COLLEGE GEOMETRY HOMEWORK 5

JANET VASSILEV

Due March 5 by 8 a.m.

(1) If you were trying to prove the following theorem, which cases must you consider? Consistancy of Triangle Vertices Theorem:

If $\Delta ABC = \Delta A'B'C'$ as triangles then $\{A, B, C\} = \{A', B', C'\}.$

- (2) Give pictorial examples of the following:
 - (a) An acute isosceles triangle.
 - (b) A right isoscelels triangle.
 - (c) An obtuse isosceles triangle.
 - (d) An acute scalene triangle.
 - (e) A right scalene triangle.
 - (f) An obtuse scalene triangle.
- (3) Prove the following corollary of Pasch's Theorem: If ΔABC is a triangle and ℓ is a line not containing A, B or C, then either ℓ intersects exactly two sides of ΔABC or none of them.
- (4) If ΔABC is a triangle and ℓ is a line, is it possible for ℓ to intersect
 - (a) exactly one side of ΔABC ?
 - (b) exactly two sides of ΔABC ?
 - (c) all three sides of $\triangle ABC$?
- (5) If ΔABC is a triangle and ℓ is a line, is it possible for ℓ to intersect
 - (a) ΔABC in exactly one point?
 - (b) ΔABC in exactly two points?
 - (c) ΔABC in exactly three points?
 - (d) ΔABC in infinitely many points?
- (6) Prove the following: If $\triangle ABC$ is a triangle and $\overline{DE} \cong \overline{AB}$, then there exists a point F on each side of \overrightarrow{DE} with $\triangle ABC \cong \triangle DEF$.
- (7) Prove the triangle inequality. (We proved the generalized triangle inequality in class using the triangle inequality.)
- (8) Given 4 points maybe not distinct A, B, C, D, determine all cases where AD = AB + BC + CD. Think about the proof of the generalized triangle inequality that we did in class.
- (9) Prove the Hypotenuse-Leg Correspondence Theorem.