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1 Jan 22 2020

1.1

logistics

e 1st Homework 10.1 5,7,13, 10.2 1,4,6,7, 10.3 7

e See syllabus online

1.2 Modules

def: An abelian group M (under +) is a (left) R-module if we have an action R x M — M, such that for
all r,se RRm,ne M

L. (r+s)m=rm+sm
2. rim+n)=rm+rn
3. (rs)m =r(sm)

4. If R has unity then 1m = m.

Reverse properties define a right module, but we will consider modules to be left unless otherwise stated.
If R is commutative we can define mr = rm to give both a left and right module that are the same
(although it is possible to defined different left and right structures even when R is commutative).

an R- submodule is a subset ) # N C M which satisfies the module axioms. can simply check that if
x,y € N then ro —y € N for all r € R.

Def: R-module homomorphism. If M, N are R modules then ¢ : M — N is an R module homomorphism
if ¢(rm +n) = ré(m) + 6(n)

Def: R-algebra. A ring S is an R-algebra if there is ring homomorphism ¢ : R — S satisfying r¢(r’) =
é(rr'). If R and S have unity we require
(*)o(1r) = 1s

(%) = r¢(1) = ¢(r).

Hompg(M, N) is the set of R-module homomorphisms for M to N. If we define (¢+1v)(m) = ¢p(m)+1(m)
then Hompg(M, N) is an abelian group. If we define (r¢)(m) = r(¢(m)) then Homg(M, N) is an R-
module. Hompg(M, M) then with the addition defined above Hompg(M, M) is an abelian group. since
pop € Homg(M, M), its is a ring.

Let M be an R-module and {N,};c; with N; C M are R-submodules of M then Z N, ={n;, +..4+n,; :
icl
n;, € Nij} the set of all finite sums is an R-submodule of M with

(niy + oo +15,) + (g, + oo F15,) =14y + o0y, 0y, 0,

and
r(Niy, + oo +04,) =104 4 o F TN,

If AC M then RA = {ria; + ...1pa, : a; € A} the set of all finite sums is the R-module generated by A.
If A= {a} then Ra is called a cyclic R-module. If |A| =n < oo and N = RA we say that N is a finitely
generated R-module. Not necessarily R.
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2.1 Review of Direct Products

2.1.1 External Viewpoint for direct products

Let Ny, ..., Ny be R-modules. can construct Ny X ... X Ny = {(nq,...,ns)|n; € N;}. Called the direct product
of N;’s. With addition and scalar multiplication component-wise this is an R-module.

2.1.2 internal viewpoint for direct products

M an R-module Ny,..,N, € M. with Ny + ...+ N, = M. If N;A(Ny 4+ ... + N; + ... + N,) = 0 for
all ¢ then M is a direct sum of Ny, ..., N,. if sum on N; is not all of M then the sum is a direct sum if
N;N(Ny+ ...+ N;+ ... + Ng) = 0 (just not equal to M).

2.1.3 note about direct products and sums

If Ny, ..., N5 are R-modules then N; & ... & Ny = {(nq,...,ns : n; € N;} = Ny X ... x Ny are the same thing
as R-modules.

In the infinite case we have {N;};e; then @/ N; = {ri¢;, + ... + rn¢s, : 7 € R} where ¢; : @;erN; — N;
(¢; picks the jth component). In direct sum can only have finite linear combinations of the ¢;. In infinite
direct product can have infinite linear combinations.

2.2 Free modules

Let A be a set then F'(A) is the free R-module on the set A if every element of F'(A) can be expressed
uniquely in the form ria;, + ...rpa;, for r; € R and a;; € A (only finitely many terms can be involved in
sum).

This is equivalent to

1. A is linearly independent
2. A spans F(A).

The universal property for free modules. Let A be a set, M an R-module. Given any set map ¢ : A — M
as below there is a unique ® such that the diagram commutes:

Note i is an inclusion map, i(a) = a, M is an R-module and & is an R-module homomorphism.

Main part of proof is showing the uniqueness of ®.

2.3 Tensor Products

Let R C S be rings with unity. M is an S module. Then M is an R-module as well.
If M is R module then M does not have to be an S module.
Tensor product S ®gr M can be thought of as a way of extending the scalars of R to make M an S module.



e Consider F'(S x M) Note that (s; 4 s9,m), (s1,m), (s2, m) are all generators of F'(S x M) so we need to
mod out by certain relations.
Let Ry : (s1 4 s2,m) — (s1,m) — (s2,m) for all s1,80 €S, m € M.
Ry : (s,mq +msg) — (s,mq1) — (s,my) for all s € S, for all my,my € M.
To get the needed associative like property let Rs : (s,rm) — (sr,m) for all s € S, m € M, r € R.
F(S x M)

Then let H = R-module generate by Ry, Ry, R3 and we can define S ®g M := — g

To make sense of all this use universal property
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3.1 Tensor Products
e Let R be a commutative ring, M, N, P, .... R-Modules

e Def: A map from M x N — P is bilinear if it is R-linear in each argument.

FE
Def: M@ N = =
o De X ja

E = free abelian group with basis M x N = {Z ri(xi,yi) i1 € Ly (x,y;) € M X N}.
F' = subgroup generated by

{(z+y,2)—(x,2) — (y,2), (x,5+ 2) — (2,9) — (x,2), (rz,y) — (z,ry) : x,y € M, g,z € N,r € R}.

Remark there is a bilinear map feun, : M X N — M ® N defined by fen(z,y) =@y = (m:y) Note
relations above given (z +y) @z —x®z—yd z =0 etc...

Define an R-module structure on M @ N by r(z @ y) =re @y =z @ ry.

e Theorem: Universal property of ®. Let f: M x N — P be bilinear map then there is a unique R module
homomorphism, ¢, making the following diagram commutative:

MxN-L2MeN=E

fl/

P E

P

Proof. Enough to show ® : E — P with ®(F) = 0. enough to find map of set ®’ such that &' such that
induced map ® (induced by ®') vanishes on F.

Let ®'(x,y) = f(z,y). Then
(I)((SL' + Y, Z) - (:CVZ) - (y,Z)) = (I)/<£L' + Y, Z) - (I)/(Jj', Z) - (I)/<y7 Z) = f(l' + Y, Z) - f(x72> - f<y7z)

And similarly for the other relations above. O

e Remark: M@ N is generated as an R-module by x @y with x € M, y € N (simple tensors). So any element
N

of M @& N can be written (non-uniquely) as a sum Z x; Dy;. Soif x @y for all x,y then M & N = 0.
i=1

o Ex. Z; &z Q = 0 enough to show that x & y = 0 for all x = ke Zy and all y = % € Q. Can compute

- a o, Ta a - a a
Z‘@/{@Z—k@%—k@’?%—’ﬂﬁ@%—()@%_().
e ExQdzQ=Q. Let f:Q—Q®zQby f(z) =1®xz. Consider
QxQ—=2Q®zQ
e
b
Q

with b(x,y) = zy so g(x @ y) = zy.
Note enough to show maps are inverse on simple tensors. f(g(x ® y)) = f(ay) =1 Q@ zy =7z & y.

Proof of 7. Sayx:%,yzgso
a_c¢ ac _ 1
vPaT v ¥a
ac b acb 1 1 ac

So f and g are inverses and we have the desired isomorphism.



Theorem (Properties of tensor products)

1.  MRrN)®@ P= M Qg (N ®g P)
2. M®r N2 N M

3. MrR=M

4 Mo(NeP)=(MeN)e (M P)

Proof. of 4. Look at the diagrams. Take

Mx(NeP)—"—=Mx(NoP)

|

(M®N)® (M@ P)

where b = (m, (m,p)) = (m ®m, m ® p) is bilinear. To defined V: (M @ N)® (M @ P) - M ® (N & P).
it is enough to find 2 maps ¥y : M @ N — @ and ¥y : M ® P — ). Then U(c,y) = Uy (z) + Vs(y) to get
these use univesality property of tensors by(m,n) = m ® (n,p). Then check o W =1 and Vo ¢ = 1.

O
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4.1 more on tensor products

o M@ (®;:N;) = &;(M®N,). If M,N free R modules with bases (e;), (f;) then M ® N is free with basis
(e; ® f;). This is becasue M = R™, N = R" then

MeN=ZR®..OR)®R®..OR)=Z(ROrR)®....=R®..&R=R™.
N——

- -~
m—times n—times mntimes

So M ® ... ® M is free with basis e;, ® ... ® ¢;, so any element has the form suma;, ., ®...®e¢;,.
\—Y_/
ntimes
InM@M.®@M®M ®..® M* with M* = Homg(M, R). then elements look like Y " al"%"e; @ ... ®
€, @€ ®...®e; where ej(ei) = 0;j.

4.2 Exact sequences

o Def: M1i>M2...f—2> n is exact if Im(f1) = ker(f2), Im(fa) = ker(fs), ... Im(fi) = ker(fis1).
This implies that foo fi = fso fo = ... =0.

e Remark: 0 M-—2-N-L.p 0. exact iff « injective, 8 surjective. and ker(f) = im(a). An
exact sequence with 5 sets is called short exact.

e Ex Let M C N be a submodule then 0 M-—2sN_F

[ the cannonical map is a short exact sequence.

N/M —— 0 with « the inclusion map and

e Def: 0 M’ M M 0 is isomorhic to 0 N’ N N" 0 if there are
isomorphisms «, 3,y making the following commute

0 M’ M M 0

|l

0 N’ N N" 0

e Prop: every short exact seq isomorphic to the one in the example above.

e Def: A short exact sequence

B

0 M =M M" 0

is split iff the following equivalent conditions are satisfied.

1. « has a left inverse 7 : M — M’ such that Toa = 1,
2. 3 has a right inverse o : M” — M such that 3o o = 1.

3. The exact sequence is isomorphic to

O—>M’—i>M/ @ M p WK 0
where i : © — (2,0) and p: (z,y) — (y).

e Remark: M = M’ & M" is implied by (3) but is not enough for the sequence to be split.

Proof. That the 3 condition are equivalent.



— 1= 2. Let 0 : M" — M since 3 is surjective given m"” € M" can pick m with 8(m) = m” then
n(m) € M'. Now apply «, and a(mw(m)) € M. want to define —a(m”) = a(n(m)) —m.
Need to see if this is invariant for different choice of m such that 3(m) = m”. Then

a(r(m)) —m — (a(r(m)) —m) = a(x(m —m)) —m+m (+)

now m—m € Kerf8 = Ima. so there is m’ such that a(m’) = m —m. Then (x) = a(m’) —a(m’) =0
so o is well defined.
Now B(a(m")) = B(—a(n(m)) + m) = B(m) = m”. So o has the desired composition property.

— other implications are similar.

e Example
0 Y/ Y/ 7)27—0

with a(x) = 2z, 5(y) = y+2Z. This is not split since there is no non-zero homomorphism from Z/2/7 — Z.
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e Hw 10.4 3,4,6, 16.

5.1 Short 5 Lemma

e Given 2 short exact sequences and maps as below

0—=L—>M—>N—s0
| o]
| N (A R
Then
1. If a,,y are 1-1 then so is 8
2. If a and v are onto so is .
3. If a and ~ are bijections then so is 3
Proof. 1. See book
2. let m" € M' with ¢'(m') € N’ Since 7 is onto there is n € N with y(n) = ¢'(m’). Since ¢ is
onto there is m € M with ¢(m) = n. by commutativity of diagram we have v(¢(m)) = ¢'(8(m)
/

so y(n) = ¢'(m') then subtraction gives ¢'(m’ — B(m)) = 0. so m' — B(m) € Im(¢') so there is
' € L' with ¢'(I') = m’ — 8(m). Now since « is surjective there is | € L with a(l) = I". From
commutativity it then follows that S(¢(1)) = ¢'(a(l)) = '(I') = m' — f(m) adding $(m) and using
the homomorphism property of 8 then gives 3(1(l) + m) = m’ and so 3 is surjective.

3. follows from 1 and 2.

5.2 projective modules

o Let
D
ftx
Then f € Homgr(D, L), f' =1 o f € Homg(D,M).
But if
D
)
/lf

Then the map ? does not always exits. For example if L = Z, M = Zy, D = Zy. if f = idy, then
? . Zoy — Z must be the 0 map and then o? must also be the zero map and therefore can not be the
identity.

e Prop: Let ¢ : L — M be an R- module homomorphism. Then the map ¢’ : homg(D, L) — Homg(D, M)
defined by ¥'(f) = f' = o f is a homomorphism of abelian groups. If ¢ is one to one then so is ¢’

Proof. East to check the homomorphism property. Suppose that ¢'(f) = 0 (the zero map). We want to
show that f = 0. Compute ¢'(f) = f =1 o fsoo f(l) =0 for all [ € L. Since 1) is one to one we then
have that f(l) = 0 for all [ so f was actually the zero map. O



e Prop: Let

be a left exact sequence then

0—— Homgp(D, L)~ Homp(D, M) >~ Homg(D, N)
is also a left exact sequence.

Proof. We have proved exactness at Homg(D, L). Need to show at Homg(D, M) i.e. imy" = ker¢’. We
will show that imy" C ker¢’. If f € Homg(D, M) such that ¢'(g) = f, f =1 og. So ¢(f) = ¢p(pog) =
¢ o1(g). By (left) exactness we have that ¢ o) = 0 (f had to be in ker ¢'.)

Now assume that f € ker¢’ then ¢'(f) = 0 but by def ¢po f = ¢'(f) so po f = 0. So for all d € D,
o(f(d)) = 0 so (by exactness) there is [ € L such that ¢(I) = f(d) and since ¢ is one to one [ is
unique. So there is a map F': D — L such that F(d) = [ and ¢(F(d)) = f(d). F € Homg(D, L) and
V(F(dy)) + U(rF(ds) = f(dy) +rf(dy) = f(dy + rdy) = ¥(F(dy + rds)) so we have F(dy) + rF(dy) =
F(dy + rds) and it follows that imy" C kerd'. O

e returning to the example above consider

0 7—7—">17, 0

is full exact. So
00— HOmz(ZQ, Z) e HOmz(ZQ, Z) I HOmz(ZQ, Zg)

has to be left exact, but it can not be fully exact since Homg(Zsy, Zgy) = Zs.

If we have a module such that short exact sequence of modules implies short exactness of the Hom sequence
that modules is called projective.

e Def/Prop: Let P be an R-module. The following are equivalent.

1. If
0 L M N 0

is short exact then
0—— Homg(P, L) — Hompg(P, M) — Hompg(P, N) —=0

is short exact

2. if
P
e
MTN
with ¢ o f' = f.
3. If

0 L M P 0

is short exact then P is direct summand of M

4. P is a direct summand of a free module

if P satisfies any/all of the above equivalent propertied we call P projective.
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6.1 Projective modules continued

e Proof of equivalent statements

Proof. — 1 <= 2 clear.
— 2= 3. Given
P
S
id
0 L2 2. p 0

with ¢ o f =id. Then
0 L M P 0

is short exact so P is a direct summand of M.
— 3=4. If Ais a genereating set of P.
— 4= 2.

M n 0

J the inclusion of P into F(a) as a direct summand. id a € A then fon(a) = F(a) and bu universal
property F'is a homomorphism and ¢ o F'o j = f.

]

Any free R module is projective. R" is a free R module on n-generators is projective.

e Ex if R = Zg then by fundamental thm of finitely generated abelian groups. Zg = Zs X Z3. Now Zsy and
Zs are projective Z modules so
Dicr Lo Djeg L3 Drexle

is still a projective Zg modules. But Zsg, Z4 are not projective Zg modules.

e What quotients of Zgg are projective.
Ziyogg — M — 0.

Would need M = Zy, Zos, or Zqg since these are only subgroups for which Zqg can be written as a direct
summand.

e If R = Z the only direct summands of free Z modules will be free Z modules. (i.e Z" or Z* for some
infinite set A.

e Only projective R-modules over a R = a field are free.

e Projective submodules of Zgy which are ideals? 25Z1o9 & Zy, 47100 = Zas, Z1oo, 0.

M—2+-N
ij
D

Given ¢, f F always exists, but given ¢, F' f does not necessarily exists. (Note f € Hompg(N, D),
F € Homgr(M, D) so induced map ¢’ : Homgp(N, D) — Homg(M, D)



For example in the diagram

7
Y
7,

f can not be well defined.
Prop: If

M—2-N—0
with ¢ surjective then

0—— Homg(N, D) —%~ Homg(N, D)
with ¢/(f) = f 0 6.

Proof. Let f € Homp(N, D) with ¢'(f) =0 then fo¢ =0so0 fo¢(m) =0 for all m € M. Since ¢ onto

we have f(n) =0 for all n € N so f is the zero map i.e ¢’ is injective. O

Prop: If

L M N 0

is left exact then
0 —— Homp(N, D) —*~ Homp(N, D) —*~ Homg(L, D)

is right exact.

Proof. have already showed that ¢’ is injective. Need to show exactness at Hompg(M, D) i.e. im¢’ = keri'.
Take f € im¢’ then there is g € HOmpg(N, D) with ¢'(a) = f so ¢'(f) = ¢'(gop) = godothp = go0 = 0.
so f € kery'. so im¢' C kerdy'.

Now take f € Kery' then ¢'(f) = 0. then fo(l) =0 foralll € L. so f(m) =0 foall m € imy = kerg.
Since ¢ is onto for all n € N there is m € M with ¢(m) = n. so define g € Homg(N, D) by g(n) =

god(m) = f(m). Then ¢'(g) =gop = f. so f €im¢’. so kery’ C img'. O
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7.1 More on projective/injective modules

Prop. If

is left exact iff If
0 —— Homp(N, D) —2~ Homg(M, D)~~~ Homg(L, D)

is right exact for all R modules D.

Proof. = was the previous proposition.

< First we will show that ¢’ one to one = ¢ onto. Let D = N/¢(M) and consider m : N — N/od(M)
then 71 (¢p(M)) = 0. Moreover 71 0 ¢ = ¢'(m1) = 0 map, so N — ¢(M) so ¢ is onto.

First show that ¢ o ) — 0 (i.e imy C kerg). idy € Homgr(N,N) so ¢'(id,) =
then ¢'(idy) € kerty' and it follows that ¢’ o ¢'(idy) = 0 = idy o p o) = 1/1
Now see ker¢ C imi). Let D = M /(L) and w9 : M — M/(L). then ¢'(my) = 7r2 01 so myopsi(L) =0
S0 mp € im¢’ so there is f such that ¢'(f) = mp and if m € ker(¢) then mo(m) = fop(m) =0= m € (L)
and we have that ker(¢) C ima.

id, ogbGHomR(M N)
¢

]

Prop/Def:
Let @ be an R-module then TFAE

1. If

is short exact =
0—— Homp(N, DY —2~ Homgp(M, D) 2~ Homg(L, D) —0

is short exact.

2.
0—=L—2-M
| A
Q
JFovy=f.
3.
0—=Q - M- N——0
then @ is a direct summand of M
If any of these conditions hold then we say that () is injective.
Proof. 1. mostly follows from previous propositions.
2. 2=3.
3.
0—>Q—2-M
idt /
F
Q@

F o1 =1d gives the splitting if i.e. @) is a direct summand.



4. 3 = 2. If Q) is a direct summand of M then given

0—-=L—toMm
g
Q

(will finish next time)
[

e Def: An abelian group G is divisible if for all n € Z, nG = G. i.e for all g € G there is ¢’ € G, with
ng = g.
e Ex: 7 is not divisible, but Q is.

Given any short exact seq of Z modules.

m

f always exists f(m) = — since f o g(m) =m = i(m).
n

Z,, is not divisible for any positive integer n > 2.

Q/Z is injective. for example

0 Ly —32>7¢
| A
Q/Z
with f(1) = % +Z, F(n) = g

e Baer’s Criterion: An R module ) is injective iff for every g : I — (Q where [ is a left ideal extends to a
map G: R — Q.

Proof. = is a consequence of def of injective:

where G|; =g
< use Zorn’s lemma. Consider
0—>=L—1>M
. WLOG assume that L C M ie. f(L) = L.
let S ={(f,L"):f :L - QwithL Cc L' C M,f'|, = f}. Now S # 0 since (f,L) € S. then
(f, L) < (f",L") it L' < L" and f"|;, = [’ given chain
(fl,Ll) C (fQ,LQ) C ...

Let L = Ui—1 L; and define f : L — Q by f(I) = fi(l) where [ € L;.

Not hard to show that ( f , i) C S. Then Zorn’s Lemma says that S has maximal elements. Suppose that
(g, M") is a maximal element will show that M’ = M (next time). O
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8.1 Finish Baer’s theorem

Baer’s Criterion: An R module @ is injective iff for every g : I — ) where [ is a left ideal extends to a
map G: R — Q.

Proof. = is a consequence of def of injective:

Q
where G|y =g
=
0— =LY M
/|
Q@

Let S = {(f,L'): L c L' c M',f'|y = f} then S is non empty since (f,L) € S and S is partially
ordered since (f', L") < (f", L") iff L' c L" and f"|, = f'. Now let K = U;>1L; and h : K — @ defined
by h(k) = fi(k). C = {Li, fili € N} with (L, f;) < (L;, f;) which holds if i < j. If (h,k) € S need to
check that A is a homomorphism (DIY). Since there is an upper bound by Zorn’s Lemma, S has maximal
elements.

Since (K, h) is a maximal element we need to show that K = M. Suppose not then there is m € M \ K.
then K + Rm is a submodule of M. Define I = {r € R:rm € K}, then I is an abelian group. now take
r" € R then (r'r)m =1r'(rm), but rm € K so 'K in K so I is a left ideal. Now if g : I — @ then there is
G : R — @ extending g.

Then let h : K + Rm — Q defined by h(k + rm) = h(k) + G(r). This makes sense since if 7m € K then
relsocanuse g: I — Q. Now if h(k+rm) = k+rm = K +r'm' then k — k' = v'm’ — rm and
h(k — k') = h(k) — h(k") = h(r'm’ —rm). so if G is the extension of g then h(r'm' —rm) = G(r' —r') =
G(r') = G(r) = h(k') + G(r') = h(k) + G(r) so h is well defined. So h : K + Rm — Q extends h which is

a contradiction.
So K = M and h: M — @ is an extension.

Theorem: If R is a PID then @ is injective iff for all » #£ 0 in R, 7Q = Q.
Note: if R = Z then this says @ is divisible.

Proof. Since R is a PID evey ideal of R is of the form I = (r). Then f : (r) — Q. by f(r) = ¢. Q is injective
iff there is F': R — Q with F|,) = f. Suppose that F(1) = ¢’ then ¢ = f(r) = F(r) = rF(1) = rq’ so
forall ¢ € Q there is ¢’ such that ¢ = r¢’ < Q = rQ. O

Thm: Every Z-module is a submodule of an injective Z-module.

Proof. Let M be a Z module there is some subset A C M such that M = ZA. Consider F = F(a) then
there is 7 : F — M by m(a) = a by the universal property. Let K = kerm then

0 K F M 0

so M =2 F/K so there is a free Q module on A Q@ D F D K. Moreover Q/K D F/K. since Q is
a divisible Z module and since Q is injective, Q/K is also divisible and injective since if n¢' = ¢ then
(n+K)d+K)=nd+K=q+ L.

O



e Show M an R-module is contained in an injective R-module if R has unity.

1. Step 1: Notice Homg(R, M) C Homgz(R, M) (Since R contains a copy of Z).

2. Step 2: Homgz(R, M) can be made into an R-module via ¢ € Homgz(R, M) defined by (r¢) : R — M
by (r¢)(r") := ¢(r'r). This defines scalar multiplicaiton by r Need to show (r7)¢ = r(7¢) so compute

((rF)@)(r') = o(r'(r)) = ¢((r'r)F) = Fo(r'r) = (r(7¢)) (1)
3. Step 3: Prop: if R is a ring with unity and 0 — L — M is exact sequence of R-modules then
f:L— Dextendsto F': M — D, and f' : L — Homg(R, D) will extend to F': M — Homgz(R, D).

Proof. Given f' : L — Homg(R, D) define f(I) = f'(I)(1g). Since f extends to F : M — D can
define F'(m)(l) = F(m) and this given the extension. O

4. Cor: @ is an injective Z-module iff Homyz(R, Q) is an injective R-module.

Proof. M = Homg(R, M) C Homz(R, M) C Homz(R, Q) ]
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9.1 Flat modules, sequences of Tensors

Consider 0 > Z — Q and Z ®gy Zo = 7o, Q ®7 Zy = 0.

Since Zy #£0, 1 ® 1 : Z ®y 7o — Q ®7 Zs is the trivial map which is not an injection. So tensor products
don’t always preserve injections.

Y ¢

Prop: L M N 0 is left exact iff for all R—modules D we have

LopD - MopD 25 NopD—s0

is left exact.

Proof. <= Take D = R K ® R = K for al R-modiles K then

LopD 2L Moy D2 NopD—s0

A

L Y M N 0

=. First we show if ¢ is onto so is ¢ ® 1. Take n ® d € N ® D. Since ¢ is onto there is m € M with
pm)=n.son®@d=¢(m)®d=¢p®1(m®d) so ¢® 1 is onto.

Now we must see we are exact at M ®@p D. Z@/}(lz) ®d, = im(y ® 1). Then ¢ ® 1(2 V() ®d;) =
iel i€l

Z po(ly) ®@d; = ZO ®d; = 0 so im(y®) C ker(¢p ® 1). To show equality we will consider a map.

iel icl

¢ ® 1 decomposes as

M ®&prD—> (M ®D)/Im(y ®1)—= (M @ D)/Ker(¢ ® ) —= N @ D

need to show 7 is an isomorphism so consider 7' : N @ D — (M @ D)/im(¢ @ 1). defined by 7'(n,d) =
m® d where ¢(m) = n. To see this is well defined take m’ @d, m' = m+1(1) then ¢(m’) = p(m+1(1)) =
d(m) + @ o(l) = ¢(m) = n, so 7 is well defined. Then by universal property there is 7 : N ®p D —
(M ®@g D)/im(¢ ®1). Easy to see 7' is R-balanced we have that 7 is a (right) R-module homomorphism.
Then Tor(m®d) =7(n®d) =m@dand to7(n®@d) =1(m®d) = ¢(m)®d=n®d. So 7 and 7 are
inverses so 7 is an isomorphism. So Ker(¢ ® 1) = im(¢ ® 1).

]

Def/Prop: Let A be a left R-module TFAE

Y ¢

1. If 0 L

LopaE Mo A2 Ny A——0 is exact

M N 0 is short exact then

2. 0——=1L _v M 1is short exact then

L ®p a&MQbRA is exact.

If 1 or 2 hold then A is flat. (if tensor sequence implies module sequence exact then A is called faithfully
flat).

Prop: (Hom tensor adjointness). Let R and S be rings with A a right R-module and B an (R, S) bimodule
and C' a right S-module. Then Homg(A ®r B,C) = Homg(a, Homg(B, () as abelian groups.



Proof. take ¢ € Homy(A ®g B, C) for a fixed a define ®(a) € Homg(B,C) by ®(a)(b) = ¢(a ® b). We
can do this for each a € A so we get a homomorphism ® : a — ®(a). Now take f: Homg(A ®g B,C) —
Hompg(A, Homg(B,C)) defined by f(¢) = ®.

Now take ® € Homg(A, Homg(B, C)

Ax B (a,b)
L O(a)(b)

Not hard to show that such a map is R-balanced. This map induces a homomorphism g : A ®zr B — C
by ¢(a ® b) = ®(a)(b). THen g : Homg(A, Homg(B,C)) — Homs(A ®g B,C) then g(¢) = ® then
fog(d)=f(®)=¢and go f(¢) = g(¢) = P so f and g are inverses giving that f an isomorphism.

]

9.2 dual vector spaces

e [ afield and V is an F-vector space. The dual space of V is V* = Homp(V, F'). If V is finite dimensional
with basis {v1,...,v,} = B and defined v; € V* by v} (v;) = d;; then vf(z a;v;) = a; so v; is a basis of
V*. (note in the infinite dimensional case the v; may not span the dual space)

o V™ = HO??”LF(V*,F) = HomF(HomF(V> F)aF)
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10.1 Vector spaces

Prop: let V' be an F-vector space. Then there is an injective homomorphism (linear map) 6 : V. — V**

defined by 0(v) = E, where E, : V* — F, E,(f) = f(v).
Note E, € V* then E,(f +g) = (f +9)(v) = f(v) +9(v) = E,(f) + Eu(g) and for r € F Ey(rf) =
(rf(v) = r(f(v)) = rEu(f).

Proof. We can start with v and extend to a basis of V' which has v € B. then V*: V — F by V*(v) =1
and V*(w) = 0 for all w # v, w € B. Then E,(v*) = V*(v) = 1. 6(v) is not the zero map since
O(v)V* = E,(V*) =1 # 0. Since this can be done for all nonzero v we have Kerf)l = 0 = 6 is 1-1. Then
O(v+ aw) = Eyiaw- Now just need to show E,i 4w = F, + aE, . so compute E i a(f) = f(v+ aw) =
f) + af(w) = E,(f) + aE,(f), this holds for every f € V* so we have E, o = E, + aF, .

]

10.2 graded rings

We say a ring R is graded if R = @®;°, where R; are Ro-modules and R;R; C R, ;.
R; is the set of all homogeneous elements of R of degree w.
Ex: R = k[z] is graded ring with deg(x) = 1. Ry =k, R; = kx' then ka' - ka’ = ka't7 so RiR; = R;;.

can put a different grading on R = k|x] if deg(x) = 2 then Ry = k, Ry = 0 and Ry = kx, R3 = 0. and
R2n+1 =0 and Rgn = kz"
2

Non-homogeneous element of k[x] with standard grading. i.e. = + 22 non-homogeneous wheras z, 2> are
homogeneous.

Take k[z,y] with Ry =k, R =0, Ry = kx, R3 = ky, Ry = ka*, Ry = kay, R = ka’ky?*.

An ideal in a graded ring is graded is I = &2, N R; of I = &;2,1; with each I; in the ith homogeneous
piece and R;I; C I;;.

if R graded and I a graded R-ideal then R/I is a graded ring

Suppose R is a commutative ring with unity, M is an R-module then left and right actions of R on M
agree.

define TH*(M) = M @z M ®....® M. Then the simple tensors in T%(M) are of the form m; ®my ® ... @ my,

Note
r(ml RMmy X ...R mk) =

rm] QMo X ... J My =
m1®rm2®...®mk:...

=M1 ®@Mmo X ... rmy
f:Mx..x M, — N with M;, N R-modules . then f is multilinear if
flmy, oomi +ml, o ,my) = fmy, omg, .,my) + f(my,..,omk, .. omy)

and
flma, ..ormy, ..omy) = rf(my,..,myg, ..., my,)

for all .



Define T(M) = @22, T*(M) called the tensor algebra of M. defined multiplication for m; ® ms®...Q@m; €
T'(M) and m} ® my ® ... @ m; € T?(M) by

(M1 ®@me @ ...@m;) (M) @myY® ...@mM)) :=m @My ® ... m; @mi @msHQ ... om; € T (M)
. This is a well defined multiplication justified through the universal property for tensors.

universal property for tensor algebras: Let A be an R-algebra and ¢ : M — A an R-module homo-
morphism. then there is a unique ® : T(M) — A such that ¢p; = ®. Proof by universal property of
tensors.

Ex: Let M = Z, a Z module. Then since Z, ®, Z, = Z, so T*(M) = Z, for all k > 1 (T°(M) = Z) and
TM)=Z® Z, B Ly ® ... = Zlz]/(nx)

Ex: Let M = Q then T°(M) =Z and T*(M) =Qfor k> 1. SoT(M) =2 Z3 Q3 Q® .. 2 Z + 2 Q [z].
Ex: Take M = Q/7Z then T°(M) = Z, T*(M) = Q/Z and T* = 0 for k > 2. so T(Q/Z) = Z. & Q/Z.

Def: ¢ : M x ... x M — N is symmetric multilinear if ¢(my, ..., my) = ¢(o(my),...,o(my)) for all o € Sy
(the symmetric group).
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11.1 Symmetric and Tensor Algebras

Consider M = k[z,y] as a k-module/k-Vector space. Then
T°(M) =k,
T (M) = klz,y),
THM) =< flog) @ Guy) >=k <" @y, Y @1 2 @27y @1 >
note since we're tensoring over k we have ' ® 2’/ # 2" ' @ 2/ ' @ o/ # ¢/ ® 2', etc...
consider an ideal C' (M) of T(M) where C(M) is the ideal generated by m @ n —n ® m. Then we can

Co(M) =0, C*M) =0,
C*(M)=<m®n—-n®@m:m,ncM>.

C}(M)=<k@men—k@n@mmen®k—-—n@maek:kmncM>
The symmetric algebra of M is T(M)/C(M) = @ysoT*(M)/C*(M) = S(M). we denote by S*(M) =
TH(M)/CH(M).
We have T°(M) = S°(M) and T'(M) = S*(M) but they can be different at degree 2 and higher.

Let k be a field and M = k. So 1 is my basis for k as a vector space. then T'(k) = ®° k = k[z] which is
commutative. Basisis 1o, 11,11 ®1;,...,1;®...® 1y, ... with 1; > zand 1; ® ... ® 1; — 2" so T(k) = S(k).
—_——

k—times

But if we move to a 2-D vector space V we have C*(V) =< v; @ vy — v @ v1 : vy, V3 € v > 0.

SEFM)=M®..Q M/ <m ® .. R0 Mg —My) @ .. @ M) : O € Sy >

k—times

Universal property for symmetric multilinear maps: Suppose ¢(M X ... x M) — N is symmetric multi-
plinear. Then there is a unique ® : S*(M) — N such that ¢ = ® o4 where i : M x ... x M — S*(M) with
—_——

k—times
Universal property for R-algebras.

If : M — A with M an R-module and A an R-algebra then there is a unique ® : S(M) — A such that
Dy = 0.

* : M x...x M — Adefined by ¢"(my, ...,my,) = ¢(my) - - - ¢(my). Since A is commutative ¢ is symmetric
and also not hard to show that it is multilinear.

Alternating Maps: ¢ : M x ... x M — N is an alternating multilinear map if ¢ is multilinear and
N~————

k—times
d(mq,...,my) = 0 if m; = m; for some i # j.

Exterior algebra: Let A(M) be the ideal generated by m ® m This is graded with A°(M) = A'(M) = 0
and A2 (M) =< m®@m :minM >, A> =<n@menme@menmen®m : m,n € M >. The the
exterior algebra of M is T(M)/A(M) =: AM.

AM can also be thought of as @2, T (M) /A (M) = &2, A (M). In this setting we have (m®n)+A(N) =:
mAN.

ex we have m A m for all m so, (m 4+ n) A (m + n) = 0 but by bilinearity we have
(m+n)A(m+n)=mA(m+n)+nA(m+n)=
mAm+mAn+nAm+nAn=

mAn+n/Am=0=mAn=-nAm

sometimes it is useful to think of

AN(M) =TFHM)) <mi @ ...@my, : 3i,j stm; =m; >



e Universal Prop for alternating multilinear maps: Given ¢ : M x .... x M — N which is alternating
multilinear then there is a unique ® : A*(M) — N with ¢ = ® oi. where i : M x ... x M — A*(M) with
i(my, ...,my) = my A ... Amy,
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12.1 More on exterior, alternating and symmetric algebra

e Suppose that V' is an n-dimensional F-vector space (M a rank n free R-module), Then

dim N\FV = (Z), (rank N¥ M = <Z>)

If ey, ..., e, is a basis for V then {e;, A... Ae;, i1 < ... < iy} is a basis for AFV.

For the symmetric algebra S*(M) will have n? — <Z) basis elements.

e Suppose that V is 2-dimensional with basis e; and e;. Bases for T%(V), S*(V), A*(V).
T?(V) basis is e; ® €1, €1 ® €3, €3 @ €1, €3 @ €3.
S%(V) basis is e; ® €1, €3 ® €. €, @ es.
A?(V) basis is e; A es.

o R=7Z[x,y], I = (x,y) is not a free R-module. Consider ¢ : I x I — Z by

d(a(z,y)r + bz, y)y, c(z,y)r + d(z,y)y) = aoodon — boocopo

where subscript 0,0 denotes constant terms (in general subscript (n,m) indicates coef of z"y™. Lots of
writing but not hard to show that this is bilinear. Also easy to check that it is alternating i.e. ¢(a(x,y)z+

b(x, y)y, a(z,y)x + b(x, y)y) = 0.
So there is a unique ® : A*I — Z by

(I)(O,.T + by, cr + dy) = a070d070 — b0706070.
Note ®(x Ay) = 1. So we have A*Z [z,y] = 0 but A*I # 0 so A'T — A*R is not an injection.

e Suppose that n € T%(M). We say that 7 is symmetric if o(n) = 5 for all ¢ € Sj. where o is defined by
action on simple tensor by o(m; ® ... ® my) by ms-11) ® ... ® Mg-1(k).

Define €(o) := sign(o) (positive if o is product of even number of transpositions and negative if product
of odd number of transpositions.

We say that n € T"(M) is alternating if o(n) = e(o)n for all o € Sj.

o Fx k=3.
e1®ea®es+e1Re3®ert+ea®@e®eztea@es®e; +e3@e; Qeg+€e3&Q e e

is a symmetric tensor in 7%(V') where V is 3-dimensional.

e1Q®eaRPe3—e1@e3R®er—€a®e;Rez3t+ea®e3®e; +e3Re; Qe —e3Q e e

is an alternating tensor.

e Define: Sym : TH(M) — T*(M) by Sym(n) = Z o(n). Notice that Sym(n) is always a symmetric
o€S
tensor. *

e Define Alt : TH(M) — TF(M) by Alt(n) = Z e(o)o(n). Notice that Alt(n) is always an alternating

€Sy,
tensor.

1 1
e we have a 1-1 correspondence ESym : S¥(M) « { symmetric tensors }. Similarly EA” AR
{ alternating tensors } ' -



12.2 modules and vector spaces over PIDs

Let F' be a field and F[x] a PID. Let V' be an F-vector space. Can make V into an F[z] module given a
linear transformation T7:V =V 1et T =1, T' =T, T>=To T, ...

Then can define, for any polynomial p = a,2" + ...ag, p(x) - v =p(T)(V) = a, T" + ....a0l.

Ex: If T'= 0 then 7" = 0 for all i so p(T) - v = aglv = agv.

If T =1 then p(T)(v) = (an + ... + ap)v.

Let V' be d dimensional define T'(x1,...,24) = (0,21, ...,24-1). Then we have T'(e;) = e;41 for i # d and

i 1<i<d-—%k
T(eq) = 0. and T"(e;) = Cith _Z_‘ :
0 otherwise

Then for d > n, P(T)(e1) = ape1 + ases + ...aneny1. and for d < n, P(T)(e1) = aper + azes + ...aq_1€4.
Similarly for P(T')(e2).
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e Homework: 11.5 - 12,14. 12.1 5,6,13,14,15 Due Friday Feb 28

13.1 More on Modules over PID

e from last time define T: V' — V| ey, ..., e, a basis of V| by T'(xy, ..., z,,) = (0,21, ..., ,,_1) then

Tk(e-): €tk 1§i§n—k‘
’ 0 otherwise

If m <nand a,z™ + ... + ao then (a,z™ + ... + ag)(e;) = (0,0, ..., ag ,aq, ..., a.
ith

e Note: There is a 1-1 correspondence between
{V :V an F|x] — module}

and
{F vector space V paired with linear trans 7'}.

If V is an F[z] module and T is the linear transformation that describes the action of x on a vector. Let
W be an F-vector space of V. consider T'(W). Is W a submodule of V' with respect to the F[z] action on
V. We have p(z)(w) = p(T)(w) € V when is this in W? Need T'(w) € W, i.e when W is T-invariant. So -

W will be an F[z] submodule of W iff T(W) < W i.e. W is T-invariant or T-stable.

for the example above with T'(e;) = e;41 then W; = {(0,..,0,;,..,2, : x; € F} are T-invariant. but
U, ={(z1,...,240,0,...,0} is not T-invariant.

e A finitely generated R-module M has rank n if the largest number of linearly independent elements in M
is n.
Ex: M = R" has rank n. However if the module is not free then the rank is not necessarily equal to the
number of generators.

Ex: In Z[z.y|, I(x,y) then if we let x = y, b = —x then ax + by = 0 with a # 0 and b # 0 so z,y are
linearly dependent. Hence rankl < 2. Now {z} is an R-linearly independent set so Rankl = 1.

e Def: An R-module M is Noetherian if Ny C Ny C ... C N; C ... is any chain of submodules in M there
is n such that for all ¢ > n, N; = N,,. i.e. any ascending chain of submodules stabilizes (ascending chain
condition).

If all submodules of M are finitely generated then M is Noetherian.

Note! ascending chain condition and Noetherian are equivalent conditions (proved last semester).

e Theorem. Let R be a PID, M a free module of rank n and N C M then N is a free submodule of rank
m < n. Moreover there is a basis vy, ..., y, of M such that aiy, ..., @,y is a basis of N and a; divides as
divides ... divides a,,.

Proof. take ¢ : M — R then ¢(N) =C R is a principle ideal i.e. there is a, € R with ¢(N) = (as). now
let ¥ = {(ay) : ¢ € Homp(M, R)}. Now for any 2 elements (as), (ay) there is d the GCD of a, and ay,
(d) = {rgas + rypay : 7o, rp € R} and we have (ag) C (d) and (ay) C (d). Then by noetherianess we
have that o will have maximal elements. let v(N) = (as) be a maximal element. Then a, ¢ (a,) for
Y 3 (ay) # (any). Set a; = a,. Let x4, ..., x, be a basis of M then there is u € N with v(y) = a. The map
7 M — R by m;(bixy + .... + bpyx, = b;. Now since a; # 0, N # 0 so m;(N) # 0 for at least 1 3.

We need to show for any ¢ € Homg(M, R), a1|¢(y). Now (d) = (a1,¢(y)) and d = ria; + raé(y). Let
P(riv + rotp. then ¢Y(y) = ra; + r2¢(y) = d. So d € (N), but also (d) C (N) and (a1) C (d) C p(N).
50 Y(N) C (a1) = (d) = (a1) 50 a1]¢(y)-



Now aq|m;(y) for all i. Then m(y) = a;b;. Let y; = sz% then ay; = Zalbixi = Zm(y)xi = .
i=1
Since a; = v(y) = v(ayr) = a1v(y1) so v(y1) = 1. So we may write M = Ry, @ Ker(v) since for x € M
we have r = v(x)y; + (z — v(x)y1). NOw if riy; = kerv N Ry; then r = riv(y; = v(riy;) = 0.
—— Y——
ERy1 €ker(v)
Then N = Rayy, & kerv N N.

Can repeat this process to get direct sum decomposition.
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14.1 midterm 1 review

sections 10.1- 10.5, 11.3, 11.5.
Major topics:

Homg(N, M)
. free modules (Universal property)
. direct sums

. tensor products (universal property)

1.
2
3
4
5. diagram chasing (definitely on test, look at unassigned diagram chasing problem)
6. projective modules

7. injective modules

8. flat modules.

9. dual vector spaces.

10. tensor algebras

recall A*(V) =<v@uv:veV >

basis for T%(V), V = F? with char(F) # 2. then basis of V is ey, es, e3 and basis for T?(v) = e; ® €1, €; ®
€2,€1 ®e3,63 D €2,62 K €3,63 D €3,€63 K €1,63 XD €2,€3& €3,e1 D eg.

In C? we identify e; X e; with e; ® e; so basis for SPV)Y=T?/C?is ey @e! + C%ea ®@ey + CHV),e5®
es+C% e ®ey+C*HV) 61 ®@es + C%(V),en ®@ ez + C*(V).

example on flatness: R comm ring. M flat right R-module, N and (R, S) bimodule a flat S module. (from
homework).

if 0——= L ——= K injection of S modules. Then 0——= N ®¢ L—— N ®, K is an injection of R
modules since NN is flat S-module

then 0 —= M ®r (N ®s L) — M ®g (N ®, K) is an injection since M is flat R module.
but by prop of tensors M ®p (N ®s L) = (M ®r N) ®@s L and M ®p (N ®s K) = (M @ N) ®s K so
0— (M ®gr N)®s L— (M ®p N) ®¢ K in an injection as well.

10.5 problem 1d see book for statement:

There is ¢ € C with y(c) = 0. since ¢ is surjective there is b € B with ¢(b) = x then 0 = y(z) = yo¢(b) =
¢ o B(b). then B(b) € ker(¢") = im(¢'). Now there is a’ € A" with ¢'(a") = B(b) since « is surjective there
is a € A with a(a) = a then 8o ¢(a) = ' o a(a) = ¢'(a’) = B(b). Since S is injective b = 1)(a) and
¢(b) = po(a) =0 but ¢(b) = ¢ =0 so 7 is injective.

Note to show a map is injective when diagram chasing start in top row. to show a map is surjective start
in bottom row.

know examples, how to identify which modules are projective, injective, flat i.e. free = flat, projective =
flat.

Ex: Zs[z] as a Z-module. Not free Z module since it has torsion. Since it has torsion not projective. not
divisible so its not injective. Also not flat (has torsion).

Ex: Zs[x] as a Zg-module. then is projective since Z5 is a direct summand of Zg. is divisible so it is
injective. and is flat (since it is projective).

Ex: Z as a Z module is projective but not projective
Ex: Q is injective but not projective

Ex: Q/Z is injective but not flat.
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e Note about test: For tensor product problem:

Ax (BerC)——>A®z (B®gC)

o T

(A®gr B)®@g C

for ¢1(a,b ® ¢) = (a ® b) ® ¢ need to show that ¢, is bilinear. Then make similar diagram switching A
and C' to get ®5. Then &, 0 Py = Py 0 &y = Id.

15.1 Fundamental theorem for finitely generated PIDs

e Suppose M is a finitely generated module over a PID. Then M is isomorphic to R*® R/(a;) ®...® R/ (am)
where a]ag|...|a,,. In order to produce such a decomposition we can use the matrix game.

e Flz] is a PID when F is a field. If V' is an F' vector space and T a linear transformation then there is a
1-1 correspondence between F[z| modules and the pairs (V, 7).

e Recall some facts from linear algebra: A is an eigenvalue of T if there is a non-zero vector v € V with
Tv = M. In this case we say that v is an eigenvector of T'.
The eigenspace of A is Ey ={v eV :Tv = \v}.

Note the following are equivalent:

1. X is an eigenvalue of T’
2. T'— X = 0. is non-singular linear transformation.
3. det(T'— \I) = 0.

The characterisitc polynomial for a linear transformation 7' : V' — V' is Cp(x) = det(z! — T'). Note that

if A\ is an eigenvalue of 7" then Cr(A) = 0. By Fundamental theorem of fintely generated modules over
F F

PIDs we have V 22 % D..0 % with ay(z)|ag(z)]....|am(x). Then we have a,,(z)V = 0. We say
ai(x A (2

the annihilator of V' is the biggest ideal of F'[x] such that IV = 0. In this case we have (a,,(z)) = AnnV.
The monic polynomial which is an associate of a,,(z) is called the minimum polynomial of 7.

Consider F[z]/(a(z)) with a(z) = 2" + a,_12" " + ... + ap monic. z1 = Z. 27 = z* and so on until

2" =" = —ag — a1 T — ...ap 17" L

So as an operator on F[z|/(a(x)), x can be represented by the matirx

00 ... 0 —AQao
1 0 ... 0 —an
s=]01 .. 0 —a
00 ... 1 —Anp—1

This is called the companion matrix to a(x), Cy

The rational canonical form (RCF) for —— @ ... ® —— with each a;(x) monic is
ay () ()
Cal(m) 0 0
0 C@(m) 0
0 0 . 0
0 0 .. Cow



given T : V' — V create the matrix X1 — T with respect to some basis (7'(by)...7'(b,)) = A each T'(b;) is
a column of A. then play the matrix game on x/ — A to produce

1 0

ay(x)

am(T)

Matrix game with A = (§ 31)

r—2 -1 _ -1 x-2 _ 1 2—x
-3 z-4 rzr—4 =3 r—4 =3

1 2—x 2
—>(O _x2_6x+5>—>(1 00 x* —6x+5)

. {0 =5
rcf is (1 6)
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16.1 More on rational Cannonical form

e Rational Canonical form is unique.

will show Cy(y) companion matrix for a(z) is unique. Given T', multiplying by x(T") generates all the
basis elements. If we have subspaces D; which are T invariant it is enough to determine the e; for that
particular polynomial. i.e. given F[z]/(b;j(z)) & D;. Then T"e; will give us the rest of the basis elements
for the block. So given by|bs|....|0; such that V = F[z]/(by) @ ... ® F[z]/(b:) and F[z]/(b;(x)) = D;. There
is a basis eq, Teq, ..., T™ tey, 9, Tes, ..., T" Le,. which puts T into the form

Cb1(x) 0

O Cbt (z)

If mp(x) = ap(z) then by(x)|an,(z) and ap,(x)|bi(x) can work backwards to see that a;(x) = b;(z).

If S and T are similar matrices then they have the same invariant factors so the same rational canonical
form.

In particular if S ~ T then There is UinV such that S = U~'TU so US = TU. Now if Sz C W for
some x € W then UW is a subspace isomorphic to W (by invrtibility of U. Then TU(x) C UW ( since if
Sz =w € W then T(Ux) =USx =Uw € UW.

e Theorem: (Cayley Hamilton) if Cp(x) = a1(x) - - - @y (z) then a,, is the minimum polynomial mr(z). In
parituclar if C7(T) = 0 then My (T) = 0. More generally mr(x)|Cr(z) and Cr(z)|Mp(z)™ and Mp(x)"
for n > m.

Ex: Suppose that A is a 3 x 3 matirix with C4(x) = (z — 1)*(x + 1). How many rational canonical forms
correspond to this characteristic polynomial?

invariant factors RCF
00 —1
(x—1)*(x+1) 10 1
01 1
100
(x—1),2° —1 001
010
Ex. Find all 4 x 4 matrices with minimum polynomial z? — 1.
invariant factors RCF
0100
2 4 .2 1 000
- —12°—1 000 1
0010
1 000
_ B 2 0100
0010
-1 0 00
2 0 -1 0 0
0 0 10




Ex: Problem from jan qual: A is a 10 x 10 matrix satisfying A% = 0 show A'® = 0 let f(z) = '
only irreducible factor of z1%°% is z. So characteristic polynomial divides 2'°°°° and has degree 10 so
Cu(z) = 2" is the only polynomial dividing f having degree 10. Since the matrix has to be a zero of the
characteristic polynomial it follows that A = 0.

e To find the RCF of a matrix A we play the matrix game on X1 — A.

Rules for matrix game:

1. Can swap rows or cols
2. Multiply by any non-zero element of F

3. replace a row/column by sum of multiple of that row/column with multiple of another row/column.

e note if you keep track of ROW ops (not col) then you can reconstruct invariant factors.

o EX:
2 -3 3
A=10 -3 5
0O 1 1
r—2 3 -3
XI - A= 0 r+3 -5 —>(R1<—>R3)
0 -1 z-1
0 -1 x-1
r— 2 3 -3
—1 0 z—1
XI—A=1[|x2+3 0 -5 —>(—R1)

3 z—2 -3

XI—A=\|z2+3 0 -5 —)(—($+3)R1+R2—>R2,—3R1+R3—)R3)
3 r—2 =3

1 0 -
XI-A=(0 0 2°4+20-8]| = ((z =10, +C5 — C3)
0 x—2 3r—6

1 0 0
XI-A=(0 0 2*°+20-8| = (Ry < Ry)
0 x—2 3xr —6

1 0 0
XI—A=|0 -2 3r—6 —)(—3CQ+03—>03)
0 0 22420-8

1 0 0
XI—A=|0 z-2 0
0 0 2242:-8

So we have

0
8
—2

RCF =

S O N

0
0
1

To get invariant factors start with identity matrix and modify step by step with an operation for each row
operation in the order in which they came.

modification:

If we R, — Rj then swap Cz <~ Cj.



If we uR; — R; then modify v~ 'C; — C,
If we a(z)R; + R; — R; then modify —a(x)C; + C; — C;.

The result of this will provide a matrix with the generators of the invariant factors
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17.1 More on RCF /matrix game

e last time we had

2 -3 3
0 -3 5
0 1 1

and performed the sequence of row operations

Ry < R3

—Ry

—(x+3)Ry+ Ry — Ry
—3R1 + R3 — R3

Ry, & Rs.

AN I

on xl — A.

Now if we start with identity matrix and perform these on columns we get generators of the invariant
factors.

o —3 3

Nowz+3~A+3I=(0 0 5| soto perform ((z+ 3)Cy + Cy — Cy) we replace (z + 3)Csy with the
0 1 4

column generated by (A + 31)cy the resulting matrix is

-3 0 1
0O 1 0] — (303 +c—C
0 00
0 0 1
01 0] — (CQ <~ Cl)
0 00
010
0 01
0 00
So can produce basis from e; and e,
-3 1 0 -3 1 0 3 2 0 0
Now Ae; =2ey, Aes = | =3 ] andsoU=|0 1 =3, U'=10 1 3|andUtAU=|0 0 38
1 0 0 1 0 0 1 01 —2
which is a rational canonical form which corresponds to (z — 2), 2% 4+ 2x — 8 = (v — 2)(z + 4) as desired.



17.2 Jordan Canonical Form
Assume elementry divisors are powers of linear factors and we have a(x)|az(x)|...|a,(x). The eigenvalues

are A, ..., \; SO we may write

ay(x) = (x — A\)* - (2 — A

aj(w) = (@ = M) (@ = A

where the «;; may be zero. For ¢ =0,...,5 — 1.

)
>
-
e
=
|
>
-
=
o
Z
>
D
(@)
Qo
B
o
@]
B
o)
o
—t+
D

Suppose we have F[z]/(x—\)* can choose basis as (7 —\)F~!

, similarly
and

until finally
r-l=X4+2—-X\

Hence multiplication by x is represented by the matrix

A1 0 ... 0
0 X 1 0
0 "

00 0 0 X

called the JOrdan block for (z — A\)*. A Jordan Canonical form for a matrix A is

J1 0
Jo

where each J; is a Jordan block.

Ex for the matrix (; i) we had RCF = <(1) _65) so eigenvalues were 2, 3 so jordan form is (g g)

Ex we did RCF of 3 x 3 matrices with char poly (x — 1)*(z + 1) has ele divisors (z — 1), (z — 1), (x + 1)

10 0 11 0
or (x —1)%, + 1 these correspond to [0 1 0 | and
00 —1 01 00 0 -1

Ex: 4 x 4 with minimal poly 2% — 1. had 3 sets of invariant factors
12?2 —1,22 -1
2. x—1l,x—1,2> -1
3.x+1,x+1,2%—1.

which correspond to elementary divisors
l.z—1,x—1,z+1,z+1
2.z—l,z—1lz—1,z+1
. z+lz+1L,x+1,z—1



and JCFs of

1

01
1'00—1

00 0 -1

1

01
2'001

000 -1

1

0 -1
3'00—1

0O 0 0 -1

e In example finished at beginning of class we have invariant factors of (z — 2),2* + 2z — 8 so elementary

20 0
divisors vt — 2,2 — 2,z +4 and JCF |0 2 0
00 —4

Can get this if we don’t already have RCF by following procedure:

In this case we had e; generated a cyclic submodule of dim 1 and e, generate a cyclic submodule of dim 2.

Suppose that f generates V' = F[z]/(a(z)) with a(z) = (x — A\)™ -+ (x — \)*. then (Lmi) gives
T — A
generators for submodule Fx]/(x — \;)*.
24228 24+2r -8
Apply this to case above we have H—xzeg = (z+4)ex = (A+41)we = (—3,1,1) and %62 =
T — x

1 -3 -3 2.0 0
(x—2)eg = (=3,-3,1)then U= [0 1 —5|andU'AU={0 2 2
0 1 1 00 —4
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18.1 More on Jordan Form

e To find P such that P"'AP = J where J is the Jordan form of A. let Cy(x) = det(A — xI) is char
polynomial C4(x) = (x — Ay)™...(x — Xs)™. F algebraically closed. Follow the process

1.

For each \; calculate N(A — \;1). dim(N(A — \;I)) tells how many cyclic subspaces there are of the
form Flz]/(x — X\;)® there are. s;1 + ..., = m;.

Compute the null space N(A — X\;1)*) for 2 < k until dim(N(A — X\,I)¥) = m; the multiplicity of \;.
Stop at the smallest & where this happens - £ = max{s;; : 1 < j <4,}.

denote by E\, = {v: \v = Av} the eigenspace of \;. and let G, = {v: 3 k s.t. (A — \I)"v = 0}
the generalized eigenspace of \.

Choose Vi1 € G)\N Vi1 € N((A — )\Z[)k) \ N((A — )\Z[)k_l) then Vi1, (A — )\iI)’Uil, ceey (A — )\Z'[)k_l/l]il
generate a cyclic subspace isomorphic to F[z]/(z — ;).

If k = my, done. If not there is vy € N(A — NI1)*\ N((A — NI U span{(A — )\iI)jvil}f;é.
generate v;o, (A — NI )vje,...(A - Aid)*'u;y repeat if necessary. If there is not vy € N(A — \I)* \
N((A= NI Uspan{(A— )in)Jvﬂ}f;é the search next in N(A— \;I)¥7!) for such vectors. generate
Via, (A — NI )vig, ..(A — M\I)* v, Keep going until we have a basis of G, formed by the cyclic
subspace bases.

3 1 4 2
. -1 1 =33 ) CoN3(
e Ex: A= 00 2 0 char poly is (z — 2)°(z — 3).
0O 0 0 3
Now
0 1 4 2
-1 -2 -3 3
A=3l= 0 0 —-10
O 0 0 0
which has row eschelon form of
1 0 0 -7
010 2
001 0
000 O
which gives (7,—2,0,1) as the eigenvalue for 3.
Now
1 1 4 2
-1 -1 -3 3
A=20= 0 0 0 0
O 0 0 1
which has row eschelon form of
1100
0010
0 0 01
00 00

which gives (—1,1,0,0) as the eigenvalue for 2.

Now

(A—2I)? =

o O O O
o O O O
o
e}



which has row eschelon form of

o O O =
o O = O

which has null space of span{(1,0,0,0),(0,1,0,0)}. Now (—1,1,0,0) is in this space, so we need to
continue.

Now
000 2
0 00 —4
— 3 f—
(A—2I) 000 O
000 O

which has row eschelon form of

o O O

0 0
0 0
0 0
0 0
(0,0

which has null space of span{(1,0,0,0), (0,1,0,0),(0,0,1,

0)
can use it to compute rest of basis.

we have (A—21)e; = (4,—3,0,0), and (A—21)es = (1,—1,0,0). note this last one must be the eigenvector
(a good way to check work). Now we can write down P with these vectors as columns.

}. Now e3 is not in the previous null space so

1 4 0 7
-1 -3 0 -2
P= 0 0 1 0
0 0 0 1

-3 -4 0 29 2100

4 |1 1 0 -9 1 10210 S
and one may compute P~ = 0 0 1 0 and P~ AP = 00 2 0 which is a jordan form.
0 0 0 1 000 3

18.2 The field theory

Let F C K be fields. We say that F' is a subfield of K and K is a field extension of F'. Let o € K \ F.
could have 1, a,...a" ! be linearly independent over F' and a" = —(bn_loz"_1 + ...bg). with b; € F. then «
is the zero of 2" + b, 12" ' + ... + by € F[z]. Then f(z) is irreducible so F[z]/(f(x)) is a field and a field
extension of F.
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19.1 Field theory continued

F, K fields with ' C K then K is called a field extension of F. for each r € F we have rK C K so
multiplication by F' gives scalar multiplication of F' on K and K can be viewed as an F-vector space.

Def: the index or degree of F' in a field extension K is [K : F| = dimpK. (The dimension of K considered
as a vector space over F'.)

Prop: Let ¢ : ' — F’ be a homomorphism of fields. Either ¢ is 1-1 or ¢ is the trivial homomorphism.

Proof. A field F' has only the ideals 0 and F', so ker(¢) = 0 or ker(¢) = F. If ker(¢) = 0 then ¢ is one
to one and if ker(¢) = F then ¢ is the trivial map. O

If we have a 1-1 homomorphism of fields ¢ : F' — F' then ¢(F) C F” is an isomorphism. So often we call
¢(F) F since they are isomorphic.

Prop. Given F a field p(z) € Flz] an irreducible polynomial there is a field extension K of F' having a
zero of f(x) in it.

Proof. Consider K = F|x]/(p(x)). then K is a field since (p(x)) is a maximal ideal. Define 7 : Fz] — K
by m(g(x)) = g(x) + (p(x)) and consider 7|p : F' — K which is a homomorphism F' — K. Moreover 7|g
is not trivial since 7(1) = 1 + (p(x)) # (p(z)) so 7|p(1) = 1+ (p(x)) # (p(z)). So 7| is not trivial and
therefore 1-1 so w|r = F and can view the image as F. So we have F' C K. Let z = z + ((p(x)), then
p(z) = p(x) + ((p(z)) = (p(z)) =0 in K. So Z is a zero of p(z) living in K. O

Theorem: Let F' be a field and K C F be an extension of F. Suppose that @ € K is the zero of some
polynomial f(z) € F(x). Then there is monic a polynomial m, g(x) with minimal degree and m, r(x)
divides f(z).

Let S = {g(z) : g(a) = 0} then deg(g) € N and since N is well ordered it has a smallest element and so
{deg(g) : g € S} also has a smallest element. Let g(x) be a monic polynomial smallest degree (we can
attain this by dividing by leading coefficient if g weren’t monic). We need to show that g is irreducible.
Suppose deg(g) = n.

Suppose ¢ is not irreducible, g(z) = a(x)b(z) then 1 < deg(a), deg(b) < deg(g). Then g(a) = a(a)b(a) =
a(a) or b(a) = 0, but then g was not such a polynomial of least degree, a contradiction, so g was irreducible.
Now we can use the division algorithm to write f(x) = ¢(x)g(x)+r(x) where r(x) = 0 or deg(r) < deg(g).
then

0= f(a) = g(@)g(a0 + r(a) = r(a)

so r(z) = 0 (again my minimal degree of ¢g. and we have that g(z) divides f(z).

Def: The monic polynomial of minimal degree with coefficients in F' with « as a zero is called the minimal
polynomial of o over F. this is denoted in different ways mq r(x), irr(o, F), ete...

Cor: F C K C FE, a € E with a the zero of a minimal polynomial with coefficients in F' then
Mo,k ()Mo r(z). We have m, p(z) € Flz] C K[z] and mak(z) C Klz] and « is a zero of m, k().
Since my, i is the min poly for o with coefficients in K we have mq x(x)|mq r(2).

Ex: 2?2 +1 € Q[z]. then i is a zero and 2% + 1 = m, o(x). If K = Q(i) then m, i (v) = z — i.

Thm: If K = F[z]/((p(x)) with p(x) irreducible over F then § = z + ((p(x)) then 0 is a zero of p(x) and
1,60,6%, ...,0" " where n = deg(p) is a basis for K over F.



Proof. We have already seen that 6 is a zero of p. Need to show that 1,6, ...,6" ! spans K and are linearly
independent.

Take f(z) € F[z]| then f(x)+ ((p(z)) = r(z) + ((p(z)) where f(z) = q(z)p(x) + r(z) where deg(r) < n.
and f(0) =7(0) = ap + a10 + ... + a,_10""", so the 6; span F[z].

Suppose that ag 4+ @10 + ...a,_10""' = 0 then 6 is a zero of g(x) = ap + a1z + ... + a,_12" 1. but then
p(z)|g(x) but this is impossible since deg(p) = n > deg(g) = n — 1. So each a; = 0 so the 6; are linearly
independent. O

Let K = F[z]/((p(z)) and § = 2 + p(x). Sometimes we write this as K = F(0) = {ag + a160 + ...a, 160" " :
a; € F}. if we take a(0),b(0) € K then a(0)b(0) is a polynomial. If deg(ab) > n then ab =r mod p with
deg(r) < n.

Ex Zo[z]/(z*+x+1), 0 is a zero of 2° +x+1. Consider 6*(0*+1) = 0*+6%. Then *+0+1=0= 0> =0+1.
So 0* = 6% 4+ 6. then 0*(0* + 1) = 6? + 0 + 6% = 6. Which tells us that remainder of 2* 4 2* divided by
2® + 1+ 1is  (can confirm with long division).

ex 717

p(z) =by + byx + ... + 2" then
0=p(0) =bo+ b0+ .. 46"

—bo == 9(1)1 + b29 + ...+ Qnil

SO

—1
1=6 b—(b1 + byl 4. O
0

N

-~

9—1

Given a(f) with deg(a) < n then to find (a(f))~" use the euclidean algorithm to express 1 = a(0)b(6) +
p(60)c(6).
For example the inverse of (6% + 0 -+ 1) from above is (0% + 6+ 1)"' = 6°.
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20.1 More on Fields

To construct a field with p" elements where p is prime we construct Z,[z]|/(p(x)) where p(z) is irreducible
in Z,[x] of degree n.
Ex: In Zy[x] #* + 2 + 1 is irreducible, so Zs[z]/(z® + 2 + 1) is a field with 8 elements.

K = Zylx]/(x* + z + 1) field with 4 elements. There is no subfield of K isomorphic to L. If 6 is a root
2? + 2 + 1 then we have > + 0 +1 =0 = 6> = § + 1. We can produce the following multiplication table.

. 0 1 0 0+1
0 0 0 0 0
1 0 1 0 0+1
0 0 0 0+1 1
0+110 60+1 1 0

if ' C K is a field extension A = {a;}, A C K the subfield of K generated by F' and A is F(A) - the
smallest subfield of K containing F' and A. If A € {ay, ..., a5} then F(A) = F(ay,...,a5). IN this case we
call F'(A) a finitely generated subfield of K (does not imply finite basis).

Ex: FF=Q K = C and A = {e}. Since e is not algebraic, e is not the zero of any polynomial with

coefficients in (). The smallest subfield of C containing Q and e will be Q(e) = {]% :p,q € Qlx],q #
q(e

0} = Q(x).

Def: A simple extension of F is of the form F(«).

Fg K= = F(OZ) = {b0+b1a+...+bn_1an_1}.

Isomorphism extension Theorem: Let F, F' be fileds and ¢ : F© — F’ be an isomorphism. Suppose
p(z) = ap+arx+...a,_12" 2" is irreducible with a;inF and p'(z) = ¢(ag)+@(a))z+...+d(an_1 )" 42"
is irreducible in F'[z] then there is an isomorphism ® : F'(a) — F(f) where « is a root of p(z) and S is a
root of p'(x) such that ®|r = ¢

Proof. ¢ extends to an isomorphism ¢ : Flz] = F'[z] by ¥(co + c12 + ... + cnz™) = d(co) +
= ) +

o(
4 9len)a™. Clearly we ahve ¥(g(2) + h(x)) = ¥(g(x)) +(h()) and (g(a)h(x)) = b(g(a)(h(z)
and 1 is a bijection. Now let ® : Flz]/(p(z)) — F'[z]/(p(x)) since we have 1(p(x ) p'(z). then

_ Y
v Flz] — 2 with ker(¢) = (p(z)) so by the first isomorphism theorem F(«)

(p(x))
Flz]/(p(x)) = F'(B).

example: Q(V/2 = Q[xz]/(z* — 2). Then v/2 is a zero of 2% — 2 = 0. Other roots of this are v/2¢; where (3
is third root of unity i = 1,2. We have Q(v/2¢3) & Q[x]/(z® — 2) but these fields are not equal.

We say a field extension K of F' if for every a € K there is a polynomial f € F|x] with f(a) =

example of extension where you only get 1 zero: K = Zy(t), Z(t*) = F. then 2* — ¢* is irreducible but
' —t* = (x — t)* € K[z] so the only root is ¢.

Prop: If « is algebraic then F'(a) = Flz]/(mqr(x)) and [F(«a) : F| = deg(ma,r(x).

Proof. 1,a,...,a" !is abasis for F(a) then 1, q, ..., o™ are linearly dependent. so o +a,_ja" '+...4+ag = 0
is the minimum polynomial is the minimum polynomial for «, F'. O



e Prop: Every finite extension of a field F' is an algebraic extension.

Proof. Let [K : F| = n be finite. Take @ € K then 1, ...,a" must be linearly dependent so there are a;
with so @™ + a, 10" " + ... + ap = 0 and « is a root of a polynomial in F[x].

]

e Note: Algebraic extensions are not always finite: A = {{/p : p prime} then Q(A) is algebraic but not
finite.

Ex: V24 /3 € Q(A). then can write
a=vV2+V3=

a—\/§=\/§=>a2—2a\/§+2:3:>
a?—1=20v2 3 a*—10024+1=0

e next time: Thm: if ¥ C K C L with [L: K] < oo and [K : F| < oo then [L: F|=[L: K|[K : F] < cc.
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21.1 Tower theorem, degrees of field extensions

e Homework: 13.1 2,6,7, 13.2 4,7,9,14
o Thm: if F C K C L with [L: K] <ooand [K:F]<oothen [L:F|=I[L:K|K:F|<oo.

Proof. Suppose n = [L : K|, m = [K : F|. Then there are ay,...a,, that form a basis for L over K and
there are 1, ..., 8, which form a basis over F'.

.....

Claim: {a;f;}ijeqn,..ny form a basis of L over F. Pick a € L then a = Zaiai with a; € K then
a; = Z bijﬁj with bij € I then
j=1
a=2 (D buBai=2_ > bibios =
=1

i=1 j= i=1 j=1

Z Z bijazﬂj

i=1 j=1

so the a;, 8; span L over F. So need to show «;3; are linearly independent. if Zbij%ﬁj = 0 then

Z(Z b;;B;)a; = but then each Z b;;B; = 0 since «; are linearly indep. but then b;; = 0 since f3; are
i=1 j=1 j=1
linearly indep. Now there are mn products in {«;/3;} and the result follows.

O

e K is a finite extension of F'if and only if K is generated by finitely many algebraic elements. If K =
F(ay, ..., a5) with degmg, p(x) = n; then [K : F| < njng-- - ns.

Proof. if [K : F] = n < oo then there is a basis a1, ..., a,, with «; algebraic. «; are the zero of polynomials
of degree < n. so K = F(ay,...au,).

(=) K = F(o, .., ay) with o; algebraic. Then Fla;) : F] = n; then [K : F(ay, ..., 05-1)|[F(01, ..oy as-1)
F(Oél, ey Oés,2>] s [F(Oél) . F]

If K; = F(o,...,a; then Ky = K and since maq, i, ,(x) divides mq, p) so [K; @ Kioq] < [F(a) @ F] so
[K . F] = [Ks . stl]--'[Kl . F] S NgMNg_1...M1. ]

e example where degree is less. Take Q = F, ay = V2, oy = v/2(3. Then [Q(c;) : Q] = [Q(az : Q] = 3 but
[Q(ab a?) : Q] =06 S 9 since a basis for Q(aly a2)/@ is 17 \3/57 \3/17 CS; \3/§C3’ \3/5(3

e Prop: If a,beta € K algebraic over F' then o + 3, a3, /3 are all algebraic over F'

Proof. «, B are algebraic then F(«, () is algebraic over F', a £+ 3,af,a/p € F(«, 5) so are algebric over
F. O

e Prop: IF FFC K C L and K is algebraic over F' and L is algebraic over K then L is algebraic over F'.

Proof. Take a € L. Since L is algebraic over K there is a polynomial p(z) = ag+ a1z +...a,2" € K[z] with
p(a) = 0. Since ag, ay, ..., a, inK and K algebraic over F' then [F(aq, ..., a, : F| < oo so we have produced
a finite extension then [F(ag, ..., an, @) : F(ag, ...,a,] < n. Then [F(ag, ..., a,, @) : F] = [F(ag, ..., ap, @) :
F(ag, ..., an)][F(ag, ...,a,] : F|] < o0 so F(ag, ..., an, ) is algebraic over F' so « is algebraic over F. O

e Suppose K; and K are fields. The composite field KK is the smallest field containing K; and K. If

{K;}icr are fields then H K; (finite sums of finite products) is the smallest field containing each K.
il



e Prop: Let K, K be field extensions of F' with [K; : F] < oo and [K3 : F| < oo then [K Ky : F| < [K; :
F|[K; : F].

PT’OOf. [KIKQ : F] = [KlKQ : Kl][Kl : F] = [KlKQ : KQHKQ : F] but [KlKQ : Kl] S [Kz : F] and
[KlKQ . KQ S [Kl . F] so we have [KlKQ . F] S [Kl . F][KQ . F] ]

21.2 splitting fields

e def: a polynomial f(x) € F[z] splits in K if F(x) = (z — a1) - (x — ap,) € K[z] with o; € K (not
necessarily distinct).

e Def: A field E (an extension of F) is a splitting field of f(z) € F[z] over F if E is the smallest field where
f splits. Similarly given { f;}icr a collection of polynomials we say E is the splitting field of {f;} if E is
the smallest field where all f; split.

e Example: f(z) = 2® — 2 € Q[z] The splitting field of f over Q is Q(v/2, ¢s) = Q(V/2,iV/3).
e Example 2" + 4 = (2° + 22 + 2)(2® — 22 + 2) has roots &1 £ i so the splitting field is Q()

e Theorem: Splitting fields exist.

Proof. Suppose that f € Flz| is a degree n polynomial. If n = 1 then f is linear so its roots are in F', so
f splits over E = F. Now suppose n > 1 if f factors into linear polynomials in F[z] then done. Otherwise
there is an irreducible factor, p(x) of degree > 2. Then f(z)/p(z) =& F(«) with o a root of p(x) then
f(z) = (x — ) fi(z) € F(a)[z] so fi(z) € F(a)|x] with degree fi < 1 so by induction there is E such
that f; factors into linear polynomials in E[z|. then K = NE over all E such that f factors into linear
polynomials in E[z]. then K is the smallest field over which f splits and K is the desired splitting field.

]
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22.1 more on field extensions

A field extension K of F'is normal if K is the splitting field of a collection of polynomials f;(z) € F(z).

Prop: If K is a splitting field for a degree n polynomial f € F[z] then [K : F| < nl.

Proof. Take o € K then [F(a) : F] < n where « is a root of f(x). Let f(z) = (v — a) f1, deg(f1) < n then
by induction [K : F(a)] < (n—1)!'so [K: F] = [K : F(a)][F(a) : F] < (n—1)ln =nl. O

A cyclotomic field extension is one of the form F((,) where (, is a primitive nth root of unity over F. If
F = Q then [Q(¢,) : Q] = ¢(n) where ¢(n) is the Euler-¢ function i.e the number of integers k such that
1 < k < n which are relatively prime to n.

F(¢,) comes down to factoring =" — 1 over F. we have

2" 1= (o= G)e =) (e =¢) = (@ - 1@ —G) - (z =)

For example over Q we have 2° — 1 = (z — 1)(z — () - - - (v — () but these have relationships for example

(2 = (3, ¢ = —1. So the irreducible poly is ®, = H (x —¢%)

(a,n)=1,1<a<n

Example: Consider 2> + 1 € Zs[z] this is irreducible. If a is a root of then we have a® = —1, and

a™! = —a, but « is not ¢ since ¢ lives in the complex plane and but Z; does not.

Example: f(z) = 2P — 2 (similar for 2 — ¢ where ¢ is not a p-th power). f can be factored as
flw) = (x = V2)(x = ¥2¢) - (x = V27

so the splitting field over Q is Q[¥/p, (,) and [Q(¥/2) : Q] = p(p — 1). THen the irreducible poly ®,(z) =
H (x—¢) =a?" 42"+ .+ 1. With ¢, € Q(¥2).

1<a<p

Isomorphism extensmn theorem for splitting ﬁelds Suppose F, F' are fields and ¢ : F — F’ is a isomor-

phism. If f(x Z a;x" € Flz] and f'(z Z ¢(a;)x" then there is an extension of ¢ to the splitting
1=0

fields of f, f'.
K—2~K'

Vﬁth_QWF'::¢

Proof. By the isomorphism extension theorem there is ¢ : F'(a) — F'(3) such that U|p = ¢. Where « is
a root of f and S is a corresponding root of f'(x).

l

F/

Since f(X) = (z—a) fi(z) and f'(x) = (x—B)fi(z), f1 and f] are degree n—1 polynomials so by induction
there is an extension ® of ¥ to K,
K—"—K'

L,

F(a) — F'(a)

|,

F/




since ®|pq) = ¥ and V|p = ¢ we have ®|r = ¢. so ® is an isomorphism extension of ¢.

O
cor: If K and K’ are splitting fields of f over F' then K = K’
Proof. Apply isomorphism extension theorem of splitting field to the identity
K—K'
71
O

Example: Splitting field of 2° +2 41 over Z,. is Zy(a) where a is a root (can check by division algorithm).

Def: Given field F' the algebraic closure of F' is the field F so that every polynomial f(x) € F[z] factors
into linear factors in F[z] and F' is an algebraic extension.

Ex C is not the algebraic closure closure over C since m € C is not algebraic over QQ so C is not an algebraic
extension. But C is an algebraic extension of R and hence the algebraic closure.

Def: we say a field K is algebraically closed if each f(x) € K|[z] factors into linear factors.

Prop: the algebraic closure of F' is algebraically closed.

Proof. F is the algebraic closure of F. f(x) € F[z], a is a root of f(x) then F(«) an algebraic extension
over I but F' is algebraic over F' so F(a is algebriac over F' so « is algebraic over F', a € F', ' = F(«),
so F'is algebraically closed.

O
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