COLLEGE GEOMETRY HOMEWORK 3

JANET VASSILEV

Due February 20 by 8 a.m.
(1) Give an example of a bijective function of a line to \mathbb{R} which is not a coordinate function.
(2) If $A * B * C$ and $C * D * E$, is it necessarily the case that $B * C * D$?
(3) Give an example why $A * B * D$ and $A * C * D$ does not imply $A * B * C * D$.
(4) If $A * B * C * D$, show $A B+B C+C D=A D$.
(5) Let A, B, C, D be collinear points satisfying $A * C * D$. If C is not between A and B, prove $B * C * D$.
(6) Prove that every point lies on infinitely many distinct lines. (Hint: Start with a point and a line not containing it. Use the line to construct infinitely many lines going through the point.)
(7) Let ℓ be line which includes a point A. Let r be a real number. Show that there are two points B and C on ℓ with $A B=A C=r$ and $B * A * C$.
(8) Prove Euclid's Segment Cutoff Theorem: If $\overline{A B}$ and $\overline{C D}$ are segments with $C D>A B$, then there is a unique point E in the interior of $\overline{C D}$ such that $\overline{C E} \cong \overline{A B}$.
(9) Prove for distinct points A and B that

- $\overrightarrow{\overrightarrow{A B}} \cap \xrightarrow{\overrightarrow{B A}}=\overrightarrow{A B}$ and
- $\overrightarrow{A B} \cup \overrightarrow{B A}=\overleftrightarrow{A B}$

