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TRANSVERSE KÄHLER HOLONOMY IN SASAKI
GEOMETRY AND S-STABILITY

CHARLES P. BOYER, HONGNIAN HUANG,
AND CHRISTINA W. TØNNESEN-FRIEDMAN

Abstract. We study the transverse Kähler holonomy groups on
Sasaki manifolds (M,S) and their stability properties under trans-
verse holomorphic deformations of the characteristic foliation by
the Reeb vector field. In particular, we prove that when the first
Betti number b1(M) and the basic Hodge number h0,2

B (S) vanish,
then S is stable under deformations of the transverse Kähler flow.
In addition we show that an irreducible transverse hyperkähler
Sasakian structure is S-unstable, whereas, an irreducible trans-
verse Calabi-Yau Sasakian structure is S-stable when dimM ≥ 7.
Finally, we prove that the standard Sasaki join operation (trans-
verse holonomy U(n1)× U(n2)) as well as the fiber join operation
preserve S-stability.

1. Introduction

It is well known from Berger’s classification of Riemannian holo-
nomy that the irreducible holonomy groups in Kähler geometry are pre-
cisely, U(n), SU(n) and Sp(n) which correspond to irreducible Kähler,
Calabi-Yau, and hyperkähler geometry, respectively. There is also a
well known Stability Theorem of Kodaira and Spencer [KS60] that
says that any infinitesimal deformation of a compact complex manifold
which is Kähler remains Kähler. A similar result was obtained in the
other two cases by Goto [Got04]. Analogues of these stability theo-
rems for holomorphic foliations was proven by El Kacimi Alaoui and
Gmira in [EKAG97] in the Kähler case, and by Moriyama [Mor10] in
the Calabi-Yau case. See also [TV08]. The two special holonomy cases
have been studied further by Habib and Vezzoni [HV15]. In particular,
they prove that a transverse Kähler foliation admits a transverse hy-
perkähler structure if and only if it admits a transverse hyperhermitian
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2 Sasaki-Transverse Kähler

structure. This is the transverse version of a result of Verbitsky [Ver05]
in the compact Kähler manifold case.
The purpose of this paper is to study these transverse versions and

their relationship to Sasaki geometry. It is well known [KS60] that
there are obstructions, namely the Hodge numbers h0,2, for deforma-
tions of projective algebraic structures to remain projective algebraic.
The point is that the transverse Kähler structure of a Sasakian struc-
ture is algebraic in an appropriate sense, cf. Section 7.5 of [BG08]. A
Sasakian structure S is said to be S-stable (or S-rigid) if every suffi-
ciently small transverse Kählerian deformation of S remains Sasakian.
So an important question is

Question 1.1. Which Sasakian structures are S-stable and which are
S-unstable?

It was recently shown by Nozawa [Noz14] that Sasaki nilmanifolds
of dimension at least 5 are S-unstable, that is, their transverse Kähler
deformations become non-algebraic. This is done by deforming the
transverse Kähler flow on a Sasaki nilmanifold, i.e on the total space
of an S1 bundle over an Abelian variety of complex dimension at least
two. These nilmanifolds are discussed briefly in Section 4.3. Recent
work of Goertsches, Nozawa, and Töben [GNT16] shows that positive
Sasakian structures and toric Sasakian structures are S-stable. Build-
ing on results of Nozawa [Noz14] we obtain the first main result of this
paper:

Theorem 1.2. Let (M,S) be a Sasaki manifold with vanishing first
Betti number and such that the basic Hodge numbers satisfy h0,2

B =
h2,0
B = 0. Then S is S-stable.

Moriyama’s Stability Theorem for irreducible transverse Calabi-Yau
structures follows as a special case of Theorem 1.2.

Corollary 1.3. Let (M,S) be a Sasaki manifold of dimension 2n +
1 with n > 2 and transverse holonomy group equal to SU(n) Then
(M,S) is S-stable. Moreover, the local universal deformation space is
isomorphic to an open set in H1(M,Θ).

For irreducible transverse hyperkähler geometry the contrary holds
which gives the second main result of the paper.

Theorem 1.4. Let (M,S) be a Sasaki manifold with a compatible ir-
reducible transverse hyperkähler structure. Then (M,S) is S-unstable.
Moreover, the local universal deformation space is isomorphic to an
open set in H1(M,Θ).
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Much more can be said about irreducible transverse hyperkähler
structures in dimension 5. First, a classification of simply connected
5-manifolds that admit null Sasakian structures has just recently been
completed [CMST20] by proving the existence of orbifold K3 surfacesX
with second Betti number b2(X) = 3. This completes the classification
initiated in [BGM06, BG08, CV14]. A simply connected 5-manifold
which admits a null Sasakian structure is diffeomorphic to a k-fold
connected sum

(1) #k(S2 × S3) with k = 2, . . . , 21

and each such 5-manifold admits a null Sasakian structure. These are
represented as S1 orbibundles over K3 orbifolds Xk with b2(Xk) =
k+ 1 and πorb

1 (Xk) = 1l. A smooth K3 surface is diffeomorphic to X22.
Furthermore, any 5-manifold of the form #k(S2 × S3) admits positive
Sasakian structures (cf. Corollary 11.4.8 of [BG08]) which are stable
by [Noz14], so Theorems 1.2 and 1.4 give

Corollary 1.5. Any null Sasakian structure on a simply connected 5-
manifold M is S-unstable, and all such M are of the form of Equation
(1). So the manifolds #k(S2 × S3) with k = 2, . . . , 21 admit both S-
stable and S-unstable Sasakian structures.

Given this corollary and Nozawa’s result for Sasaki nilmanifolds one
might wonder whether every null Sasakian structure is S-unstable. But
this is not true for non-trivial S1 bundles over an Enriques surfaces E
even though these are smooth Z2 quotients of X22. Since Enriques
surfaces are projective and have h0,2(E) = h2,0(E) = 0, we have the
following corollary of Theorem 1.2:

Corollary 1.6. Let (M5,S) be a regular Sasakian structure over an
Enriques surface. Then (M5,S) is S-stable.

Remark 1.7. One can consider Enriques surfaces as K3 orbifolds with
a trivial orbifold structure. Its canonical bundle KE is not trivial, but
K2

E is. On the other hand K3 orbifolds of the form X22/G where G
is a finite group acting on X22 that leaves its holomorphic (2, 0) form
invariant have πorb

1 (X22/G) = G and a trivial canonical bundle. They
have been studied [Nik76, Fuj83] and classified by Mukai [Muk88]. As
pointed out by Kollár [Kol05] the best known example where πorb

1 (X) ̸=
1l is the well known Kummer surface X = T2/Z2 in which case πorb

1 (X)
is an extension of Z2 by Z4. It would be interesting to determine the
stability properties of these structures.
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It is convenient to describe Sasakian and transverse Kählerian struc-
tures in categorical language, so we assume the reader has some famil-
iarity with this language as well as the relationship between orbifolds
and étale Lie groupoids. We refer to Chapter 4 of [BG08] for the fun-
damentals as well as standard references [ALR07, MM03, Moe02].

2. The Transverse Kähler Flow and Sasaki Groupoids

An oriented 1-dimensional foliation is called a flow, and we are inter-
ested in transverse Hermitian and transverse Kähler flows. In particular
they are Riemannian flows, and they form a special case of transverse
Kähler foliations which were studied by El Kacimi Alaoui and collab-
orators [EKA90, EKAG97]. Their relation with Sasaki geometry was
developed in [BG08] and developed further by Nozawa and collabora-
tors [Noz14, GNT16]. We begin with the Riemannian foliations F (see
[Mol88], chapter 2 of [BG08], and references therein) on a compact
oriented manifold M and its basic cohomology ring H∗

B(F). A Rie-
mannian foliation F is said to be homologically oriented if Hn

B(F) ̸= 0
where n is the (real) codimension of F. If the foliation F is holomorphic
with transverse complex structure J̄ and has a compatible transverse
Riemannian metric gT such that gT ◦ J̄ ⊗ 1l = ωT is a basic 2-form, the
triple (F, J̄ ,ωT ) is called a transverse Hermitian foliation.
Note that for a Riemannian flow F a choice of Riemannian metric on

M of the form g = gT + η⊗ η, where η is the dual 1-form to a nowhere
vanishing section ξ of F, splits the exact sequence

0−−−→F−−−→TM−−−→TM/F−−−→0

as

(2) TM = F ⊕D,

and we have identified ωT with a 2-form on D, also denoted ωT . If
the transverse flow F is also homologically orientable, it follows from
Molino and Sergiescu [MS85] that there exists a Riemannian metric g
and a nowhere vanishing vector field ξ tangent to F such that ξ is a
Killing vector field with respect to g. In this case the flow F is said to
be isometric and the pair (g, ξ) is called a Killing pair in [Noz14].
Furthermore, the orbits generated by the Killing field ξ are geodesics
of g. Without loss of generality we can take ξ to be a unit vector field,
in which case we see that its dual characteristic 1-form η satisfies

η(ξ) = 1, ξ dη = 0.

This implies that dη is basic and its basic cohomology class [dη]B, called
the basic Euler class of the isometric flow F by Saralegui [Sar85], is,
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up to multiplication, an invariant of the foliation. Note that dη depends
on the metric g, but its vanishing does not. A transverse Hermitian
flow is said to be trivial if its basic Euler class vanishes in which case
(M,F) is a foliated bundle [Sar85]. For example [dη]B = 0 if a finite
cover of M is diffeomorphic to the product N × S1. We deal almost
exclusively with nontrivial transverse Hermitian flows, that is we as-
sume that M admits a one dimensional flow F with a non-zero Euler
class, i.e. [dη]B ̸= 0. Note that if b1(M) = 0, every transverse Her-
mitian flow on M is nontrivial. We only consider nontrivial isometric
transverse Hermitian flows which we write as the quadruple (ξ, η,Φ, g)
or (ξ, η,Φ,ωT ) depending on the emphasis where

(3) g = ωT ◦ (1l⊗ J) + η ⊗ η

with the endomorphism Φ is

(4) Φ = J ⊕ (1l− ξ ⊗ η)

and J is the complex structure on D. The following equations hold:

(5) £ξω
T = 0, £ξΦ = 0, Φ2 =

{

J2 = −1l on D,

0 on F.

We emphasize here that the quadruple (ξ, η,Φ, g) is not necessarily a
contact metric structure since ωT is not necessarily dη. We also see

Lemma 2.1. The pair (D, J) defines a CR structure on M

2.1. Transverse Kähler flows. It is well known [BG08, Noz14] that
the characteristic Reeb foliation Fξ of a Sasakian structure S = (ξ, η,Φ, g)
is a transverse Kähler flow with a nontrivial Euler class, i.e. [dη]B ̸= 0.
However, the converse does not generally hold and one of the goals of
this paper is to describe their relationship.

Definition 2.2. A transverse Hermitian flow (F, J,ωT ) is said to be a
transverse Kähler flow if the basic 2-form ωT is closed.

We have

Lemma 2.3. A compact oriented manifold M with a transverse Kähler
flow (F, J,ωT ) is homologically oriented.

Proof. Since a flow is oriented and the basic cohomology class [ωT ]p is
nondegenerate in H2p

B (F)⊗ R for all p = 1, . . . , n, a transverse Kähler
flow is homologically oriented. !

From Lemma 2.3 and the preceeding discussion, we can represent
a transverse Kähler flow by the quadruple (ξ, η,Φ,ωT) or (ξ, η,Φ, g).
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However, such a quadruple is not unique as shown in Lemma 2.15
below.
As emphasized by El Kacimi-Alaou [EKA90] transverse Kähler fo-

liations on compact manifolds possess the same properties as Kähler
structures on compact manifolds, the Hodge decomposition, Lefschetz
decomposition, etc. In particular, a transverse Kähler flow (ξ, η,Φ, g)
gives rise to a basic Hodge decomposition (over C),

(6) Hn
B(F) =

⊕

p+q=n

Hp,q
B (F), Hq,p

B (F) = Hp,q
B (F),

which gives the basic Hodge numbers

(7) hp,q
B = dimC H

p,q
B (F).

We let b1B = dimH1(M,R) denote the basic first Betti number. Then
we easily see

Lemma 2.4. Let (M,F) be a compact transverse Kähler flow. Then
the natural map H1

B(F)−→H1(M,C) is injective, and b1B = 2h1,0
B =

2h0,1
B . In particular, b1(M) = 0 implies h1,0

B = h0,1
B = 0.

Definition 2.5. We define the transverse Kähler cone KT (M,F) to
be the set of all transverse Kähler classes [ωT ]B in H1,1

B (F)∩H2
B(F)⊗R.

From the standard definition of Sasakian structure one sees

Lemma 2.6. A transverse Kähler flow (ξ, η,Φ,ωT ) is Sasakian if and
only if ωT = dη where η is a contact 1-form.

Proof. The only if part is well known. Suppose that ωT = dη which
implies that dη is type (1, 1). The transverse form (ωT )nB is a basic
volume form, so η∧ (ωT )n is nowhere vanishing. Thus, η is a contact 1-
form on M . So the quadruple (ξ, η,Φ, g) is a contact metric structure
where Equations (3) and (4) hold, which implies that (ξ, η,Φ, g) is
Sasakian. !

2.2. Transverse Holonomy. There are two distinct notions of trans-
verse holonomy both of which are important to us. There is Haefliger’s
transverse holonomy groupoid, and for Riemannian foliations there is
the holonomy group of the transverse Levi-Civita connection. It is
the latter that concerns us here. We refer to Chapter 2 of [Joy07] for
the description of holonomy groups on vector bundles. We can define
the transverse Riemannian holonomy representation of a Riemannian
foliation.
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Definition 2.7. For Riemannian foliations F the transverse holo-
nomy group Hol(F) is the Riemannian holonomy group of the trans-
verse Levi-Civita connection ∇T , and Hol0(F) denotes the restricted
transverse holonomy group1.

In the case of transverse Kähler structures, the transverse complex
structure is also parallel, i.e. ∇T J̄ = 0 and equivalently, ∇TJ = 0
using the isomorphism defined by the splitting (2). It follows that

Lemma 2.8. Let M be a compact manifold of dimension 2n + 1 with
a transverse Hermitian flow (Fξ, J̄ ,ωT ). Then the holonomy represen-
tation Hol(Fξ, J̄ ,ωT ) on TM/Fξ lies in U(n) ⊂ GL(n,C) if and only
if (Fξ, J̄ ,ωT ) is Kähler. Moreover, isomorphism

(TM/Fξ, J̄ ,ω
T )

ψ
−−−−−→(D, J,ωT )

induced by the splitting (2) induces an isomorphism of holonomy rep-
resentations.

Proof. Since the holonomy representation is defined only up to conju-
gation in GL(n,C), the isomorphism ψ implies that holonomy repre-
sentions of Hol(F) on TM/Fξ and D are represented by conjugate sub-
groups of GL(n,C). Moreover, Hol(F) ⊂ U(n) if and only if ∇TωT =
0, ∇T J̄ = 0 if and only if ωT is a basic closed 2-form if and only if the
transverse Hermitian structure (F, J̄ ,ωT ) is Kähler. !

Equivalently, we state this with respect to the splitting (2).

Lemma 2.9. Let M be a compact manifold with an isometric trans-
verse Hermitian flow (ξ, η,Φ, g). Then Hol(F) ⊂ U(n) if and only if
(ξ, η,Φ, g) is Kähler.

The irreducible holonomy groups that are proper subgroups of U(n)
are SU(n) and Sp(n2 ) where the later occurs only for n even. In this
paper we are interested in transverse Kähler flows (F, J̄ ,ωT ) whose
transverse holonomy groups are either SU(n) (transverse Calabi-Yau)
or Sp(n) (transverse hyperkähler).

2.3. The Invariant Torus and its Invariant Cone. For a homo-
logically oriented Riemannian flow on a compact manifold there is a
torus of isometries as described by the work of Molino and his cowork-
ers [Mol79, Mol82, MS85, Mol88, Car84] which we now describe. The
invariant cone should be viewed as a generalization of the Sasaki cone

1Recall that the restricted holonomy group is obtained by restricting the holo-
nomy computation to null-homotopic loops. Hol0(F) is the connected component
of Hol(F).
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[BGS08]. For transverse Kähler flows we call this the invariant cone,
keeping in mind that if the transverse Kähler flow is Sasakian it coin-
cides with the Sasaki cone.
Applying the basic Hodge decomposition (6) to the basic Euler class

gives

(8) [dη]B = [dη2,0]B + [dη1,1]B + [dη0,2]B, dη0,2 = dη2,0

and as we shall see below dη2,0 (equivalently dη0,2) is an obstruction
for the transverse Kähler flow to be Sasakian. We have

Proposition 2.10. Let (ξ, η,Φ, g) be a transverse Kähler flow on a
compact manifold M of dimension 2n + 1. Then there exists a k-
dimensional Abelian Lie algebra a(M,F) of Killing vector fields with
1 ≤ k ≤ n+ 1 that is independent of the transverse Kähler metric and
commutes with all transverse vector fields. Moreover, ξ ∈ a(M,F).

Proof. This follows from a result of Molino (see Theorem 5.2 in [Mol88])
that says that on any compact manifold with a Riemannian foliation
there exists a locally constant sheaf of germs C(M,F) of locally trans-
verse commuting Killing fields such that

(1) all global transverse vector fields commute with C(M,F),
(2) C(M,F) is independent of the transverse metric gT .

C(M,F) is called the commuting sheaf in [Mol88] and the faisceau
transverse central in [Mol79, Mol82], and it is an invariant of the fo-
liation F. We apply this to the case that M has a transverse Kähler
flow (F, J̄ ,ωT ). In this case F is homologically oriented, so by [MS85]
the sheaf C(M,F) has a global trivialization. This gives an Abelian
Lie algebra aT (M,F) of global transverse vector fields associated to F

that is independent of the transverse metric and commutes with all
transverse vector fields. Thus, there is a nowhere vanishing smooth
vector field ξ tangent to F that commutes with all transverse vector
fields. This implies that aT (M,F) extends to a k-dimensional Abelian
Lie algebra

(9) a(M,Fξ) = aT (M,F)⊕ Rξ

with 1 ≤ k ≤ n+1 which is independent of the transverse Kähler metric
and commutes with all transverse vector fields. Moreover, since the
elements of aT (M,F) are Killing fields with respect to any transverse
Kähler metric and transverse Kähler forms are harmonic with respect to
the basic Laplacian ∆B, the elements of a(M,F) also leave J̄ invariant.
Clearly, by construction ξ ∈ a(M,Fξ). !
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We now define the transverse Kähler analogue of the Sasaki cone,
namely the invariant cone

(10) a+(M,Fξ) = {ξ′ ∈ a(M,Fξ) | η(ξ
′) > 0}

where η is the dual 1-form to ξ. Such elements take the form

(11) ξ′ = X̄ + η(ξ′)ξ

where X̄ ∈ aT (M,Fξ). The function η(ξ′) is basic with respect to Fξ
and is called a Killing potential.

Lemma 2.11. The set a+(M,Fξ) is a convex cone. Moreover, for any
ξ′ ∈ a+(M,Fξ) we have a+(M,Fξ′) = a+(M,Fξ).

Proof. Consider the transverse homothety defined by ξ /→ a−1ξ, η /→
aη and ωT /→ aωT . Then from (3) we see that if ξ is in a+(M,Fξ), then
so is (ga, a−1ξ) where

ga = aωT ◦ (1l⊕ J̄) + a2η ⊗ η.

So a+(M,Fξ) is a cone. Now suppose ξ0, ξ1 ∈ a+(M,Fξ), and consider
the line segment ξt = ξ0 + t(ξ1 − ξ0) then

η0(ξt) = (1− t) + tη0(ξ1) > 0

for all t ∈ [0, 1] implying that a+(M,Fξ) is convex. To prove the last
statement we note that if ξ′ ∈ a(M,Fξ), than a(M,Fξ) and a(M,F′

ξ)
are isomorphic Abelian Lie algebras. So we only need to prove that ξ ∈
a+(M,Fξ′). But this follows by construction since η′(ξ) = (η(ξ′))−1 >
0. !

Next as in Lemma 2 of [AC18] we have:

Lemma 2.12. Suppose ξ0, ξ1 ∈ a+(M,Fξ) then ξ1 = η0(ξ1)ξ0 mod ker η0.

Remark 2.13. In the Sasaki category fixing a Sasakian structure
S0 = (ξ0, η0,Φ0, g0) and a nowhere vanishing smooth function f the
vector field fξ0 defines a weighted Sasakian structure in the sense of
[AC18] when f is chosen to be a nowhere vanishing Killing potential
η0(ξ1) with respect to S0.
A result of Carrière [Car84] states that the leaf closure F of a Rie-

mannian flow is diffeomorphic to a real torus T of real dimension k and
that F restricted to a leaf is conjugate to a linear flow on T. Clearly,
in any case T is contained in a maximal torus Tmax. In the case of
a transverse Kähler flow of real dimension 2n + 1 we have the range
1 ≤ k ≤ n+1 for the dimension k of T. The dimension k is an invariant
of the flow called its toral rank. Hence, associated to each quadruple
(ξ, η,Φ,ωT ) is a maximal torus Tk that leaves (ξ, η,Φ,ωT ) invariant.
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Tk is called the invariant torus of the isometric transverse Kähler
flow (ξ, η,Φ,ωT ).

Proposition 2.14. The invariant torus Tk is independent of the trans-
verse Kähler metric ωT and the choice of Reeb field in a+(M,F). Hence,
it is independent of the pair (ξ, [ωT ]B) ∈ a+(M,F)×KT (M,F).

If we fix a transverse Kähler flow (ξo, ηo,Φo, go) we obtain a family of
transverse Kähler flows associated to (ξo, ηo,Φo, go), namely the disjoint
union

⊔

ξ∈a+(M,Fo)

KT (M,Fξ) = {(ξ, η,Φ,ωT ) | ξ ∈ a+(M,Fξo), [ω
T ]B ∈ KT (M,Fξo)}

which is isomorphic to the diagonal in the product a+(M,Fξ1)×KT (M,Fξ2).
As in the Sasaki case, Section 7.5.1 of [BG08], we give this family

the C∞ compact-open topology as sections of vector bundles. This
gives a smooth family of transverse Kähler flows within a fixed basic
cohomology class [ωT ]B, and as in Section 6 of [BGS08] we obtain a
smooth family when fixing the underlying CR structure and varying
ξ′ ∈ a+(M,F) which implies that the family S(F, J̄) is smooth.

Lemma 2.15. Let (g, ξ) and (g′, ξ) be two Killing pairs associated to
the transverse Kähler flow (Fξ, J̄ ,ωT ) with the same basic Euler class.
Then there exists a basic 1-form ζ such that

g′ = g + ζ ⊗ η ⊕ η ⊗ ζ ⊕ ζ ⊗ ζ .

Proof. The dual 1-forms η, η′ satisfy g(ξ, X) = η(X) and g′(ξ, X) =
η′(X), and since [dη′]B = [dη]B there exists a basic 1-form ζ such that
dη′ = dη + dζ . But g is given by Equation (3) and

g′ = ωT ◦ (1l⊗ J)⊕ η′ ⊗ η′

which gives the result. !

Remark 2.16. Note that fixing the CR structure fixes the Killing pair
(g, ξ).

Remark 2.17. The contact 1-form η in a quasiregular Sasakian struc-
ture can be viewed as a connection in a principal S1 orbibundle over
a projective algebraic orbifold. Two such connections forms η, η′ are
said to be gauge equivalent if there exists a smooth basic function
f such that η′ = η + df . One easily sees that such gauge transformed
contact metric structures of a Sasakian structure are all Sasakian. This
gives rise to gauge equivalences classes of Sasakian structure. More-
over, gauge equivalent Sasakian structures have the same underlying
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transverse Kähler flow, and a choice of Killing pair uniquely determines
the gauge together with the class [ζ ]B in H1

B(F)R ≈ H1(M,R).

2.4. The Groupoids. For the categorical approach we begin with the
categoryS whose objects are smooth oriented compact connected man-
ifolds and whose morphisms are smooth maps. Actually, we shall work
in certain categories over S. We define the category KTK of transverse
Kähler flows whose objects are the compact oriented and homologically
oriented manifolds M together with a transverse Kähler flow (F, J̄ ,ωT )
and whose morphisms are smooth maps ψ : M−→M ′ that intertwine
the triples (F, J̄ ,ωT ), that is

(12) F′ = ψ∗F, ψ∗ ◦ J̄ = J̄ ′ ◦ ψ∗, ψ∗ω′T = ωT .

whenever this makes sense. p : KTK−→S is a category fibered in
groupoids GTK over S. For an object M of S the groupoid is the cat-
egory KTK(M) whose objects are transverse Kähler flows (F, J̄ ,ωT )
with ωT a basic positive definite 2-form on M , and whose morphisms
are diffeomorphisms. Similarly we have the category of isometric trans-
verse Kähler structures IKT whose objects are the the quadruples
(ξ, η,Φ, g) described above, and whose morphisms are smooth maps
that satisfy

(13) ψ∗ξ = ξ′, ψ∗η′ = η, ψ∗ ◦ Φ = Φ′ ◦ ψ∗, ψ∗g′ = g

whenever this makes sense. IKT is also a category fibered in groupoids
GITK. By Lemma 2.6 we consider the category of Sasakian structures
SC to be the subcategory of KTK whose objects satisfy ωT = dη for
some contact 1-form η. Of course, this is also a category fibered in
groupoids SG. The following lemma (see [Noz14] for a cogent proof)
implies that the forgetful functor

F : SG−→GTK

factors through the groupoid GITK. However, this factorization is not
unique.

Lemma 2.18. A transverse Kähler flow (F, J̄ ,ωT ) is the flow of a
Sasakian structure (ξ, η,Φ, g) if and only if η is a contact 1-form, ξ
its Reeb vector field such that Fξ = F and ωT = dη. Moreover, two
Sasakian structures (ξ, η,Φ, g) and (ξ, η′,Φ′, g′) correspond to the same
transverse Kähler flow if there exists a closed basic 1-form ζ such that
η′ = η + ζ.

Since we work exclusively on compact manifolds M , we are most in-
terested in the subgroupoids S1G and G1ITK consisting of those struc-
tures such that the Killing vector field generates a locally free S1 action
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on M . We work almost entirely with these subgroupoids viewing the
full groupoids as completions in the sense of Carriére as described be-
low.
Then as discussed above this is equivalent to the standard descrip-

tion of Sasakian structures S = (ξ, η,Φ, g) defining the category SM
whose objects are pairs (M,S) where M is an object of S and S is
Sasakian structure on M . Morphisms are smooth maps. As with GTK
the category SM is a category fibered in groupoids SG where SG is
the groupoid whose objects are pairs (M,S) and morphisms are dif-
feomorphisms that intertwine the Sasakian structures, that is, diffeo-
morphisms that satisfy Equations (13). The automorphism group
Aut(F, J̄ ,ωT ) of a transverse Kähler flow (F, J̄ ,ωT ) is by definition the
isotropy group of the groupoid GTK at (F, J̄ ,ωT ). Since we have fixed
the Riemannian metric g of Equation (3), Aut(F, J̄ ,ωT ) is a compact
Lie group, and thus has a maximal torus Tmax defined up to conju-
gacy. A result of Carrière [Car84] states that the leaf closure F of a
Riemannian flow is diffeomorphic to a real torus T of real dimension
k and that F restricted to a leaf is conjugate to a linear flow on T.
Clearly, in any case T is contained in a maximal torus Tmax. In the
case of a transverse Kähler flow of real dimension 2n + 1 we have the
range 1 ≤ k ≤ n + 1 for the dimension k of T. The dimension k is an
invariant of the flow called its toral rank. This gives rise to a stratifi-
cation of the groupoid GTK according to toral rank. The case of toral
rank 1 is just the quasiregular case with a locally free S1 action and
the set of quasiregular transverse Kähler flows, which is dense in GTK,
is denoted by G1TK. So G1TK is an embedded subgroupoid and GTK
can be viewed as a completion of G1TK. Most of our considerations
are about G1TK. As with GTK, the Sasaki groupoid SG is stratified
by its toral rank, and S1G is dense in SG. Note that the functor F pre-
serves toral rank. From Lemma 2.18 the fiber F−1(K) is either empty
or the Abelian group Z1

B(M) of closed basic 1-forms on M . Elements
ζ ∈ Z1

B(M) are invariant under T. From [MP97, Moe02, MM03] we
have as detailed in the Appendix

Proposition 2.19. G1TK is a holomorphic foliation Lie groupoid with
finite cyclic isotropy groups and is Morita equivalent to a proper étale
Lie groupoid.

This proposition gives an equivalence between the transverse geom-
etry of quasiregular structures on M and the geometry on the quotient
orbifold X = M/S1.

Remark 2.20. Viewing foliations as holonomy groupoids makes the
groupoid GTK into a 2-category whose objects are holonomy groupoids,
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whose 1-morphisms are functors between them, and 2-morphisms are
morphisms between parallel functors.
We are mainly interested in the local behavior of the groupoid GTK

near the transverse Kähler structure of a Sasakian structure. The
groupoids GTK and SG are generally not locally equivalent; never-
theless, many of the properties of Sasakian structures hold also for
transverse Kähler flows. In particular, the basic cohomology com-
plex holds for transverse Kähler flows, most notably the transverse
Hodge decomposition and the basic first Chern class c1(Fξ) ∈ H1,1

B (Fξ)
[EKAH86, EKA90]. So one can talk about the type of a transverse
Kähler flow as either positive, negative, null, or indefinite.

Proposition 2.21. The forgetful functor

F : S1G−→G1TK

(1) is a smooth functor of proper foliation Lie groupoids (orbifold
groupoids) with finite cyclic isotropy groups;

(2) is faithful;
(3) is full if b1(M) = 0.

Proof. Both S1G and G1TK are foliation Lie groupoids with finite
isotropy groups by [Moe02] which are finite cyclic groups since the
foliations are one dimensional. It is straightforward to check that F
is smooth. A forgetful functor is always faithful, but not necessarily
full nor essentially surjective on objects. Item (3) is due to Nozawa
[Noz14]. We sketch his argument. We know that a non-empty fiber of
F is the Abelian group Z1

B(M) of closed basic 1-forms.
Let K = (Fξ, J̄ , dη) be a transverse Kähler flow of Sasaki type, and

consider the automorphism group Aut(K) and we denote its connected
component by Aut0(K). A morphism ψ ∈ GTKmor sending K to K′

induces an isomorphism of Lie groups Aut0(K′) ≈ Aut0(K). Define the
Hamiltonian subgroup

Ham(K) = {φ ∈ Aut0(K) | [φ∗η − η] = 0}.

Ham(K) acts on the set of Sasakian structures F−1(K) and splits them
into orbits. Nozawa identifies the orbit space F−1(K)/Ham(K) with the
cohomology group H1(M,R). We need to show that F is surjective on
morphisms. So we need to show that given Sasakian structures S and
S ′ such that

F (M,S ′) = (M,Fξ′, J̄ ′, dη′), F (M,S) = (M,Fξ, J̄ , dη)

and a diffeomorphism ψ : M−→M satisfying Equation (12), there ex-
ists a diffeomorphism ψ̃ : M−→M such that ψ̃(S) = S ′ and F (ψ̃) = ψ.
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If b1(M) = 0 then F−1(K) consists of precisely one orbit, namely, the
group Ham(K). So there exists ψ̃ ∈ Ham(K) such that the diagram

S
ψ̃

−−−→ S ′
⏐

⏐

⏐

⏐

%

F

⏐

⏐

⏐

⏐

%

F

K
ψ

−−−→ K′

commutes implying that F is full in this case. !

Remark 2.22. When H1(M,R) ̸= 0 there are many Ham(K)-orbits,
so S and S ′ may lie on distinct orbits even though F (S) and F (S ′) are
isomorphic.
The next result shows that the functor F is never injective on objects.

Lemma 2.23. Let (M,S) be a Sasaki manifold with S = (ξ, η,Φ, g).
Then Sζ = (ξ, η + ζ ,Φζ, gζ)is Sasakian for all ζ ∈ Z1

B(M), where

Φζ = Φ+ ξ ⊗ ζ , gζ = g + ζ ⊗ η + η ⊗ ζ + ζ ⊗ ζ .

Moreover, F (Sζ) = F (S).

Proof. The first statement is proved in Section 7.5 of [BG08], and the
second statement follows from the fact that Φζ ≡ Φ mod (Fξ). !

3. Deformation Theory of Transverse Kähler Flows

We begin by discussing the deformation theory of transverse holo-
morphic foliations. The well known Kodaira-Spencer deformation the-
ory of complex manifolds has been completed by Kuranishi [Kur71]
and applied to other pseudogroup structures [Kod60, KS61]. In par-
ticular the deformation theory of transverse holomorphic foliations has
been studied extensively [DK79, DK80, GM80, GHS83]. See also Sec-
tion 8.2.1 of [BG08]. Since the characteristic foliation Fξ of a Sasakian
structure is a transverse holomorphic foliation of dimension one, we
can apply this theory to Fξ when the manifold is compact. We can
parameterize the transverse complex structures on a Sasaki manifold
M by a complex analytic scheme2 (S, 0)T that is the zero set of a finite
number of holomorphic functions and a (not necessarily reduced) germ
at 0. The main result is the following theorem of Girbau, Haefliger,
and Sundararaman

2Schemes are needed here since the map Ψ in Theorem 3.1 vanishes to first order.
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Theorem 3.1 ([GHS83]). Let F be a transverse holomorphic foliation
on a compact manifold M, and let ΘF denote the sheaf of germs of
transversely holomorphic vector fields. Then

(1) There is a germ (S, 0)T of an analytic space (called the Kuran-
ishi space) parameterizing a germ of a deformation Fs of F such
that if Fs′ is any germ of a deformation parameterizing F by the
germ (S ′, 0)T , there is a holomorphic map φ : (S ′, 0)T−→(S, 0)T

so that the deformation Fφ(s) is isomorphic to Fs′.
(2) The Kodaira-Spencer map ρ : T0S−→H1(M,ΘF) is an isomor-

phism.
(3) There is an open neighborhood U ⊂ H1(M,ΘF) and a holomor-

phic map Ψ : U−→H2(M,ΘF) such that (S, 0)T is the germ at
0 of Ψ−1(0). The 2-jet of Ψ satisfies j2Ψ(u) = 1

2 [u, u].

Here u is a 1-form with coefficients in the sheaf ΘF, and the element
[u, u] ∈ H2(M,ΘF) is the primary obstruction to performing the defor-
mation. Item (i) of Theorem 3.1 says that the analytic space (S, 0)T

is versal. Moreover, if H2(M,ΘF) = 0 then a versal deformation exists
and the Kuranishi space (S, 0)T is isomorphic to an neighborhood of
0 in H1(M,ΘF). Note that as described in [GHS83] Kodaira-Spencer-
Kuranishi deformation theory works equally well on compact complex
orbifolds. In categorical language, this follows from Proposition 2.19.
Given this first order isomorphism, it is natural to ponder whether

actual deformations exist and what their set of equivalences are, that is,
describe the moduli space. However, here we restrict ourselves to paint
a picture of the local moduli space, namely, the Kuranishi space of
deformations of transverse holomorphic flows. We apply Theorem 3.1
to the case that the foliation F is also transversely Kähler with respect
to the holomorphic structure. In this case El Kacimi Alaoui and Gmira
have proven the following Stability Theorem (see also [EKA88] for the
equivalent orbifold case):

Theorem 3.2 ([EKAG97]). Let F0 be a homologically oriented trans-
versely holomorphic foliation on a compact manifold M with a com-
patible transverse Kähler metric. Then there exists a neighborhood U
of the germ F0 in the Kuranishi space S such that for all t ∈ U the
holomorphic foliation Ft has a compatible transverse Kähler metric.

Using Lemma 2.3 we apply this theorem to the case where the foli-
ation F has dimension one, that is to transverse Kähler flows:

Theorem 3.3. Let (F0, J,ωT ) be a transverse Kähler flow on a compact
oriented manifold M . Then there exists a neighborhood U of the germ
F0 in the Kuranishi space S such that for all t ∈ U the holomorphic flow
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Ft has a compatible transverse Kähler metric ωT
t making (Ft, Jt,ωT

t ) a
transverse Kähler flow. In particular, the Kähler flows (Ft, Jt,ωT

t ) are
all isometric.

We are ready for

Definition 3.4. Let (M,S0) be a Sasaki manifold. We say that S0 is
S-stable if there exists a neighborhood N of (F0, J̄0) in the Kuranishi
space such that (Ft, J̄t) is Sasakian for all t ∈ N .

Goertsches, Nozawa, and Töben proved that the basic Hodge num-
bers of a compact Sasaki manifold depend only on the underlying CR
structure, Theorem 4.5 of [GNT16]. The question arises as to whether
the analogue of this holds for a general transverse Kähler manifold.
Generally, we do not know; however, we do have what we need, namely

Lemma 3.5. There exists a neighborhood N ⊂ S of the transverse
Kähler flow (F0, J0,ωT

0 ) in the Kuranishi space S such that hp,q(Ft, J̄t) =
hp,q(F0, J̄0) for p+ q = 2 and for all t ∈ N . Furthermore, the holomor-
phic foliation (Ft, J̄t) has a compatible transverse Kähler form ωT

t .

Proof. We outline the proof following [EKAG97] which in turn followed
[KS60]. The Lie groupoids GS and GTK have the Fréchet topology, and
GTK has a smooth family of transversely strongly elliptic self adjoint
4th order differential operators

(14) At = ∂t∂̄t∂̄t
∗
∂∗t + ∂̄t

∗
∂∗t ∂t∂̄t + ∂̄t

∗
∂t∂

∗
t ∂̄t + ∂̄t

∗
∂̄t + ∂∗t ∂t

acting on space of smooth basic (p, q)-forms. The kernel of At denoted
by Fp,q

t is given by

(15) Fp,q
t = {α ∈ Ωp,q

B (F) | ∂tα = 0, ∂̄tα = 0, ∂̄t
∗
∂∗t α = 0},

and we have the following orthogonal decomposition of smooth closed
basic (p, q) forms

(16) Zp,q
B (F) = im(∂t∂̄t)⊕ Fp,q

t .

So the cohomology groups Hp,q
B (F) are represented by elements of Fp,q

t .
Thus, by Proposition 6.3 of [EKAG97] there is a neighborhood N of the
central fiber (F0, J0,ωT

0 ) such that for all t ∈ N the dimension of F1,1
t

equals h1,1
B (Fξt , J̄t) and is independent of t, so h1,1

B (Fξt, J̄t) = h1,1
B (F0, J̄0)

in N . But since the basic 2nd Betti number bB2 is independent of t and
we have

b2B = h2,0(Fξt , J̄t)+h1,1
B (Fξt, J̄t)+h0,2

B (Fξt , J̄t) = h1,1(F0, J̄0)+2h2,0
B (Fξt, J̄t)

which implies that h2,0
B (Fξt , J̄t) and h0,2

B (Fξt, J̄t) = h2,0
B (Fξt , J̄t) are also

independent of t for all t ∈ N which proves the first result. The second
result also follows by Theorem 6.4 of [EKAG97]. !
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Since hp,q
B (Fξ, J) are integer valued and a+(M,Fξ) is path connected,

Lemma 3.5 implies

Proposition 3.6. Let (M,Fξ) be a compact transverse Kähler flow.
Then hp,q

B (Fξ′) is independent of ξ′ ∈ a+(M,Fξ) for p, q ≤ 2.

This proposition together with the fact that G1TK is dense in GTK
allows us to reduce our arguments to the quasiregular case. Given
this we shall often use Proposition 2.19 to pass between the transverse
geometry of (M,S) and the algebraic orbifold geometry of the quotient.

3.1. An Obstruction to S-stability. We now consider obstructions
to the stability of deformations of the transverse holomorphic foliations
(Fξ, J).

Lemma 3.7. Let (F0, J̄0, dη0) be the transverse Kähler flow of a Sasakian
structure S0 = (ξ0, η0,Φ0, g0). Under the deformation (F0, J̄0, dη0) /→
(Ft, J̄t, dη), there is a neighborhood N of (F0, J̄0, dη0) in the Kuranishi
space such that for all t ∈ N

(1) the (2, 0) component of dη is ∂-closed with respect to J̄t,
(2) the (0, 2) component of dη is ∂̄-closed with respect to J̄t,
(3) the (1, 1) component of dη is Kähler with respect to J̄t if and

only if dη2,0 is holomorphic and dη0,2 is antiholomorphic,
(4) dη2,0 ∧ dη0,2 + (dη1,1)2 > 0,
(5) hp,q(Ft, J̄t) = hp,q(F0, J̄0) for p+ q = 2.

Proof. The Hodge decomposition of the dB-closed basic 2-form dη with
respect to the transverse holomorphic structure (Fξ, Jt) is given by
Equation (8). This shows that dη2,0 is ∂-closed, dη0,2 is ∂̄-closed, and
that

∂̄dη2,0 + ∂dη1,1 = 0, ∂̄dη1,1 + ∂dη0,2 = 0.

So dη1,1 will be closed if and only if dη2,0 is holomorphic and dη0,2

is antiholomorphic. Thus, in this case dη1,1 ◦ (J̄t ⊗ 1l) will be a trans-
verse Kähler metric in a neighborhood of the central fiber (Fξ, J̄) which
proves (1),(2), and (3). Item (4) follows from the Hodge decomposi-
tion and the fact that η is a contact 1-form. Item (5) holds by Lemma
3.5. !

Applying Lemma 3.7 to Sasaki manifolds shows that if dη2,0 is a
nonzero holomorphic section of H2,0(Fξ, J̄), we can deform to a trans-
verse Kähler structure which is not necessarily associated to a Sasakian
structure since ωT = dη1,1 ̸= dη. Indeed, in Theorem 4.9 below we
prove that this is the case for transverse hyperkähler structures. For
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any transverse holomorphic deformation of a Sasakian structure, we
view the holomorphic section dη2,0 as an obstruction to S-stability3.

3.2. Proof of Theorem 1.2 and Corollary 1.3. First we recall that
by Proposition 2.21 the forgetful functor F : SG(M,F)−→K(M,F)T is
full and faithful.

Proof of Theorem 1.2. It remains to show that the vanishing of h2,0
B (S)

and h0,2
B (S) implies the functor F is locally essentially surjective on

objects. By Lemma 3.5 these Hodge numbers are independent of the
Sasakian structure in a+(M,Fξ). So Lemma 3.7 implies that h2,0

B (St) =
0 for t ∈ N0, a small enough neighborhood of the central fiber. So
when we deform the transverse holomorphic foliation F, J̄ , the basic
Euler class [dη]B of Ft, J̄t must remain type (1, 1). It then follows from
Theorem 1.1 of [Noz14] that the smooth family of flows (Ft, J̄t) are
Sasakian in a possibly smaller neighborhood of (F, J̄). !

The proof of Corollary 1.3 now follows as in Proposition 7.1.7 of
[Joy07].

3.3. The Transverse Hodge Structure. On Sasaki manifolds the
basic cohomology has a transverse Hodge decomposition [EKA90] (see
also Section 7.2.2 of [BG08]). An example of a weight 1 transverse
Hodge structure and their deformations was studied by Nozawa [Noz14],
where he considers Abelian varieties and their completions. Generally
weight 1 transverse Hodge structures are much more complicated. For
example, there are Sasaki 5-manifolds that are circle bundles over (orb-
ifold) surfaces of general type with non-vanishing weight 1 transverse
Hodge numbers.
Here we concern ourselves with weight 2 basic Hodge structures.

However, as aptly noted in [GNT16] generally there is no Hodge struc-
ture in the usual sense, since a priori there is no integral lattice. Nev-
ertheless, under the right circumstances we can construct an integral

3Nozawa identifies the (0, 2) component (dη)0,2 as an obstruction to stability. Of
course these are completely equivalent obstructions.
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lattice. On a Sasaki manifold we have a diagram of exact sequences
(17)

0
⏐

⏐

⏐

%

H2(M,Z) \ Tor
⏐

⏐

⏐

⏐

%

j

0−−−→H0
B(Fξ)

δ
−−−→H2

B(Fξ)
ι∗

−−−→ H2(M,R) −−−→H1
B(Fξ)−−−→ · · · ,

where δ = ∧[dη]B. So we can define transverse integral classes:

(18) H2
B(Fξ,Z) = {β ∈ H2

B(Fξ) | ι∗β = j(α), α ∈ H2(M,Z) \ Tor}.

Lemma 3.8. Let (M,S) be a Sasaki manifold with vanishing first Betti
number b1(M). Then for each integral class α ∈ H2(M,Z) \ Tor ⊂
H2(M,R) there is a class β ∈ H2

B(Fξ) such that β ≡ α mod {[dη]B}.

Proof. Since for Sasaki manifolds H1
B(Fξ) ≈ H1(M,R) and the first

Betti number b1(M) vanishes, ι∗ is surjective. Moreover, we can con-
struct a splitting of the short exact sequence over Z as follows: if α is
an integral class as an element of j(H2(M,Z)/Tor) ⊂ H2(M,R), there
exists a β ∈ H2

B(Fξ) that equals the integral class α mod an element
of the ideal generated by [dη]B. !

We now apply this to the situation at hand in the case that S is
quasiregular. Since α is an integral class we can consider β to be a
‘transverse integral class’. Moreover, since S is quasiregular, the basic
class [dη] is the pullback of integral class in the orbifold cohomology of
the base orbifold. So as such we can consider [dη]B to be an integral
class in the basic cohomology. We denote the set of all such transverse
integral classes by H2

B(Fξ,Z). This gives an exact sequence

0−→Z
δ

−→H2
B(Fξ,Z)

ι∗
−−→j

(

H2(M,Z \ Tor)
)

−→0

which splits by construction. We can now construct a ‘transverse Hodge
structure’.

Definition 3.9. Let (M,S) be a quasiregular Sasaki manifold with
b1(M) = 0. We say that (M,S) has a transverse Hodge structure
of weight 2 if there is a Hodge decomposition

H2
B(Fξ)⊗C = H2,0

B (Fξ)⊕H1,1
B (Fξ)⊕H0,2

B (Fξ), Hp,q
B (Fξ) = Hq,p

B (Fξ)
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and an integral lattice Λ such that Λ ⊗ R = H2
B(Fξ). We also define

the transverse Neron-Severi group by

NS(Fξ) = H1,1
B (Fξ) ∩H2

B(Fξ,Z)

and the transverse Picard number n(Fξ) to be its rank. The trans-
verse Picard group PicT (M,Fξ) is the complex Abelian group (vector
space) ΛC = (Λ⊗C)∩H1,1

B (Fξ) of complex dimension n(Fξ). The basic
Hodge numbers are hp,q

B (S) = dimHp,q
B (Fξ).

Remark 3.10. Note that as defined the transverse Hodge structure is
automatically polarized by the Reeb vector field ξ or equivalently by
the transverse Kähler form dη with a fixed underlying CR structure.

Proposition 3.11. An isometric transverse Kähler flow manifold (M,K =
(Fξ, J̄ ,ωT )) with b1(M) = 0 admits a transverse Hodge structure of
weight 2.

Proof. Since b1(M) = 0 Lemma 3.8 defines the notion of integral ba-
sic classes H2

B(Fξ,Z) and gives an isomorphism H2
B(Fξ,Z)/{[dη]B} ≈

H2(M,Z). Since S is quasiregular, the class [dη]B is the image of
an integral orbifold class [ω] ∈ H2

orb(Z,Z). This then makes sense
of H2

B(Fξ,Z) as a cohomology group over Z and provides an integral
lattice Λ = H2

B(Fξ,Z). !

4. Transverse Kähler Holonomy

The irreducible transverse Kähler holonomy groups are

U(n), SU(n), Sp(n)

which correspond to irreducible transverse Kähler geometry, transverse
Calabi-Yau geometry, and transverse hyperkähler geometry, respec-
tively. Such general transverse structures were studied recently by
Habib and Vezzoni [HV15]. They can be defined as holomorphic folia-
tions whose transverse holonomy group is contained in SU(n). Here we
are interested in their relation with Sasakian geometry, so we special-
ize to the case of a holomorphic foliation of dimension one, namely the
characteristic Reeb foliation Fξ. Sasaki manifolds with transverse ho-
lonomy contained in SU(n) are null-Sasaki having vanishing transverse
Ricci curvature by the transverse Yau Theorem [EKA90, BGM06].
They are called contact Calabi-Yau manifolds in [TV08].
Following Joyce [Joy07, GHJ03] we deal with irreducible transverse

Calabi-Yau and irreducible transverse hyperkähler structures although
we give the more general definitions below. Note that when n = 2
we have the equality SU(2) = Sp(1), so Calabi-Yau and hyperkähler
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geometry coincide when n = 2. We note that the condition of irre-
ducibility is crucial for the following stability results.

Remark 4.1. There is one other even dimensional irreducible Berger
holonomy group that is related to Sasakian geometry, the group Sp(n) ·
Sp(1) whose transverse flows are twistor spaces of 3-Sasakian struc-
tures, cf. [BG99]; however, generally they are not Kähler and therefore,
are not treated in this paper.

4.1. Transverse Irreducible Calabi-Yau Structures. Since c1(F) =
0 the transverse geometry is the geometry of compact Calabi-Yau orb-
ifolds which has been studied in [Cam04] following the manifold case
[Bog78, Bea83].

Definition 4.2. We say that a transverse Kähler flow (F, J̄ ,ωT ) on a
compact manifold M of dimension 2n + 1 is a transverse Calabi-
Yau flow if its transverse holonomy group is contained in SU(n).
This transverse Calabi-Yau structure is irreducible if the transverse
holonomy group equals SU(n). We abbreviate irreducible transverse
Calabi-Yau structures (flows) by ITCY. The ITCY flow is said to be
of Sasaki type if ωT = dη for some Sasakian structure (ξ, η,Φ, g).

Calabi-Yau structures have holomorphic volume forms, so as ex-
pected transverse Calabi-Yau structures have transverse holomorphic
volume forms, i.e holomorphic sections ΩT of Hn,0

B . Since as mentioned
above Calabi-Yau structures coincide with hyperkähler structures when
n = 2, we assume in this section that n > 2.
We have following

Theorem 4.3. Let M2n+1 be a compact manifold of dimension 2n+1.
If M admits a ITCY flow of Sasaki type (F, J̄ , dη) and n > 2 then
(F, J̄ , dη) is S-stable. Moreover, the Kuranishi space S is a open set in
H1(M,Θ).

Proof. First we note, using the equivalence between transverse CY
structures and CY orbifolds Proposition 2.19, that we can work on
irreducible Calabi-Yau orbifolds X . Now since n > 2, as noted on page
125 of [Joy07], the induced action of the holonomy group SU(n) on
Λp,0(X) fixes no complex (p, 0) form for 0 < p < n, and this implies
that the Hodge numbers hp,0 vanish in this range. The first statement
is then an immediate corollary of Theorem 1.2.
The second statement is an orbifold version of a result of Tian [Tia87]

which we now describe. So we let X be a compact Kähler orbifold and
Γ(X,Ωp,q(ΘX)) be the set of global (p, q)-forms with coefficients in the
sheaf of germs of holomorphic vector fields ΘX or more generally for
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the sheaf of germs of any holomorphic tensor field. For the description
of tensor fields on orbifolds we refer to [BGK05] as well as Section 4.4.2
of [BG08]. Generally, the canonical sheaf and the canonical orbisheaf
are not equivalent; however, since transverse Calabi-Yau structures are
null Sasakian structures, there are no branch divisors and Tian’s proof
is straightforward to generalize. From the GHS Theorem 3.1 we need
to prove the existence of a one parameter family of solutions ω(t) ∈
Γ(X,Ω0,1(TX)) with

(19) ∂̄ω(t) +
1

2
[ω(t),ω(t)] = 0, ω(0) = 0

give a deformation of complex structures over X .
By the Taylor expansion (at the singular points, we consider the

corresponding local covering spaces), we have ω(t) = w1t + w2t2 + · · ·
which we plug into (19). Given ω1 ∈ Γ(X,Ω0,1(TX)), we then need to
solve the following system of equations inductively

(20) ∂̄ωN +
1

2

N−1
∑

i=1

[ωi,ωN−i] = 0, (N ≥ 2).

Now we want to change (20) a bit. Since the canonical orbisheaf KX

is trivial, we have a natural isomorphism

iq : Γ(X,Ω0,q(TX)) → Γ(X,Ωn−1,q).

For every Ω0,q(TX), locally we have

φ =
∑

i,J
|J |=q

f i
J̄

∂

∂zi
⊗ dz̄J ,

and

iq(φ) = dz1 ∧ · · · ∧ dzn(φ).

It is easy to check that iq is well-defined and isomorphic. Our goal is
to replace ωi in (20). To do that, we define

[i1(ω1), i1(ω2)] := i2[ω1,ω2].

Thus given ω1 ∈ Γ(X,Ωn−1,1), we need to solve the following system
of equations inductively

(21) ∂̄ωN +
1

2

N−1
∑

i=1

[ωi,ωN−i] = 0, for N ≥ 2,
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where ωi ∈ Γ(X,Ωn−1,1), i = 2, 3, . . . , N−1. Since the proof of Lemma
3.1 of [Tia87] is local, it also holds in the orbifold case on the local
uniformizing neighborhoods.

Lemma 4.4. Let ω1,ω2 ∈ Γ(X,Ωn−1,1), then

[ω1,ω2] = ∂(i−1(ω1)"ω2)−#(∂ω1) ∧ ω2 + ω1 ∧#(∂ω2).

Then since the ∂∂̄-lemma for orbifold Hodge theory follows from
the transverse version in [EKA90], the remainder of Tian’s argument
applies to our case. Indeed the proof of Theorem 1 of [Tia87] goes
through verbatim. !

4.2. Transverse Irreducible Hyperkähler Structures. The sem-
inal work on hyperkähler manifolds is [HKLR87]. Hyperkähler struc-
tures are a particular type of quaternionic structure to which we refer to
Chapter 12 of [BG08], Chapter 10 of [Joy07], and Chapter 3 of [GHJ03]
as well as the standard references [Huy99, Ver05].
Although we give the more general definition, henceforth by hy-

perkähler we shall mean the irreducible case, Hol = Sp(n). We ab-
breviate irreducible transverse hyperkähler structures by ITHK.

Definition 4.5. We say that a transverse Kähler flow (F, J̄ ,ωT ) on a
compact manifoldM of dimension 4n+1 is a transverse hyperkähler
flow if its transverse holonomy group is contained in Sp(n). The trans-
verse hyperkähler structure is irreducible if the transverse holonomy
group equals Sp(n).

Remark 4.6. An equivalent definition of transverse hyperkähler is
that the contact bundle D admits three almost complex structures
{Ii}3i=1 that satisfy the algebra of the quaternions

(22) IiIj = −δij1l + ϵijkIk,

and the induced transverse antisymmetric forms ωT
i = g ◦ (Ii ⊗ 1l) are

covariantly constant (∇TωT
i = 0) with respect to the transverse Levi-

Civita connection ∇T .
It immediately follows from the definition that M has real dimension

4n+1. Since we have an inclusion of holonomy groups Sp(n) ⊂ SU(2n)
a transverse hyperkähler structure is automatically a transverse null
Kähler structure. We want to know when this transverse Kähler struc-
ture is Sasakian. There is a 1-1 correspondence between transverse hy-
perkähler flows and hyperkähler orbifolds, and these orbifolds are pro-
jective algebraic if and only if the canonical bundle c1(KX) ∈ H2

orb(X,Z).
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Lemma 4.7. Let (ξ, η,Φ, g) be a contact metric structure with a trans-
verse hyperkähler structure {Ii}3i=1. Then fixing a transverse complex
structure, say I1, gives a null transverse Kähler structure ωT

1 . It is a
Sasakian structure S1 = (ξ, η,Φ1, g) with Φ1 = I1 ⊕ ξ ⊗ η if and only
if ωT = dη. In this case we say that the hyperkähler structure is as-
sociated to the (necessarily null) Sasakian structure S1, or conversely
the null Sasakian structure S1 is associated to the hyperkähler structure
{Ii}3i=1.

Proof. The condition ∇Tωi = 0 implies that ωi are closed. But as in
Lemma 2.2 of [Hit87] this implies that the transverse almost complex
structures Ii are integrable and that the forms ωT

i are Kähler with
respect to the complex structure Ii. But clearly £ξΦi = 0 for i = 1, 2, 3
since Ii are endomorphisms of D and £ξη = 0. This implies £ξωT

i = 0.
Moreover, it is null, that is, c1(Fξ) = 0 which implies c1(X)R = 0 which
in turn implies that c1(D) is a torsion class. !

Remark 4.8. As in the manifold case a transverse hyperkähler struc-
ture defines a transverse Kähler structure with a transverse complex
symplectic structure. Explicitly, if (I1,ωT

1 ) defines the underlying
transverse Kähler structure of the transverse hyperkähler structure,
the complex 2-form ωT

2 + iωT
3 satifies ωn

+ ̸= 0 everwhere, and thus
defines a transverse complex symplectic structure. Conversely, if we
have a transverse Kähler structure (J,ωT ) together with a transverse
holomorphic symplectic 2-form ωT

C that is covariantly constant with
respect to the transverse Levi-Civita connnection ∇T the conditions
∇TωT = ∇TJ = ∇TωT

C = 0 forces the transverse holonomy to lie in
Sp(n) where the real codimension of the foliation is 4n as in [Joy07]
Section 10.4. This gives an equivalence between transverse hyperkähler
structures and tranverse Kähler structures with a transverse complex
symplectic structure.
Given a transverse hyperkähler structure we fix a transverse Kähler

structure (I1,ωT
1 ) and its transverse complex symplectic structure ω+ =

ω2 + iω3. We now consider the proof of Theorem 1.4. First, we note
that the 2nd statement in the theorem follows from [Cam04]. So it
suffices to prove

Theorem 4.9. Let S1 be an (ITHK) Sasaki structure on a compact
manifold M with b1(M) = 0 with the transverse Kähler structure de-
fined by I1 ∈ {Ii}3i=1. Then there are transverse Kähler deformations in
the Kuranishi space (S, 0)T that are not Sasakian. So S1 is S-unstable.
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Proof. Any null Sasakian structure S is quasiregular, so the quotient
by the S1 action generated by the Reeb vector field ξ is a Kähler po-
larized hyperkähler orbifold (X1,ω1) which represents the transverse
hyperkähler structure. Letting the Sasakian structure S1 be the cen-
tral fiber in the Kuranishi space S of transverse holomorphic deforma-
tions, there is a neighborhood N ⊂ S of X1 such that all Xt ∈ N are
transversely Kähler by Theorem 3.3. Now the transverse hyperkähler
structure gives a 2-sphere’s worth of transverse complex structures It
defined by

(23) It = t1I1 + t2I2 + t3I3, with t = (t1, t2, t3) and t21 + t22 + t23 = 1.

We also have a 2-sphere’s worth of transverse Kähler forms

(24) ωT
t =

3
∑

i=1

tiω
T
i =

3
∑

i=1

tig ◦ (Ii ⊗ 1l) = g ◦ (It ⊗ 1l),
3

∑

i=1

t2i = 1.

Since the transverse geometry is that of a Kähler orbifold, this gives rise
to the twistor space T(X), a complex orbifold which is diffeomorphic
as orbifolds to the product X × CP1, but whose complex structure is
not the product structure. It is more convenient to use stereographic
coordinates z ∈ C defined by

(25) t = (t1, t2, t3) =
(1− |z|2

1 + |z|2
,−

z + z̄

1 + |z|2
, i

z − z̄

1 + |z|2

)

with corresponding complex structure Iz. For each z ∈ CP1, there is
an associated transverse Kähler structure. If we begin with a Sasakian
structure with respect to Φ0 = I1 + ξ ⊗ η and consider deforma-
tions of the transverse holomorphic structure leaving the transverse
hyperkähler structure invariant, we obtain the complex structures Iz
for z ∈ CP1. From this we get an induced complex structure on T(X)
as follows. Using the natural projection p : T(X)−→CP1 we can lift the
standard complex structure I0 on CP1 to T(X) and denote it by p∗I0,
and define the complex structure on T(X) by J = Iz +p∗I0. Of course,
this makes the map p : T(X)−→CP1 holomorphic. Furthermore, we
have a double fibration, a la Penrose4, (cf. Diagram 12.6.4 of [BG08])

(26)
T(X)

p
↙ ↘

CP1
❀ X

which gives a correspondence: points z ∈ CP1 ≃ S2 correspond to
complex structures Iz onX in the given hyperkähler structure I; points

4This arises from Penrose’s nonlinear graviton [Pen76] and is amply treated in
books [Wel82, WW90, MW96].
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x ∈ X correspond to rational curves in T(X) with normal bundle
2nO(1), called twistor lines. The general point is that the holomorphic
data on the twistor space T(X) encodes the hyperkähler data on X .
We note that generally the twistor space (T(X), J) is not Kähler.
Let (ξ, η,Φ0, g) be a Sasakian structure which is associated to the

transverse hyperkähler structure {Ii}3i=1. Then by Lemma 4.7 ωT
1 is

a transverse Kähler form satisfying ωT
1 = dη. Moreover, ω+ = ω2 +

iω3 is a transverse holomorphic section of H2,0(Fξ) and ω− = ω2 −
iω3 is transverse anti-holomorphic section of H0,2(Fξ). So h2,0 ̸= 0 ̸=
h0,2. Since these transverse hyperkähler structures are null Sasakian,
the transverse geometry is that of hyperkähler orbifolds X with cyclic
isotropy groups. Now let us deform the complex structure of X in a
disc in S2 centered around I1. This gives the twisted (2, 0) form

(27) ωz = ω+ + 2zω1 − z2ω−

as a section of p∗O(2) ⊗ Ω2(T(X)) and representing the variation of
Hodge structures on X . Thus, ωz has two interpretations: (1) as a
holomorphic (2, 0)-form on the twistor space, and (2) as a holomorphic
(2, 0)-form on each member Xz of the family of complex manifolds (orb-
ifolds) parameterized by a holomorphic section of O(2) on CP1. Now
ωz defines a class in H2

orb(Xz,Q) for at most a countable number of
z ∈ CP1. Thus, for only a countable number of points z ∈ CP1 will [ωz]
lie in an integral Hodge lattice Λ = H2

orb(Xz,Z). Transversally, such
integer lattices in H1,1

B (Fξ) are constructed by Proposition 3.11 from
the transverse Picard group PicT (M,Fξ) of isomorphism classes of orbi-
line-bundles over Xz at least when b1(M) = 0 which holds in our case.
Then since for compact irreducible hyperkähler orbifolds h2,0 = h0,2 = 1
[Fuj83], it follows that in the case when [ωz] ̸∈ H2

orb(Xz,Z) then the
transverse complex structure admits no integer lattice in H1,1

B (Fξ).
Thus, in such cases PicT (M,Fξ) = Picorb(Xz) = 0. So for all but a
countable number of points z ∈ CP1 we have PicT (M,Fξ)) = 0 and
so all but a countable number of points z ∈ CP1 are non-algebraic
hyperkähler orbifolds. These cannot represent the transverse Kähler
structure of a Sasakian structure, since null Sasakian structures are
algebraic, that is they are the total space of an orbibundle over a pro-
jective algebraic variety [BG08]. !

4.3. Trivial Restricted Transverse Holonomy. Finally, we briefly
consider the case when the restricted transverse holonomy group Hol0(F)
is the identity. For simplicity we only consider the regular case of S1

bundles over a polarized Abelian variety. In this case the restricted
transverse holonomy group is the identity. They are nilmanifolds Nl
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of dimension 2n + 1 formed as quotients of the (2n + 1)-dimensional
Heisenberg group H(R) by a lattice subgroup Γl where l = (l1, . . . , ln)
is a Z-vector whose components are positive and satisfy the divisibility
conditions lj |lj+1 for j = 1, . . . , n− 1 [Fol04]. Now Nl has a canonical
strictly pseudoconvex CR structure (D, J). In fact it has a compatible
Sasakian structure Sl, unique up to equivalence, and Sl has constant
Φ-sectional curvature −3 [Boy09]. These nilmanifolds are both homo-
geneous and Sasakian, but they are not Sasaki homogeneous. More-
over, Folland shows that there is a 1-1 correspondence between equiv-
alence classes of such CR structures and polarized Abelian varieties
(Cn/Λl, L) equipped with a positive line bundle L where the lattice
Λl is the image of Γl under the natural projection π : Nl−−−→Cn/Λl.
Here l1 is the largest positive integer such that c1(L)/l1 is primitive
in H2(Cn/Λl,Z). The first homology group of such nilmanifolds is
H1(Nl,Z) = Z2n + Zl1 . Nozawa [Noz14] proved that all such (Nl,Sl)
are S-unstable when n ≥ 2.

4.4. Reducible Transverse Kähler Holonomy. Here we consider
the case of reducible Kähler holonomy, namely, the join of two quasireg-
ular Sasaki manifoldsM1,M2 defined in [BG00, BGO07] and developed
further in [BHLTF18]. Recall that for any pair of relatively prime pos-
itive integers (l1, l2) = l we define the join M ⋆l M2 of two quasiregular
Sasaki manifolds M1,M2 with Reeb vector fields ξ1, ξ2 respectively, by
the quotient of M1 ×M2 by the S1 generated by the vector

(28) Ll =
1

2l1
ξ1 −

1

2l2
ξ2

where ξi is the Reeb field of the Sasakian structure on Mi. This gives
rise to the commutative diagram

(29)

M1 ×M2

↘ πL
⏐

⏐

⏐

%

π2 M1 ⋆l M2

↙ π1
N1 ×N2

where Ni are the quotient orbifolds of Mi, and the Reeb vector field of
the induced Sasakian structure on M1 ⋆l M2 is given by

(30) ξl =
1

2l1
ξ1 +

1

2l2
ξ2.

We now have
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Corollary 4.10. Let Ml = M1 ⋆lM2 be the join of quasiregular Sasaki
manifolds Mi, i = 1, 2. Suppose also that b1(Mi) = 0 for i = 1, 2, and
the basic Hodge numbers h0,2

B (Mi) also vanish. Then every Sasakian
structure in the Sasaki cone t+

l
of Ml is S-stable.

Proof. Since by [GNT16] the basic Hodge numbers depend only on
the underlying CR structure, it suffices to prove the corollary for the
Reeb field (30) which is quasiregular. Using Proposition 2.19 we can
compute the Hodge numbers of the product orbifold N1 ×N2. By the
Hodge-Kunneth formula ([Voi02] page 286) we have

H0,2(N1×N2) = H0,2(N1)⊗H0,0(N2)+H0,0(N1)⊗H0,2(N2)+H0,1(N1)⊗H0,1(N2).

This implies that

h0,2
B (Ml) = h0,2

B (M1) + h0,2
B (M2) + h0,1

B (M1)h
0,1
B (M2)

which vanishes by hypothesis and the injectivity of H1
B−→H1(M). The

result then follows from Theorem 1.2. !

We remark that the hypothesis of the corollary implies, using Theo-
rem 1.2 that the Sasakian structures onMi are both S-stable. However,
we do not know whether generally the join of S-stable Sasakian struc-
tures is S-stable.

4.5. Fiber Joins and S-Stability. There is another type of join con-
struction due to Yamazaki [Yam99] which describes a construction of
K-contact structures on sphere bundles over a symplectic manifold.
Given a compact symplectic manifold N with d+1 integral symplectic
forms ωj, not necessarily distinct. Let Lj be the complex line bundle on
N such that c1(Lj) = [ωj ], then Yamazaki shows that the unit sphere
bundle in the complex vector bundle ⊕d+1

j=1L
∗
j has a natural K-contact

structure associated to each Reeb vector field in the Sasaki cone t+sph of
the sphere S2d+1. The manifold is denoted by M = M1 ⋆f · · · ⋆f Md+1

where Mj is principal S1 bundle associated to Lj . Moreover, it is easy
to see that this K-contact structure is Sasakian if N is a projective
variety and ωj are integral Kähler forms [BTF20]. It was also shown
there that such Sasakian structures come in two types, cone decom-
posable fiber joins and cone indecomposable fiber joins. The former
is equivalent to a special case of the joins described in Section 4.4;
however, it follows from Proposition 3.8 (2) of [BTF20] that the cone
indecomposable fiber joins have irreducible U(n) transverse holonomy.
Nevertheless, in either case we have

Corollary 4.11. Let N be a smooth projective algebraic variety with
b1(N) = 0 and integral Kähler forms ωj and let M = M1⋆f · · ·⋆fMd+1 be
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a fiber join with its spherical Sasaki subcone t+sph of Sasakian structures
on M . Assume also that the Hodge number h0,2(N) vanishes. Then
every Sasakian structure in t+sph is S-stable.

Proof. Again since the basic Hodge numbers depend only on the un-
derlying CR structure [GNT16], we can choose the regular Reeb vector
field in t+sph. Then from the Leray-Hirsch theorem there is an isomor-
phism of groups (not necessarily of rings)

H∗(P(⊕d+1
j=1L

∗
j )) ≈ H∗(M)⊗H∗(CPd).

Applying the Hodge decomposition to each piece gives

H0,2(P(⊕d+1
j=1L

∗
j )) = H0,2(N)⊗H0,0(CPd)⊕H0,1(N)⊗H0,1(CPd)⊕H0,0(N)⊗H0,2(CPd).

But this clearly implies h0,2(P(⊕d+1
j=1L

∗
j )) = h0,2(N), so the corollary

follows from Theorem 1.2. !
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