist point of view, the Reeb vector field ξc given by the CR-twist has
a constant scalar curvature Sasaki metric (up to isotopy) exactly when Equation (10)
from [BHLTF23] holds. Applying this equation to the regular quotient with admissible
data from (14) yields the equation fCR(c) = 0, where

fCR(c) := 18c
(

c2 − 1
)2

k1
1k

2
1k

1
2k

2
2 + 3(c− 1)5(k1

1)
2(k2

1)
2 + 3(c+ 1)5(k1

2)
2(k2

2)
2

+ (c+ 1)(c− 1)4k1
1k

2
1

(

k1
1 + k2

1 − 3k2
1k

1
2 − 3k1

1k
2
2

)

+ (c+ 1)2(c− 1)3
(

(k2
1)

2k1
2 + (k1

1)
2k2

2 − 4k1
1k

2
1k

1
2 − 4k1

1k
2
1k

2
2

)

+ (c+ 1)3(c− 1)2
(

k1
1(k

2
2)

2 + k2
1(k

1
2)

2 − 4k2
1k

1
2k

2
2 − 4k1

1k
1
2k

2
2

)

+ (c+ 1)4(c− 1)k1
2k

2
2

(

k1
2 + k2

2 − 3k1
1k

2
2 − 3k2

1k
1
2

)

(16)

If c ∈ Q∩(−1, 1), we can then set c = w1−w2

w1+w2
to get an equation in (w1, w2) ∈ Z+×Z+

for ξw being CSC (up to isotopy):

0 = −3(k1
2)

2(k2
2)

2w5
1

+ k1
2k

2
2

(

k1
2 + k2

2 − 3k2
1k

1
2 − 3k1

1k
2
2

)

w4
1w2

+
(

4k1
1k

1
2k

2
2 + 4k2

1k
1
2k

2
2 − 9k1

1k
2
1k

1
2k

2
2 − k2

1(k
1
2)

2 − k1
1(k

2
2)

2
)

w3
1w

2
2

+
(

9k1
1k

2
1k

1
2k

2
2 + (k2

1)
2k1

2 + (k1
1)

2k2
2 − 4k1

1k
2
1k

2
2 − 4k1

1k
2
1k

1
2

)

w2
1w

3
2

+ k1
1k

2
1

(

3k2
1k

1
2 + 3k1

1k
2
2 − k1

1 − k2
1

)

w1w
4
2

+ 3(k1
1)

2(k2
1)

2w5
2.

(17)

On the other hand, Proposition 4.13 of [BTF23] (with m0 = w1, m∞ = w2, r1 = x1,
and r2 = x2) tells us that the Kähler class given by (x1, x2) on the log pair (Sn,∆w)
has a constant scalar curvature Kähler metric when the following equation holds true:

0 =9(w1 − w2)n1n2 − 6(w1 + w2)n1n2(x1 + x2) + 6(w1 − w2)n1n2x1x2

+ 3n2(4w1w2 − n1(w1 − w2))x
2
1 + 3n1(4w1w2 − n2(w1 − w2))x

2
2

− (4w1w2(n1 + n2)− 3(w1 − w2)n1n2)x
2
1x

2
2.

(18)

We can then use the data in (15) above to get an equation for the existence of a constant
scalar curvature Kähler metric in the Kähler class of the quasi-regular Kähler quotient
of ξw.

As expected from the above discussion and the fact that a quasi-regular Sasaki struc-
ture has constant scalar curvature (up to isotopy) exactly when its Kähler quotient has
a constant scalar curvature Kähler metric in its Kähler class, this gives an equation
equivalent to (17).

Consider a given complex manifold Sn = P
(

1⊕ O(n1, n2)
)

→ CP1 × CP1. This will
be the regular quotient of a d = 1 Yamazaki fiber join given by K for any matrix K of
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the form

(19) K =





n1 + k1 n2 + k2

k1 k2,





where ki ∈ Z such that ki > Max{0,−ni}. For a given choice of k1, k2, the quotient
Kähler class is then determined, up to scale, by x1 = n1

n1+2k1 and x2 = n2

n2+2k2 . This
gives a criterion for which Kähler classes on Sn can show up as regular quotient Kähler
classes of a d = 1 Yamazaki fiber join.

For example, if n1 = 1 and n2 = −1, we have x1 = 1
1+2k1 and x2 = −1

−1+2k2 . Here
k1 ∈ Z+ and k2 ∈ Z+ \ {1}. The Koiso-Sakane KE class is given by x1 = 1/2 and
x2 = −1/2 and we see right away that this class is out of range. The other CSC classes
on this manifold are given by x2 = −x1 and x2 = x1 − 1 (see e.g. Theorem 9 in
[ACGTF08a]). Now,

x2 = −x1

⇐⇒
−1

−1+2k2 = − 1
1+2k1

⇐⇒
k2 = k1 + 1,

which then gives us a one parameter family (x1, x2) = ( 1
1+2k1 ,

−1
1+2k1 ) , k

1 ∈ Z+ of CSC
Kähler classes that each are regular quotient Kähler classes of a d = 1 Yamazaki fiber
join.

One the other hand,

x2 = x1 − 1

⇐⇒
−1

−1+2k2 = −2k1

1+2k1

⇐⇒
1 = −4k1 − 4k1k2,

which has no solutions for k1 ∈ Z+ and k2 ∈ Z+ \ {1}. Thus, none of the CSC Kähler
classes from this family can be regular quotient Kähler classes of a d = 1 Yamazaki
fiber join.

4.3. N = Σg1×Σg2, a product of Riemann surfaces. We can generalize the example
of Section 4.2 to consider the case where N = Σg1 × Σg2 with Σgi each being compact
Riemann surfaces of genus gi, equipped with a standard CSC area form Ωi. Similarly to

Section 4.2, each choice of matrix K =





k1
1 k2

1

k1
2 k2

2.



, consisting of positive integer entries

ki
j , yields a d = 1 Yamazaki fiber join Mw = S(L∗

1 ⊕ L∗

2) via the line bundles L1, L2

satisfying c1(Lj) = [ωj ] = k1
j [Ω1] + k2

j [Ω2]. We assume here that ki
1 /= ki

2 for i = 1, 2.
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The case that M is the total space of a Sasakian fiber join with N = Σg1 × Σg2

was treated in Proposition 5.8 of [BTF21]. When d > 1 the spectral sequence of the
fibration collapses, so the cohomology groups of M are the cohomology groups of the
product S2d+1 × Σg1 × Σg2 . When d = 1 we have

(20) Hp(M7,Z) =



























Z if p = 0, 7

Z2g1+2g2 if p = 1, 3, 6

Z4g1g2+2 if p = 2, 5

Z2g1+2g2 + Ze if p = 4

0 otherwise

where the image of the differential d4 in E4,0
2 is the Euler class of the bundle with

e = k1
1k

2
2 +k2

1k
1
2. In both cases with g1, g2 and e fixed we know that H4(N,Z) = Z, so it

follows from a theorem of Pontrjagin [Pon45] (see also [Mas58, DW59]) that the sphere
bundles M are classified by their 2nd and 4th Stiefel-Whitney classes w2, w4, and their
Pontrjagin class p1(M).

Similarly to Section 4.2, the quotient complex manifold ofMw arising from the regular
Sasakian structure with Reeb vector field ξ1 is equal to the following CP1 bundle over
Σg1 × Σg2 :

P
(

L∗

1 ⊕ L∗

2) = P
(

1⊕ L1 ⊗ L∗

2

)

= P
(

1⊕ O(n1, n2)
)

→ Σg1 × Σg2 ,

with n1 = k1
1 − k1

2 and n2 = k2
1 − k2

2. Further, the regular quotient Kähler class
is, up to scale, equal to the admissible Kähler class 2π(n1

x1
[Ω1] +

n2

x2
[Ω2]) + Ξ) where

x1 =
k11−k12
k11+k12

, x2 =
k21−k22
k21+k22

.

When gi ≥ 2 for at least one of i = 1, 2, we cannot use Theorem 3.11 to get existence
of extremal/CSC Sasaki metrics. Further, we know from the examples in Sections 3.3
and 3.4 of [BHLTF23] that the existence of CSC or even just extremal Sasaki metrics
is by no means a given. More specifically, Proposition 3.10 of [BHLTF23] tells us that
the Reeb vector field determined - up to homothety - by c ∈ (−1, 1) (as explained in
the beginning of the section) is extremal (up to isotopy) if and only if Fc(z) > 0, for
−1 < z < 1, where the polynomial Fc(z) is given as follows:

Let si =
2(1−gi)

ni
= 2(1−gi)

ki1−ki2
, xi =

ki1−ki2
ki1+ki2

, and define

αr,−5 =
∫ 1
−1(ct+ 1)−5tr(1 + x1t)(1 + x2t) dt

αr,−6 =
∫ 1

−1(ct+ 1)−6tr(1 + x1t)(1 + x2t) dt

βr,−4 =
∫ 1
−1(ct+ 1)−4tr(x1s1(1 + x2t) + x2s2(1 + x1t)) dt

+ (−1)r(1− c)−4(1− x1)(1− x2) + (1 + c)−4(1 + x1)(1 + x2).

Then,

(21) Fc(z) = (cz+ 1)4
[

2(1− x1)(1− x2)

(1− c)4
(z+ 1) +

∫ z

−1

Q(t)(z− t) dt

]

,
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where

Q(t) =
2 (x1s1(1 + x2t) + x2s2(1 + x1t))

(ct+ 1)4
−

(A1t+ A2)(1 + x1t)(1 + x2t)

(ct+ 1)6

and A1 and A2 are the unique solutions to the linear system

(22)
α1,−6A1 + α0,−6A2 = 2β0,−4

α2,−6A1 + α1,−6A2 = 2β1,−4.

Further, if the positivity of Fc(z) is satisfied, then the extremal Sasaki structure is CSC
exactly when

(23) α1,−5β0,−4 − α0,−5β1,−4 = 0

is satisfied. A direct calculation shows that α1,−5β0,−4−α0,−5β1,−4 =
4h(c)

9(1−c2)7 where h(c)
is the polynomial given by

h(c) = (3x1x2(s1x2 + s2x1)− s1x1 − s2x2 + 3(3x21x
2
2 − x21 + 2x1x2 − x22 + 1))c5

+ (s1x
2
1 + s2x

2
2 − 3(s1 + s2)x

2
1x

2
2 − 4(s1 + s2)x1x2 − 6(x1 + x2)(4x1x2 + 1))c4

+ 4(((s1x1 + s2x2)− (s1x2 + s2x1))x1x2 + s1x1 + s2x2 + 3x1x2(x1x2 + 5) + 6(x21 + x22))c
3

+ 4((s1 + s2)(x1x2 + 1)x1x2 − s1x
2
1 − s2x

2
2 − 3(x1 + x2)(2x1x2 + 3))c2

+ ((s1x2 + s2x1)x1x2 − (s1x1 + s2x2)(4x1x2 + 3) + 3(x21x
2
2 + x21 + x22 + 10x1x2 + 7))c

+ 3(s1x
2
1 + s2x

2
2)− (s1 + s2)x

2
1x

2
2 − 6(x1 + x2)

and h(±1) = ±24(1 ∓ x1)2(1 ∓ x2)2. Thus, equation (23) always have a solution
c ∈ (−1, 1). In the event that g1, g2 ≤ 1, this is predicted by (the proof of) Theorem
3.10 and in the event that g1, g2 ≥ 1 (where t+ is 2-dimensional) this is predicted by
Corollary 1.7 of [BHL18]. The g1 = 0 and g2 > 1 (or vice versa) case falls outside of
these results. Of course, a solution to h(c) = 0 only corresponds to an actual CSC ray
if we also have that the positivity condition of Fc(z) is satisfied.

Proposition 4.3. Let Mw be a d = 1 fiber join over Σg1 ×Σg2 with its induced Sasakian

structure. Then for all g1, g2 ≥ 1, there exists a matrix K =

(

k11 k21

k12 k22.

)

such that the

entire Sasaki cone of Mw is extremal and contains a CSC ray.

Proof. Without loss of generality, we assume that g2 ≥ g1 ≥ 1. First we note that since
g1, g2 ≥ 1, the Sasaki cone is of dimension 2. Thus, the proof will consist of showing
that for all g2 ≥ g1 ≥ 1, ∃ a two-by-two matrix K such that ∀c ∈ (−1, 1), Fc(z) as
defined in (21) is positive for −1 < z < 1. Once this is proven we already know from
the above discussion that for this such a choice of K, (23) has a solution c ∈ (−1, 1).
This c will correspond to a CSC ray. If g1 = g2 = 1, the result follows from Theorem

3.11. Thus, we assume for the rest of the proof that g2 > 1. Now, let K =

(

10g1 100g2

2g1 g2.

)

.

Using (21), we can calculate that

Fc(z) =
(1− z2)p(z)

1212g1g2h0(c)
,
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where
h0(c) = 544829− 1814364c+ 2225984c2 − 1185624c3 + 229199c4,

and p(z) is a cubic given by

p(z) = 8g1g2h1(c) + 4h2(c, g1, g2)(1 + z) + 2h3(c, g1, g2)(1 + z)2 + h4(c, g1, g2)(1 + z)3,

where

h1(c) = h0(c)

h2(c, g1, g2) = 6h21(c) + h22(c)(g2 − 2) + (5h23(c) + h24(c)(g2 − 2)) (g1 − 2)

h3(c, g1, g2) = 2h31(c) + 2h32(c)(g2 − 2) + (h33(c) + 2h34(c)(g2 − 2)) (g1 − 2)

h4(c, g1, g2) = 10h41(c) + h42(c)(g2 − 2) + (2h43(c) + h44(c)(g2 − 2)) (g1 − 2)

with

h21(c) = 1849633− 3952908c+ 2583653c2 − 545438c3 + 68368c4

h22(c) = 5029446− 10073556c+ 5505031c2 − 421486c3 − 29519c4

h23(c) = 1085299− 2250304c+ 1327594c2 − 148704c3 − 11901c4

h24(c) = 2453521− 4733176c+ 2196021c2 + 235654c3 − 147064c4

h31(c) = 173925883− 629489348c+ 863749558c2 − 530449308c3 + 122385903c4

h32(c) = 86771822− 314540932c+ 432305747c2 − 265928422c3 + 61453077c4

h33(c) = 169929491− 609982556c+ 828678836c2 − 502956696c3 + 114452421c4

h34(c) = 42386813− 152393768c+ 207385193c2 − 126091058c3 + 28743168c4

h41(c) = 72852912− 233877440c+ 270006303c2 − 130233426c3 + 21229919c4

h42(c) = 365166252− 1171579852c+ 1351415507c2 − 650974422c3 + 105863967c4

h43(c) = 184191678− 594750598c+ 693107613c2 − 339776268c3 + 57173843c4

h44(c) = 184642524− 595846924c+ 693799609c2 − 339679914c3 + 57031029c4.

We also notice that p(1) = 4000g1g2h0(c).
Claim: For all c ∈ (−1, 1), h0(c) > 0. Further, for all c ∈ (−1, 1), i = 2, 3, and
j = 1, 2, 3, 4, hij(c) > 0.

From this claim it then follows that for g1, g2 > 1, all c ∈ (−1, 1), and i = 0, 1, 2, 3,
hi(c) > 0. Thus, in this case, we have p(±1) > 0, p′(−1) > 0, and p′′(−1) > 0. Since
p(z) is a cubic, a moment’s thought tells us that p(z) > 0 for −1 < z < 1. Finally, since
the claim also tells us that h0(c) > 0 for c ∈ (−1, 1), we conclude that Fc(z) is positive
for all c ∈ (−1, 1) and z ∈ (−1, 1) as desired.
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The proof of the claim is a standard exercise: For example, one easily checks that
h0(±1) > 0, h′

0(±1) < 0. Further, since h′′

0(c) is a second order polynomial in c with
h′′

0(±1) > 0, and h′′′

0 (1) < 0, we know h′′

0(c) > 0 for c ∈ (−1, 1). Thus for −1 ≤ c ≤ 1,
h0(c), is a (concave up and) decreasing function that is positive at c = ±1. It therefore
must be positive for all c ∈ (−1, 1), as desired. The argument for the claim concerning
hij(c) with i = 2, 3 and j = 1, 2, 3, 4 is completely similar.

Finally, if g1 = 1 (and g2 > 1), we still have that h0(c) = h1(c) > 0 for c ∈ (−1, 1).
Further, note that

h2(c, 1, g2) = h̃21(c) + 5h̃22(c)(g2 − 2)

h3(c, 1, g2) = 5h̃31(c) + 2h̃32(c)(g2 − 2),

where

h̃21(c) = 5671303− 12465928c+ 8863948c2 − 2529108c3 + 469713c4

h̃22(c) = 515185− 1068076c+ 661802c2 − 131428c3 + 23509c4

h̃31(c) = 35584455− 129799228c+ 179764056c2 − 111588384c3 + 26063877c4

h̃32(c) = 44385009− 162147164c+ 224920554c2 − 139837364c3 + 32709909c4

Now, in an exact similar way as above, we can prove that for all c ∈ (−1, 1), i = 2, 3,
and j = 1, 2, h̃ij(c) > 0. Therefore we may still conclude that p(±1) > 0, p′(−1) > 0,
and p′′(−1) > 0 and the proof finishes as above.

!

4.4. N = P(E) → Σg, where E → Σg is a polystable rank 2 holomorphic vector
bundle over a compact Riemann surface of genus g ≥ 1. Let Σg be a compact
Riemann surface and let E → Σg be a holomorphic vector bundle. The degree of E, is
defined by deg E =

∫

Σg
c1(E). Then E is stable(or semistable) in the sense of Mumford

if for any proper coherent subsheaf F , deg F
rank F

< deg E
rank E

(or deg F
rank F

≤ deg E
rank E

). Further,
a semistable holomorphic vector bundle, E, is called polystable if it decomposes as a
direct sum of stable holomorphic vector bundles, E = F1 ⊕ · · · ⊕ Fl, such that that
deg Fi

rank Fi
= deg E

rankE
, for i = 1, . . . , l. (See e.g. [Kob87] for more details on this.)

Assume N = P(E)
π
→ Σg, where E → Σg is a polystable rank 2 holomorphic vector

bundle over a compact Riemann surface of genus g ≥ 1. Note that the polystabilty of
E is independent of the choice of E in P(E). Indeed, by the theorem of Narasimhan
and Seshadri [NS65], polystability of E is equivalent to P(E)

π
→ Σg admitting a flat

projective unitary connection which in turn is equivalent to N admitting a local product
Kähler metric induced by constant scalar curvature Kähler metrics on Σg and CP1. We
shall explain and explore the latter in more detail below. Likewise, the condition of
whether degE is even (E spin) or odd (E is non-spin), is independent of the choice of
E. Unless E is decomposable, we must have that Aut(N, J) is discrete ([Mar71]).

Let v = c1(V P (E)) ∈ H2(N,Z) denoted the Chern class of the vertical line bundle
and let f ∈ H2(N,Z) denote the Poincaré dual of the fundamental class of a fiber of
P(E) → Σg. From e.g. [Fuj92] we know that if h ∈ H2(N,Z) denote the Chern class
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of the (E-dependent) tautological line bundle on N , then H2(N,Z) = Zh ⊕ Zf and
v = 2h+ (degE)f .

Due to the fact that N = P(E)
π
→ Σg admits a flat projective unitary connection,

we know that N has a universal cover Ñ = CP1 × Σ̃g (where Σ̃g is the universal cover
of Σg). Let Ω1 denote the standard Fubini-Study area form on CP1 and let Ω2 denote
a standard CSC area form on Σg. Now consider the projection π1 : CP1 × Σ̃g → CP1

to the first factor. Then π∗

1(Ω1) descends to a closed (1, 1) form on N representing the
class v/2 and [π∗Ω2] = f .

If we (abuse notation slightly and) think of q1Ω1 + q2Ω2 as a local product of CSC
Kähler forms on N , then this represents the cohomology class q1

2 v + q2f = q1h +
( q12 (degE) + q2)f . If degE is even, this class is in H2(N,Z) (and hence can represent
a holomorphic line bundle) precisely when q1, q2 ∈ Z. If degE is odd, then the class
is in H2(N,Z) iff (q1 is an even integer and q2 ∈ Z) or (q1 is an odd integer and
(q2 − 1/2) ∈ Z). Note that a similar discussion appears in the proof of Theorem 4.6 of
[ACGTF08b].

With this in mind, we can we can (yet again) generalize to consider the case where

N is as described above. We consider a matrix K =





k1
1 k2

1

k1
2 k2

2.



, consisting of entries

ki
j , such that:

• If degE is even, ki
j ∈ Z+

• If degE is odd, one of the following is true:
– k1

j is an even positive integer and k2
j ∈ Z+

– k1
j is an odd positive integer and (k2

j − 1/2) ∈ Z+.

Such a choice of K yields a d = 1 Yamazaki fiber join Mw = S(L∗

1 ⊕ L∗

2) via the line

bundles L1, L2 satisfying c1(Lj) = [ωj] = k1
j [Ω1] + k2

j [Ω2] = k1
jh+ (

k1j
2 (degE) + k2

j )f . As
before we assume that ki

1 /= ki
2 for i = 1, 2.

As we know, the quotient complex manifold of Mw arising from the regular Sasakian
structure with Reeb vector field ξ1 is equal to the following CP1 bundle over N : P

(

L∗

1⊕
L∗

2) = P
(

1⊕L1 ⊗L∗

2

)

, with c1(L1 ⊗L∗

2) = (k1
1 − k1

2)[Ω1] + (k2
1 − k2

2)[Ω2] = (k1
1 − k1

2)h+

( (k
1
1−k12)
2 (degE) + (k2

1 − k2
2))f .

Similarly, as before, the regular quotient Kähler class is, up to scale, equal to the

admissible Kähler class 2π(k
1
1−k12
x1

[Ω1] +
k21−k22
x2

[Ω2]) + Ξ) where x1 =
k11−k12
k11+k12

, x2 =
k21−k22
k21+k22

.

We can now adapt the set-up from Section 4.3 with s1 = 2
k11−k12

and s2 = 2(1−g)
k21−k22

.

In particular, equation (23) continues to have some solution c ∈ (−1, 1) and we can
calculate Fc(z) using (21). If a choice of K satisfies that Fc(z) is positive for all c ∈
(−1, 1) and z ∈ (−1, 1), then we will have a conclusion similar to the result in Proposition
4.3. Indeed, we have the following proposition.

Proposition 4.4. Let N = P(E)
π
→ Σg, where E → Σg is a polystable rank 2

holomorphic vector bundle over a compact Riemann surface of genus g ≥ 1. Let

K =

(

k11 k21

k12 k22

)

=

(

10g 100g

2g g

)

and let Mw be the d = 1 fiber join over N as described
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above with its induced Sasakian structure. Then the entire subcone, t+sph, is extremal
and contains a CSC ray.

In particular, if E is indecomposable, then the entire Sasaki cone of Mw is extremal
and contains a CSC ray.

Proof. First we notice that k1
j is even for j = 1, 2 and thus this choice of K is allowed

whether or not E is spin. Second, we have that the set of rays in t+sph is parametrized
by c ∈ (−1, 1) in the same manner as in Section 4.3. Further, in the case where
E is indecomposable, Aut(N, J) is discrete and thus the Sasaki cone is exactly t+sph.
Therefore all we need to do to prove the proposition is to check that for this choice of
K, the polynomial Fc(z), defined by (21), is positive for all c ∈ (−1, 1) and z ∈ (−1, 1).

If g = 1, we already know from (the proof of) Theorem 3.1 in [AMTF22] that for any
choice of K, Fc(z) > 0 for all c ∈ (−1, 1) and z ∈ (−1, 1). Thus we will assume that
g > 1 for the rest of the proof.

By direct calculations we get that

Fc(z) =
(1− z2)p(z)

1212gh0(c)
,

where
h0(c) = 544829− 1814364c+ 2225984c2 − 1185624c3 + 229199c4

and p(z) is a cubic in z that we may write as

p(z) = 8gh1(c) + (4h21(c) + 20h22(c)(g − 2)) (z+ 1) + (2h31(c) + 4h32(c)(g − 2)) (z+ 1)2

+ (h41(c) + 2h42(c)(g − 2)) (z+ 1)3,

where

h1(c) = h0(c)

h21(c) = 5793707− 13073132c+ 9976937c2 − 3421902c3 + 734322c4

h22(c) = 515185− 1068076c+ 661802c2 − 131428c3 + 23509c4

h31(c) = 181918667− 668502932c+ 933891002c2 − 585434532c3 + 138252867c4

h32(c) = 44385009− 162147164c+ 224920554c2 − 139837364c3 + 32709909c4

h41(c) = 356026968− 1129159208c+ 1277664093c2 − 594396318c3 + 89753413c4

h42(c) = 90261864− 287866464c+ 328807949c2 − 155647254c3 + 24416469c4.

Note also that p(1) = 4000gh0(c).
Completely similar to the way the claim at the end of the proof of Proposition 4.3

is verified, we can now show that for all c ∈ (−1, 1), h0(c) > 0 and for all c ∈ (−1, 1),
i = 2, 3, and j = 1, 2, hij(c) > 0. This tells us that p(±1) > 0, p′(−1) > 0, and
p′′(−1) > 0. Since p(z) is a cubic, we conclude that p(z) > 0 for −1 < z < 1. Finally,
since h0(c) > 0 for c ∈ (−1, 1), Fc(z) is positive for all c ∈ (−1, 1) and z ∈ (−1, 1) as
desired.
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!

Remark 4.5. Note that if we fix a matrix K and calculate Fc(z), then we can observe
that

lim
g→+∞

F0(0) = −∞.

Thus is it clear that for any choice of K there exist values g > 1 such that the corre-
sponding Sasaki cone is NOT exhausted by extremal Sasaki metrics.

Experimenting with Mathematica, it seems that e.g. choosing K =





4g 3g

2g g



 would

also yield a Fc(z) such that Fc(z) is positive for all c ∈ (−1, 1) and z ∈ (−1, 1), but
the argument would be relying on using Mathematica to calculate the numerical values
of the real roots of certain fourth degree polynomials. For the sake of a transparent
argument we chose a more optimal K to do the job in the proof above.
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[BM93] A. Banyaga and P. Molino, Géométrie des formes de contact complètement intégrables de
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1992 (Montpellier), Univ. Montpellier II, Montpellier, 1993, pp. 1–25. MR 94e:53029

[BTF14] Charles P. Boyer and Christina W. Tønnesen-Friedman, Extremal Sasakian geometry on
S3-bundles over Riemann surfaces, Int. Math. Res. Not. IMRN (2014), no. 20, 5510–
5562. MR 3271180

[BTF16] , The Sasaki join, Hamiltonian 2-forms, and constant scalar curvature, J. Geom.
Anal. 26 (2016), no. 2, 1023–1060. MR 3472828

[BTF21] , Sasakian geometry on sphere bundles, Differential Geom. Appl. 77 (2021),
101765. MR 4253896

[BTF23] , Constant Scalar Curvature Sasaki Metrics and Projective Bundles, Birational
Geometry, Kähler–Einstein Metrics and Degenerations, Springer Proc. Math. Stat., vol.
409, Springer, Cham, 2023, pp. 95–128. MR 4606632

[Del88] T. Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bull.
Soc. Math. France 116 (1988), no. 3, 315–339. MR 984900 (90b:58069)

[DW59] A. Dold and H. Whitney, Classification of oriented sphere bundles over a 4-complex,
Ann. of Math. (2) 69 (1959), 667–677. MR 123331

[Fuj92] Akira Fujiki, Remarks on extremal Kähler metrics on ruled manifolds, Nagoya Math. J.
126 (1992), 89–101. MR 1171594 (94c:58033)

[Gin96] Viktor L. Ginzburg, On the existence and non-existence of closed trajectories for some
Hamiltonian flows, Math. Z. 223 (1996), no. 3, 397–409. MR 1417851

[Gua95] Daniel Guan, Existence of extremal metrics on compact almost homogeneous Kähler man-
ifolds with two ends, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2255–2262. MR 1285992
(96a:58059)

[HS02] Andrew D. Hwang and Michael A. Singer, A momentum construction for circle-invariant
Kähler metrics, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2285–2325 (electronic).
MR 1885653 (2002m:53057)

[Hwa94] Andrew D. Hwang, On existence of Kähler metrics with constant scalar curvature, Osaka
J. Math. 31 (1994), no. 3, 561–595. MR 1309403 (96a:53061)

[Kob87] S. Kobayashi, Differential geometry of complex vector bundles, Publications of the Math-
ematical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ, 1987, Kanô
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