COLLEGE GEOMETRY HOMEWORK 2

JANET VASSILEV

Due February 13 by 8 a.m.
(1) For each of Examples 2.8 and 2.10 in the text, state the axioms of incidence geometry that do not hold.
(2) Suppose we take the first three axioms from incidence geometry and replace the 4 th by:

Incidence Axiom 4^{\prime} Given any line, there are at least 3 distinct points that lie on it. What is the smallest number of points in a model for this geometry? (Hint: think of the models that we have already seen for incidence geometry.)
(3) Show that the following statement is independent of the axioms of incidence geometry: Given any line, there are at least two distinct points that do not lie on it.
(4) Show that the following statement is independent of the axioms of incidence geometry: Given any point, there are at least three distinct lines that contain it.
(5) Show that the Fano plane and the 7-point plane are not isomorphic to each other. (Hint: It is not enough just to show that a particular correspondence is not an isomorphism; you need to demonstrate that there cannot exist any isomorphism between the two models.)
(6) Define a model of incidence geometry with points $1,2,3,4,5,6$ and lines $\{1,2,3\},\{3,4,5\}$, $\{5,6,1\},\{1,4\},\{2,5\},\{3,6\},\{2,6\},\{4,6\},\{2,4\}$. Which if any of the parallel postulates is satisfied by this model? Explain your answer.
(7) Prove the following: Given any line ℓ, there exists a point that does not lie on ℓ.
(8) Prove the following: Given two distinct points A and B, there exists a line that contains A but not B.
(9) Prove the following: If A, B and C are noncollinear points, then $\overleftrightarrow{A B} \neq \overleftrightarrow{A C}$

