ABSTRACT ALGEBRA, MATH 520 HOMEWORK 8

JANET VASSILEV

- (1) Find up to isomorphism all abelian groups of order 200.
- (2) Find up to isomorphism all abelian groups of order 324.
- (3) Suppose F is a free abelian group on n generators x_1, x_2, \ldots, x_n . Suppose that $S = \{x_1, \ldots, x_n\}$ and let $\mathcal{A}(S, A)$ be the mappings as sets of S into another abelian group A. Let hom(F, A) be the homomorphisms from F to A. The universal property says that in a natural way $\mathcal{A}(S, A) \cong \text{hom}(F, A)$. We attempt to define a dual notion by declaring: an abelian group is fascist on a subset S of G if for every abelian group A, any set mapping in $\mathcal{A}(A, S)$ coincides with a unique homomorphism in hom(A, G). Prove there are no non-trivial fascist groups.
- (4) Problem 5.2 18 in Dummit and Foote.
- (5) Problem 5.3 4 in Dummit and Foote.
- (6) Problem 5.3 14 in Dummit and Foote.