COLLEGE GEOMETRY HOMEWORK 3

JANET VASSILEV

Due February 20 by 8 a.m.

- (1) Give an example of a bijective function of a line to \mathbb{R} which is not a coordinate function.
- (2) If A * B * C and C * D * E, is it necessarily the case that B * C * D?
- (3) Give an example why A * B * D and A * C * D does not imply A * B * C * D.
- (4) If A * B * C * D, show AB + BC + CD = AD.
- (5) Let A, B, C, D be collinear points satisfying A * C * D. If C is not between A and B, prove B * C * D.
- (6) Prove that every point lies on infinitely many distinct lines. (Hint: Start with a point and a line not containing it. Use the line to construct infinitely many lines going through the point.)
- (7) Let ℓ be line which includes a point A. Let r be a real number. Show that there are two points B and C on ℓ with AB = AC = r and B * A * C.
- (8) Prove Euclid's Segment Cutoff Theorem: If \overline{AB} and \overline{CD} are segments with CD > AB, then there is a unique point E in the interior of \overline{CD} such that $\overline{CE} \cong \overline{AB}$.
- (9) Prove for distinct points A and B that
 - $\overrightarrow{AB} \cap \overrightarrow{BA} = \overline{AB}$ and
 - $\overrightarrow{AB} \cup \overrightarrow{BA} = \overrightarrow{AB}$