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1 Jan 22 2020

1.1 logistics

• 1st Homework 10.1 5,7,13, 10.2 1,4,6,7, 10.3 7

• See syllabus online

1.2 Modules

• def: An abelian group M (under +) is a (left) R-module if we have an action R×M →M , such that for
all r, s ∈ R,m, n ∈M

1. (r + s)m = rm+ sm

2. r(m+ n) = rm+ rn

3. (rs)m = r(sm)

4. If R has unity then 1m = m.

Reverse properties define a right module, but we will consider modules to be left unless otherwise stated.
If R is commutative we can define mr = rm to give both a left and right module that are the same
(although it is possible to defined different left and right structures even when R is commutative).

• an R- submodule is a subset ∅ 6= N ⊂ M which satisfies the module axioms. can simply check that if
x, y ∈ N then rx− y ∈ N for all r ∈ R.

• Def: R-module homomorphism. If M,N are R modules then φ : M → N is an R module homomorphism
if φ(rm+ n) = rφ(m) + φ(n)

• Def: R-algebra. A ring S is an R-algebra if there is ring homomorphism φ : R → S satisfying rφ(r′) =
φ(rr′). If R and S have unity we require

(∗)φ(1R) = 1S

(∗)⇒ rφ(1) = φ(r).

• HomR(M,N) is the set of R-module homomorphisms for M to N . If we define (φ+ψ)(m) = φ(m)+ψ(m)
then HomR(M,N) is an abelian group. If we define (rφ)(m) = r(φ(m)) then HomR(M,N) is an R-
module. HomR(M,M) then with the addition defined above HomR(M,M) is an abelian group. since
φ ◦ ψ ∈ HomR(M,M), its is a ring.

• Let M be an R-module and {Ni}i∈I with Ni ⊆M are R-submodules of M then
∑
i∈I

Ni = {ni1 + ...+ nit :

nij ∈ Nij} the set of all finite sums is an R-submodule of M with

(ni1 + ....+ nit) + (nj1 + ...+ njs) = ni1 + ....+ nit + nj1 + ...+ njs

and
r(ni1 + ....+ nit) = rni1 + ....+ rnit .

• If A ⊂ M then RA = {r1a1 + ...rnan : ai ∈ A} the set of all finite sums is the R-module generated by A.
If A = {a} then Ra is called a cyclic R-module. If |A| = n <∞ and N = RA we say that N is a finitely
generated R-module. Not necessarily R.
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2 Jan 24

2.1 Review of Direct Products

2.1.1 External Viewpoint for direct products

• Let N1, ..., Ns be R-modules. can construct N1× ...×Ns = {(n1, ..., ns)|ni ∈ Ni}. Called the direct product
of Ni’s. With addition and scalar multiplication component-wise this is an R-module.

2.1.2 internal viewpoint for direct products

• M an R-module N1, ..., Ns ⊂ M . with N1 + ... + Ns = M . If Ni ∩ (N1 + ... + N̂i + ... + Ns) = 0 for
all i then M is a direct sum of N1, ..., Ns. if sum on Ni is not all of M then the sum is a direct sum if
Ni ∩ (N1 + ...+ N̂i + ...+Ns) = 0 (just not equal to M).

2.1.3 note about direct products and sums

If N1, ..., Ns are R-modules then N1 ⊕ ...⊕Ns = {(n1, ..., ns : ni ∈ Ni} = N1 × ...×Ns are the same thing
as R-modules.

In the infinite case we have {Ni}i∈I then ⊕i∈INi = {r1φi1 + ... + rnφin : ri ∈ R} where φj : ⊕i∈INi → Nj

(φj picks the jth component). In direct sum can only have finite linear combinations of the φj. In infinite
direct product can have infinite linear combinations.

2.2 Free modules

• Let A be a set then F (A) is the free R-module on the set A if every element of F (A) can be expressed
uniquely in the form r1ai1 + ...rnain for rj ∈ R and aij ∈ A (only finitely many terms can be involved in
sum).

This is equivalent to

1. A is linearly independent

2. A spans F (A).

• The universal property for free modules. Let A be a set, M an R-module. Given any set map φ : A→M
as below there is a unique Φ such that the diagram commutes:

A
i //

φ ""

F (A)

Φ
��
M

Note i is an inclusion map, i(a) = a, M is an R-module and Φ is an R-module homomorphism.

Main part of proof is showing the uniqueness of Φ.

2.3 Tensor Products

• Let R ⊆ S be rings with unity. M is an S module. Then M is an R-module as well.

If M is R module then M does not have to be an S module.

Tensor product S⊗RM can be thought of as a way of extending the scalars of R to make M an S module.
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• Consider F (S ×M) Note that (s1 + s2,m), (s1,m), (s2,m) are all generators of F (S ×M) so we need to
mod out by certain relations.

Let R1 : (s1 + s2,m)− (s1,m)− (s2,m) for all s1, s2 ∈ S, m ∈M .

R2 : (s,m1 +m2)− (s,m1)− (s,m2) for all s ∈ S, for all m1,m2 ∈M .

To get the needed associative like property let R3 : (s, rm)− (sr,m) for all s ∈ S, m ∈M , r ∈ R.

Then let H = R-module generate by R1, R2, R3 and we can define S ⊗RM :=
F (S ×M)

H
.

To make sense of all this use universal property

M //

i

&&

φ ##

S ×M // F (S ×M)

Φ
xx

N

5



3 Jan 27. Guest Lecturer Alex Buium

3.1 Tensor Products

• Let R be a commutative ring, M,N,P, .... R-Modules

• Def: A map from M ×N → P is bilinear if it is R-linear in each argument.

• Def: M ⊗N =
E

F

E = free abelian group with basis M ×N = {
∑

ri(xi, yi) : ri ∈ Z, (xi, yi) ∈M ×N}.
F = subgroup generated by

{(x+ y, z)− (x, z)− (y, z), (x, ỹ + z)− (x, ỹ)− (x, z), (rx, ỹ)− (x, rỹ) : x, y ∈M, ỹ, z ∈ N, r ∈ R}.

Remark there is a bilinear map fcan : M × N → M ⊗ N defined by fcan(x, y) = x ⊕ y = ˆ(x, y). Note
relations above given (x+ y)⊕ z − x⊕ z − y ⊕ z = 0 etc...

Define an R-module structure on M ⊗N by r(x⊗ y) = rx⊗ y = x⊗ ry.

• Theorem: Universal property of ⊗. Let f : M ×N → P be bilinear map then there is a unique R module
homomorphism, φ, making the following diagram commutative:

M ×N fcan//

f

��

M ⊗N = E
F

φ
ww

P E
Φ

oo

OO

Proof. Enough to show Φ : E → P with Φ(F ) = 0. enough to find map of set Φ′ such that Φ′ such that
induced map Φ (induced by Φ′) vanishes on F .

Let Φ′(x, y) = f(x, y). Then

Φ((x+ y, z)− (x, z)− (y, z)) = Φ′(x+ y, z)− Φ′(x, z)− Φ′(y, z) = f(x+ y, z)− f(x, z)− f(y, z).

And similarly for the other relations above.

• Remark: M⊕N is generated as an R-module by x⊕y with x ∈M , y ∈ N (simple tensors). So any element

of M ⊕N can be written (non-uniquely) as a sum
N∑
i=1

xi ⊕ yi. So if x⊕ y for all x, y then M ⊕N = 0.

• Ex. Z7 ⊕Z Q = 0 enough to show that x ⊕ y = 0 for all x = k̂ ∈ Zy and all y =
a

b
∈ Q. Can compute

x⊕ k̂ ⊕ a

b
= k̂ ⊕ 7a

7b
= k̂ ⊕ 7

a

7b
= 7k̂ ⊕ a

7b
= 0⊕ a

7b
= 0.

• Ex Q⊕Z Q ∼= Q. Let f : Q→ Q⊕Z Q by f(x) = 1⊗ x. Consider

Q×Q can //

b
��

Q⊗Z Q
g

yyQ

with b(x, y) = xy so g(x⊗ y) = xy.

Note enough to show maps are inverse on simple tensors. f(g(x⊗ y)) = f(xy) = 1⊗ xy =?x⊕ y.

Proof of ?. say x =
a

b
, y =

c

d
so

a

b
⊗ c

d
=
ac

b
⊗ 1

d
=

ac

b
⊗ b

bd
=
acb

b
⊗ 1

bd
= ac⊗ 1

bd
= 1⊗ ac

bd
= 1⊗ xy

So f and g are inverses and we have the desired isomorphism.
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• Theorem (Properties of tensor products)

1. (M ⊗R N)⊗ P ∼= M ⊗R (N ⊗R P )

2. M ⊗R N ∼= N ⊗RM
3. M ⊗R R ∼= M

4. M ⊗ (N ⊕ P ) = (M ⊗N)⊕ (M ⊗ P )

Proof. of 4. Look at the diagrams. Take

M × (N ⊕ P ) can //

b
��

M ⊗ (N ⊕ P )
φ

uu
(M ⊗N)⊕ (M ⊗ P )

where b = (m, (m, p)) = (m⊗m,m⊗ p) is bilinear. To defined Ψ : (M ⊗N)⊕ (M ⊗ P )→M ⊗ (N ⊕ P ).
it is enough to find 2 maps Ψ1 : M ⊗N → Q and Ψ2 : M ⊗ P → Q. Then Ψ(c, y) = Ψ1(x) + Ψ2(y) to get
these use univesality property of tensors b1(m,n) = m⊗ (n, p). Then check φ ◦Ψ = 1 and Ψ ◦ φ = 1.
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4 Jan 29

4.1 more on tensor products

• M ⊗ (⊕iNi) ∼= ⊕i(M ⊗ Ni). If M,N free R modules with bases (ei), (fj) then M ⊗ N is free with basis
(ei ⊗ fj). This is becasue M ∼= Rm, N ∼= Rn then

M ⊗N ∼= (R⊕ ....⊕R︸ ︷︷ ︸
m−times

)⊗ (R⊕ ...⊕R︸ ︷︷ ︸
n−times

) ∼= (R⊗R R)⊕ .... = R⊕ ...⊕R︸ ︷︷ ︸
mntimes

= Rmn.

So M ⊗ ...⊗M︸ ︷︷ ︸
ntimes

is free with basis ei1 ⊗ ...⊗ eik so any element has the form sumai1...inei1 ⊗ ...⊗ ein .

In M ⊗M...⊗M ⊗M∗ ⊗ ...⊗M∗ with M∗ = HomR(M,R). then elements look like
∑

aj1...jni1...in
ei1 ⊗ ....⊗

eim ⊗ e∗ji ⊗ ...⊗ e
∗
jn where e∗j(ei) = δij.

4.2 Exact sequences

• Def: M1
f1 //M2...

f2 //Mn is exact if Im(f1) = ker(f2), Im(f2) = ker(f3), ... Im(fi) = ker(fi+1).
This implies that f2 ◦ f1 = f3 ◦ f2 = ... = 0.

• Remark: 0 //M
α // N

β // P // 0 . exact iff α injective, β surjective. and ker(β) = im(α). An
exact sequence with 5 sets is called short exact.

• Ex Let M ⊂ N be a submodule then 0 //M
α // N

β // N/M // 0 with α the inclusion map and
β the cannonical map is a short exact sequence.

• Def: 0 //M ′ //M //M ′′ // 0 is isomorhic to 0 // N ′ // N // N ′′ // 0 if there are
isomorphisms α, β, γ making the following commute

0 //M ′ //

α
��

M //

β
��

M ′′ //

γ
��

0

0 // N ′ // N // N ′′ // 0

• Prop: every short exact seq isomorphic to the one in the example above.

• Def: A short exact sequence

0 //M ′ α //M
β //M ′′ // 0

is split iff the following equivalent conditions are satisfied.

1. α has a left inverse π : M →M ′ such that π ◦ α = 1M ′

2. β has a right inverse σ : M ′′ →M such that β ◦ σ = 1M ′′ .

3. The exact sequence is isomorphic to

0 //M ′ i //M ′ ⊕M ′′ p //M ′′ // 0

where i : x→ (x, 0) and p : (x, y)→ (y).

• Remark: M ∼= M ′ ⊕M ′′ is implied by (3) but is not enough for the sequence to be split.

Proof. That the 3 condition are equivalent.
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– 1 ⇒ 2. Let σ : M ′′ → M since β is surjective given m′′ ∈ M ′′ can pick m with β(m) = m′′ then
π(m) ∈M ′. Now apply α, and α(π(m)) ∈M . want to define −σ(m′′) = α(π(m))−m.

Need to see if this is invariant for different choice of m̃ such that β(m̃) = m′′. Then

α(π(m̃))− m̃− (α(π(m))−m) = α(π(m̃−m))− m̃+m (∗)

now m̃−m ∈ Kerβ = Imα. so there is m′ such that α(m′) = m̃−m. Then (∗) = α(m′)−α(m′) = 0
so σ is well defined.

Now β(σ(m′′)) = β(−α(π(m)) +m) = β(m) = m′′. So σ has the desired composition property.

– other implications are similar.

• Example
0 // Z // Z // Z/2Z // 0

with α(x) = 2x, β(y) = y+2Z. This is not split since there is no non-zero homomorphism from Z/2/Z → Z.

9



5 Jan 31

• Hw 10.4 3,4,6, 16.

5.1 Short 5 Lemma

• Given 2 short exact sequences and maps as below

0 // L
ψ //

α
��

M
φ //

β
��

N //

γ
��

0

0 // L′
ψ′ //M ′ φ′ // N ′ // 0

Then

1. If α, γ are 1-1 then so is β

2. If α and γ are onto so is β.

3. If α and γ are bijections then so is β

Proof. 1. See book

2. let m′ ∈ M ′ with φ′(m′) ∈ N ′ Since γ is onto there is n ∈ N with γ(n) = φ′(m′). Since φ is
onto there is m ∈ M with φ(m) = n. by commutativity of diagram we have γ(φ(m)) = φ′(β(m)
so γ(n) = φ′(m′) then subtraction gives φ′(m′ − β(m)) = 0. so m′ − β(m) ∈ Im(ψ′) so there is
l′ ∈ L′ with ψ′(l′) = m′ − β(m). Now since α is surjective there is l ∈ L with α(l) = l′. From
commutativity it then follows that β(ψ(l)) = ψ′(α(l)) = ψ′(l′) = m′ − β(m) adding β(m) and using
the homomorphism property of β then gives β(ψ(l) +m) = m′ and so β is surjective.

3. follows from 1 and 2.

5.2 projective modules

• Let
D

f
��

f ′

  
L

ψ
//M

Then f ∈ HomR(D,L), f ′ = ψ ◦ f ∈ HomR(D,M).

But if
D

f
��

?

~~
L

ψ
//M

Then the map ? does not always exits. For example if L = Z, M = Z2, D = Z2. if f = idZ2 then
? : Z2 → Z must be the 0 map and then ψ◦? must also be the zero map and therefore can not be the
identity.

• Prop: Let ψ : L→M be an R- module homomorphism. Then the map ψ′ : homR(D,L)→ HomR(D,M)
defined by ψ′(f) = f ′ = ψ ◦ f is a homomorphism of abelian groups. If ψ is one to one then so is ψ′.

Proof. East to check the homomorphism property. Suppose that ψ′(f) = 0 (the zero map). We want to
show that f = 0. Compute ψ′(f) = f ′ = ψ ◦ f so ψ ◦ f(l) = 0 for all l ∈ L. Since ψ is one to one we then
have that f(l) = 0 for all l so f was actually the zero map.
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• Prop: Let

0 // L
ψ //M

φ // N

be a left exact sequence then

0 // HomR(D,L)
ψ′ // HomR(D,M)

φ′ // HomR(D,N)

is also a left exact sequence.

Proof. We have proved exactness at HomR(D,L). Need to show at HomR(D,M) i.e. imψ′ = kerφ′. We
will show that imψ′ ⊆ kerφ′. If f ∈ HomR(D,M) such that ψ′(g) = f , f = ψ ◦ g. So φ(f) = φ(ψ ◦ g) =
φ ◦ ψ(g). By (left) exactness we have that φ ◦ ψ = 0 (f had to be in ker φ′.)

Now assume that f ∈ kerφ′ then φ′(f) = 0 but by def φ ◦ f = φ′(f) so φ ◦ f = 0. So for all d ∈ D,
φ(f(d)) = 0 so (by exactness) there is l ∈ L such that ψ(l) = f(d) and since ψ is one to one l is
unique. So there is a map F : D → L such that F (d) = l and ψ(F (d)) = f(d). F ∈ HomR(D,L) and
ψ(F (d1)) + ψ(rF (d2) = f(d1) + rf(d2) = f(d1 + rd2) = ψ(F (d1 + rd2)) so we have F (d1) + rF (d2) =
F (d1 + rd2) and it follows that imψ′ ⊂ kerφ′.

• returning to the example above consider

0 // Z α // Z π // Z2
// 0

is full exact. So
0 // HomZ(Z2,Z) // HomZ(Z2,Z) // HomZ(Z2,Z2)

has to be left exact, but it can not be fully exact since HomZ(Z2,Z2)) ∼= Z2.

If we have a module such that short exact sequence of modules implies short exactness of the Hom sequence
that modules is called projective.

• Def/Prop: Let P be an R-module. The following are equivalent.

1. If
0 // L //M // N // 0

is short exact then

0 // HomR(P,L) // HomR(P,M) // HomR(P,N) // 0

is short exact

2. if
P

f
��

∃f ′

~~
M

ψ
// N

with ψ ◦ f ′ = f .

3. If
0 // L //M // P // 0

is short exact then P is direct summand of M

4. P is a direct summand of a free module

if P satisfies any/all of the above equivalent propertied we call P projective.

11



6 Feb 3

6.1 Projective modules continued

• Proof of equivalent statements

Proof. – 1 ⇐⇒ 2 clear.

– 2⇒ 3. Given
P

id
��

f

~~
0 // L

psi //M
φ // P // 0

with φ ◦ f = id. Then
0 // L //M // P // 0

is short exact so P is a direct summand of M .

– 3⇒ 4. If A is a genereating set of P .

– 4⇒ 2.

F (A)

F

��

π

��
P

j

OO

{{
M

φ // n // 0

j the inclusion of P into F (a) as a direct summand. id a ∈ A then f ◦ π(a) = F (a) and bu universal
property F is a homomorphism and φ ◦ F ◦ j = f .

Any free R module is projective. Rn is a free R module on n-generators is projective.

• Ex if R = Z6 then by fundamental thm of finitely generated abelian groups. Z6
∼= Z2 × Z3. Now Z2 and

Z3 are projective Z modules so
⊕i∈I Z2 ⊕j∈J Z3 ⊕k∈KZ6

is still a projective Z6 modules. But Z8, Z4 are not projective Z6 modules.

• What quotients of Z100 are projective.
Z100 →M → 0.

Would need M = Z4,Z25, or Z100 since these are only subgroups for which Z100 can be written as a direct
summand.

• If R = Z the only direct summands of free Z modules will be free Z modules. (i.e Zn or ZA for some
infinite set A.

• Only projective R-modules over a R = a field are free.

• Projective submodules of Z100 which are ideals? 25Z100
∼= Z4, 4Z100

∼= Z25, Z100, 0.

•
M

φ //

F   

N

f
��
D

Given φ, f F always exists, but given φ, F f does not necessarily exists. (Note f ∈ HomR(N,D),
F ∈ HomR(M,D) so induced map φ′ : HomR(N,D)→ HomR(M,D)

12



For example in the diagram

Z 2 //

idZ ��

Z
f
��
Z

f can not be well defined.

• Prop: If

M
φ // N // 0

with φ surjective then

0 // HomR(N,D)
φ′ // HomR(N,D)

with φ′(f) = f ◦ φ.

Proof. Let f ∈ HomR(N,D) with φ′(f) = 0 then f ◦ φ = 0 so f ◦ φ(m) = 0 for all m ∈ M . Since φ onto
we have f(n) = 0 for all n ∈ N so f is the zero map i.e φ′ is injective.

• Prop: If

L
ψ //M

φ // N // 0

is left exact then

0 // HomR(N,D)
φ′ // HomR(N,D)

ψ′ // HomR(L,D)

is right exact.

Proof. have already showed that φ′ is injective. Need to show exactness at HomR(M,D) i.e. imφ′ = kerψ′.
Take f ∈ imφ′ then there is g ∈ HOmR(N,D) with φ′(a) = f so ψ′(f) = ψ′(g ◦φ) = g ◦φ ◦ψ = g ◦ 0 = 0.
so f ∈ kerψ′. so imφ′ ⊂ kerψ′.

Now take f ∈ Kerψ′ then ψ′(f) = 0. then f ◦ ψ(l) = 0 for all l ∈ L. so f(m) = 0 foall m ∈ imψ = kerφ.
Since φ is onto for all n ∈ N there is m ∈ M with φ(m) = n. so define g ∈ HomR(N,D) by g(n) =
g ◦ φ(m) = f(m). Then φ′(g) = g ◦ φ = f . so f ∈ imφ′. so kerψ′ ⊂ imφ′.

13
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7.1 More on projective/injective modules

• Prop. If

L
ψ //M

φ // N // 0

is left exact iff If

0 // HomR(N,D)′
φ // HomR(M,D)

ψ′ // HomR(L,D)

is right exact for all R modules D.

Proof. ⇒ was the previous proposition.

⇐ First we will show that φ′ one to one ⇒ φ onto. Let D = N/φ(M) and consider π1 : N → N/φ(M)
then π1(φ(M)) = 0. Moreover π1 ◦ φ = φ′(π1) = 0 map, so N − φ(M) so φ is onto.

First show that φ ◦ ψ − 0 (i.e imψ ⊂ kerφ). idN ∈ HomR(N,N) so φ′(idn) = idN ◦ φ ∈ HomR(M,N)
then φ′(idN) ∈ kerψ′ and it follows that ψ′ ◦ φ′(idN) = 0⇒ idN ◦ φ ◦ ψ = φ ◦ ψ = 0.

Now see kerφ ⊂ imψ. Let D = M/ψ(L) and π2 : M →M/ψ(L). then ψ′(π2) = π2 ◦ ψ so π2 ◦ psi(L) = 0
so π2 ∈ imφ′ so there is f such that φ′(f) = π2 and if m ∈ ker(φ) then π2(m) = f ◦φ(m) = 0⇒ m ∈ ψ(L)
and we have that ker(φ) ⊂ imψ.

• Prop/Def:

Let Q be an R-module then TFAE

1. If

0 // L
ψ //M

φ // N // 0

is short exact ⇒

0 // HomR(N,D)′
φ // HomR(M,D)

ψ′ // HomR(L,D) // 0

is short exact.

2.

0 // L
ψ //

f
��

M

F~~
Q

∃ F ◦ ψ = f .

3.

0 // Q
ψ //M

φ // N // 0

then Q is a direct summand of M

If any of these conditions hold then we say that Q is injective.

Proof. 1. mostly follows from previous propositions.

2. 2 ⇒ 3.

3.

0 // Q
ψ //

id
��

M

F��
Q

F ◦ ψ = id gives the splitting if i.e. Q is a direct summand.

14



4. 3 ⇒ 2. If Q is a direct summand of M then given

0 // L
f //

g

��

M

Q

(will finish next time)

• Def: An abelian group G is divisible if for all n ∈ Z, nG = G. i.e for all g ∈ G there is g′ ∈ G, with
ng′ = g.

• Ex: Z is not divisible, but Q is.

Given any short exact seq of Z modules.

0 // Zg(m)=nm//

i
��

Z

f��
Q

f always exists f(m) =
m

n
since f ◦ g(m) = m = i(m).

Zn is not divisible for any positive integer n ≥ 2.

Q/Z is injective. for example

0 // Z2
·3 //

f
��

Z6

F}}
Q/Z

with f(1) =
1

2
+ Z, F (n) =

n

6
.

• Baer’s Criterion: An R module Q is injective iff for every g : I → Q where I is a left ideal extends to a
map G : R→ Q.

Proof. ⇒ is a consequence of def of injective:

0 // I i //

g

��

R

G��
Q

where G|I = g

⇐ use Zorn’s lemma. Consider

0 // L
f //M

. WLOG assume that L ⊂M i.e. f(L) ∼= L.

let S = {(f ′, L′) : f ′ : L′ → Q with L ⊂ L′ ⊂ M, f ′|L = f}. Now S 6= ∅ since (f, L) ∈ S. then
(f ′, L′) ≤ (f ′′, L′′) if L′ ≤ L′′ and f ′′|L′ = f ′ given chain

(f1, L1) ⊂ (f2, L2) ⊂ ...

Let L̃ = ∪i=1Li and define f̃ : L̃→ Q by f̃(l) = fi(l) where l ∈ Li.
Not hard to show that (f̃ , L̃) ⊂ S. Then Zorn’s Lemma says that S has maximal elements. Suppose that
(g,M ′) is a maximal element will show that M ′ = M (next time).

15
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8.1 Finish Baer’s theorem

• Baer’s Criterion: An R module Q is injective iff for every g : I → Q where I is a left ideal extends to a
map G : R→ Q.

Proof. ⇒ is a consequence of def of injective:

0 // I
i //

g

��

R

G��
Q

where G|I = g

⇐
0 // L

ψ //

f
��

M

Q

Let S = {(f ′, L′) : L ⊂ L′ ⊂ M ′, f ′|L = f} then S is non empty since (f, L) ∈ S and S is partially
ordered since (f ′, L′) ≤ (f ′′, L′′) iff L′ ⊂ L′′ and f ′′|L′ = f ′. Now let K = ∪i≥1Li and h : K → Q defined
by h(k) = fi(k). C = {Li, fi|i ∈ N} with (Li, fi) ≤ (Lj, fj) which holds if i ≤ j. If (h, k) ∈ S need to
check that h is a homomorphism (DIY). Since there is an upper bound by Zorn’s Lemma, S has maximal
elements.

Since (K,h) is a maximal element we need to show that K = M . Suppose not then there is m ∈M \K.
then K + Rm is a submodule of M . Define I = {r ∈ R : rm ∈ K}, then I is an abelian group. now take
r′ ∈ R then (r′r)m = r′(rm), but rm ∈ K so r′K in K so I is a left ideal. Now if g : I → Q then there is
G : R→ Q extending g.

Then let h̃ : K + Rm→ Q defined by h̃(k + rm) = h(k) + G(r). This makes sense since if rm ∈ K then
r ∈ I so can use g : I → Q. Now if h(k + rm) = k + rm = k′ + r′m′ then k − k′ = r′m′ − rm and
h(k − k′) = h(k)− h(k′) = h(r′m′ − rm). so if G is the extension of g then h(r′m′ − rm) = G(r′ − r′) =
G(r′)−G(r)⇒ h(k′) +G(r′) = h(k) +G(r) so h̃ is well defined. So h̃ : K +Rm→ Q extends h which is
a contradiction.

So K = M and h̃ : M → Q is an extension.

• Theorem: If R is a PID then Q is injective iff for all r 6= 0 in R, rQ = Q.

Note: if R = Z then this says Q is divisible.

Proof. Since R is a PID evey ideal of R is of the form I = (r). Then f : (r)→ Q. by f(r) = q. Q is injective
iff there is F : R → Q with F |(r) = f . Suppose that F (1) = q′ then q = f(r) = F (r) = rF (1) = rq′ so
forall q ∈ Q there is q′ such that q = rq′ ⇐⇒ Q = rQ.

• Thm: Every Z-module is a submodule of an injective Z-module.

Proof. Let M be a Z module there is some subset A ⊂ M such that M = ZA. Consider F = F (a) then
there is π : F →M by π(a) = a by the universal property. Let K = kerπ then

0 // K // F //M // 0

so M ∼= F/K so there is a free Q module on A Q ⊃ F ⊃ K. Moreover Q/K ⊃ F/K. since Q is
a divisible Z module and since Q is injective, Q/K is also divisible and injective since if nq′ = q then
(n+K)(q′ +K) = nq′ +K = q + L.

16



• Show M an R-module is contained in an injective R-module if R has unity.

1. Step 1: Notice HomR(R,M) ⊂ HomZ(R,M) (Since R contains a copy of Z).

2. Step 2: HomZ(R,M) can be made into an R-module via φ ∈ HomZ(R,M) defined by (rφ) : R→M
by (rφ)(r′) := φ(r′r). This defines scalar multiplicaiton by r Need to show (rr̃)φ = r(r̃φ) so compute

((rr̃)φ)(r′) = φ(r′(rr̃)) = φ((r′r)r̃) = r̃φ(r′r) = (r(r̃φ))(r′)

.

3. Step 3: Prop: if R is a ring with unity and 0 → L → M is exact sequence of R-modules then
f : L→ D extends to F : M → D, and f ′ : L→ HomZ(R,D) will extend to F ′ : M → HomZ(R,D).

Proof. Given f ′ : L → HomZ(R,D) define f(l) = f ′(l)(1R). Since f extends to F : M → D can
define F ′(m)(l) = F (m) and this given the extension.

4. Cor: Q is an injective Z-module iff HomZ(R,Q) is an injective R-module.

Proof. M ∼= HomR(R,M) ⊂ HomZ(R,M) ⊂ HomZ(R,Q)

17
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9.1 Flat modules, sequences of Tensors

• Consider 0→ Z→ Q and Z⊗Z Z2
∼= Z2, Q⊗Z Z2

∼= 0.

Since Z2 6= 0, 1⊗ 1 : Z⊗Z Z2 → Q⊗Z Z2 is the trivial map which is not an injection. So tensor products
don’t always preserve injections.

• Prop: L
ψ //M

φ // N // 0 is left exact iff for all R−modules D we have

L⊗R D
ψ⊗1 //M ⊗R D

φ⊗1 // N ⊗R D // 0

is left exact.

Proof. ⇐ Take D = R K ⊗R ∼= K for al R-modiles K then

L⊗R D
ψ⊗1 //

∼=
��

M ⊗R D
φ⊗1 //

∼=
��

N ⊗R D //

∼=
��

0

L
ψ //M

φ // N // 0

⇒. First we show if φ is onto so is φ ⊗ 1. Take n ⊗ d ∈ N ⊗ D. Since φ is onto there is m ∈ M with
φ(m) = n. so n⊗ d = φ(m)⊗ d = φ⊗ 1(m⊗ d) so φ⊗ 1 is onto.

Now we must see we are exact at M ⊗R D.
∑
i∈I

ψ(li) ⊗ do = im(ψ ⊗ 1). Then φ ⊗ 1(
∑
i∈I

ψ(li) ⊗ di) =∑
i∈I

φ ◦ ψ(li) ⊗ di =
∑
i∈I

0 ⊗ di = 0 so im(ψ⊗) ⊂ ker(φ ⊗ 1). To show equality we will consider a map.

φ⊗ 1 decomposes as

M ⊗R D // (M ⊗D)/Im(ψ ⊗ 1) π // (M ⊗D)/Ker(φ⊗ 1)
∼= // N ⊗D

need to show π is an isomorphism so consider π′ : N ⊗RD → (M ⊗RD)/im(ψ⊗ 1). defined by π′(n, d) =
m⊗d where φ(m) = n. To see this is well defined take m′⊗d, m′ = m+ψ(l) then φ(m′) = φ(m+ψ(l)) =
φ(m) + φ ◦ ψ(l) = φ(m) = n, so π′ is well defined. Then by universal property there is π̃ : N ⊗R D →
(M ⊗RD)/im(ψ⊗ 1). Easy to see π′ is R-balanced we have that π̃ is a (right) R-module homomorphism.
Then π̃ ◦ π(m⊗ d) = π̃(n⊗ d) = m⊗ d and π ◦ π̃(n⊗ d) = π(m⊗ d) = φ(m)⊗ d = n⊗ d. So π and π̃ are
inverses so π is an isomorphism. So Ker(φ⊗ 1) = im(ψ ⊗ 1).

• Def/Prop: Let A be a left R-module TFAE

1. If 0 // L
ψ //M

φ // N // 0 is short exact then

L⊗R a
ψ⊗1 //M ⊗R A

φ⊗1 // N ⊗R A // 0 is exact

2. If 0 // L
ψ //M is short exact then

L⊗R a
ψ⊗1 //M ⊗R A is exact.

• If 1 or 2 hold then A is flat. (if tensor sequence implies module sequence exact then A is called faithfully
flat).

• Prop: (Hom tensor adjointness). Let R and S be rings with A a right R-module and B an (R, S) bimodule
and C a right S-module. Then HomS(A⊗R B,C) ∼= HomR(a,HomS(B,C) as abelian groups.
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Proof. take φ ∈ Homs(A ⊗R B,C) for a fixed a define Φ(a) ∈ HomS(B,C) by Φ(a)(b) = φ(a ⊗ b). We
can do this for each a ∈ A so we get a homomorphism Φ : a→ Φ(a). Now take f : HomS(A⊗R B,C)→
HomR(A,HomS(B,C)) defined by f(φ) = Φ.

Now take Φ ∈ HomR(A,HomS(B,C)

A×B

��

(a, b)

��
c Φ(a)(b)

Not hard to show that such a map is R-balanced. This map induces a homomorphism g : A ⊗R B → C
by φ(a ⊗ b) = Φ(a)(b). THen g : HomR(A,HomS(B,C)) → Homs(A ⊗R B,C) then g(φ) = Φ then
f ◦ g(φ) = f(Φ) = φ and g ◦ f(φ) = g(φ) = Φ so f and g are inverses giving that f an isomorphism.

9.2 dual vector spaces

• F a field and V is an F -vector space. The dual space of V is V ∗ = HomF (V, F ). If V is finite dimensional

with basis {v1, ..., vn} = B and defined v∗i ∈ V ∗ by v∗i (vj) = δij then v∗i (
∑

ajvj) = ai so v∗i is a basis of

V ∗. (note in the infinite dimensional case the v∗i may not span the dual space)

• V ∗∗ = HomF (V ∗, F ) = HomF (HomF (V, F ), F ).
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10.1 Vector spaces

• Prop: let V be an F -vector space. Then there is an injective homomorphism (linear map) θ : V → V ∗∗

defined by θ(v) = Ev where Ev : V ∗ → F , Ev(f) = f(v).

Note Ev ∈ V ∗∗ then Ev(f + g) = (f + g)(v) = f(v) + g(v) = Ev(f) + Ev(g) and for r ∈ F Ev(rf) =
(rf(v) = r(f(v)) = rEv(f).

Proof. We can start with v and extend to a basis of V which has v ∈ B. then V ∗ : V → F by V ∗(v) = 1
and V ∗(w) = 0 for all w 6= v, w ∈ B. Then Ev(v

∗) = V ∗(v) = 1. θ(v) is not the zero map since
θ(v)V ∗ = Ev(V

∗) = 1 6= 0. Since this can be done for all nonzero v we have Kerθ = 0 ⇒ θ is 1-1. Then
θ(v + αw) = Ev+αw. Now just need to show Ev+αw = Ev + αEw . so compute Ev+αw(f) = f(v + αw) =
f(v) + αf(w) = Ev(f) + αEw(f), this holds for every f ∈ V ∗ so we have Ev+αw = Ev + αEw .

10.2 graded rings

• We say a ring R is graded if R = ⊕∞i=0 where Ri are R0-modules and RiRj ⊂ Ri+j.

Ri is the set of all homogeneous elements of R of degree u.

• Ex: R = k[x] is graded ring with deg(x) = 1. R0 = k, Ri = kxi then kxi · kxj = kxi+j so RiRj = Ri+j.

can put a different grading on R = k[x] if deg(x) = 2 then R0 = k, R1 = 0 and R2 = kx, R3 = 0. and
R2n+1 = 0 and R2n = kxn

Non-homogeneous element of k[x] with standard grading. i.e. x + x2 non-homogeneous wheras x, x2 are
homogeneous.

Take k[x, y] with R0 = k, R1 = 0, R2 = kx, R3 = ky, R4 = kx2, R5 = kxy, R6 = kx3ky2.

• An ideal in a graded ring is graded is I = ⊕∞i=0I ∩ Ri of I = ⊕∞i=0Ii with each Ii in the ith homogeneous
piece and RiIj ⊂ Ii+j.

if R graded and I a graded R-ideal then R/I is a graded ring

with R/I = ⊕∞i=0Ri/Ii.

• Suppose R is a commutative ring with unity, M is an R-module then left and right actions of R on M
agree.

• define T k(M) = M ⊗RM ⊗ ....⊗M . Then the simple tensors in T k(M) are of the form m1⊗m2⊗ ...⊗mk

.

Note
r(m1 ⊗m2 ⊗ ...⊗mk) =

rm1 ⊗m2 ⊗ ...⊗mk =

m1 ⊗ rm2 ⊗ ...⊗mk = ...

= m1 ⊗m2 ⊗ ...⊗ rmk

• f : M × ...×Mn → N with Mi, N R-modules . then f is multilinear if

f(m1, ...,mi +m′i, ...,mn) = f(m1, ..,mi, ..,mn) + f(m1, ..,m
′
i, ...,mn)

and
f(m1, ..., rmi, ....mn) = rf(m1, ..,mi, ...,mn)

for all i.

20



• Define T (M) = ⊕∞i=0T
k(M) called the tensor algebra of M . defined multiplication for m1⊗m2⊗ ...⊗mi ∈

T i(M) and m′1 ⊗m′2 ⊗ ...⊗m′j ∈ T j(M) by

(m1 ⊗m2 ⊗ ...⊗mi)(m
′
1 ⊗m′2 ⊗ ...⊗m′j) := m1 ⊗m2 ⊗ ...⊗mi ⊗m′1 ⊗m′2 ⊗ ...⊗m′j ∈ T i+j(M)

. This is a well defined multiplication justified through the universal property for tensors.

• universal property for tensor algebras: Let A be an R-algebra and φ : M → A an R-module homo-
morphism. then there is a unique Φ : T (M) → A such that φM = Φ. Proof by universal property of
tensors.

• Ex: Let M = Zn a Z module. Then since Zn ⊗n Zn ∼= Zn so T k(M) ∼= Zn for all k ≥ 1 (T 0(M) = Z) and
T (M) ∼= Z⊕ Zn ⊕ Zn ⊕ ... ∼= Z[x]/(nx)

• Ex: Let M = Q then T 0(M) = Z and T k(M) = Q for k ≥ 1. So T (M) ∼= Z⊕Q⊕Q⊕ ... ∼= Z + xQ [x].

• Ex: Take M = Q/Z then T 0(M) = Z, T 1(M) = Q/Z and T k = 0 for k ≥ 2. so T (Q/Z) = Z⊕Q/Z.

• Def: φ : M × ... ×M → N is symmetric multilinear if φ(m1, ...,mk) = φ(σ(m1), ..., σ(m2)) for all σ ∈ Sk
(the symmetric group).
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11.1 Symmetric and Tensor Algebras

• Consider M = k[x, y] as a k-module/k-Vector space. Then

T 0(M) = k,

T 1(M) = k[x, y],

T 2(M) =< f(x,y) ⊗ g(x,y) >= k < xi ⊗ yj, yj ⊗ xi, xi ⊗ xj, yi ⊗ xj >
note since we’re tensoring over k we have xi ⊗ xj 6= xi−1 ⊗ xj+1, xi ⊗ yj 6= yj ⊗ xi, etc...

• consider an ideal C(M) of T (M) where C(M) is the ideal generated by m ⊗ n − n ⊗ m. Then we can
C0(M) = 0, C1(M) = 0,

C2(M) =< m⊗ n− n⊗m : m,n ∈M > .

C3(M) =< k ⊗m⊗ n− k ⊗ n⊗m,m⊗ n⊗ k − n⊗m⊗ k : k,m, n ∈M >

The symmetric algebra of M is T (M)/C(M) = ⊕k≥0T
k(M)/Ck(M) = S(M). we denote by Sk(M) =

T k(M)/Ck(M).

We have T 0(M) = S0(M) and T 1(M) = S1(M) but they can be different at degree 2 and higher.

• Let k be a field and M = k. So 1 is my basis for k as a vector space. then T (k) = ⊕∞i=0k
∼= k[x] which is

commutative. Basis is 10, 11, 11⊗11, ..., 11⊗ ...⊗11, ... with 11 → x and 11 ⊗ ...⊗ 11︸ ︷︷ ︸
k−times

→ xk so T (k) = S(k).

But if we move to a 2-D vector space V we have C2(V ) =< v1 ⊗ v2 − v2 ⊗ v1 : v1, v2 ∈ v >6= 0.

Sk(M) = M ⊗ ...⊗M︸ ︷︷ ︸
k−times

/ < m1 ⊗ ...⊗mk −mσ(1) ⊗ ....⊗mσ(m) : σ ∈ Sm >

• Universal property for symmetric multilinear maps: Suppose φ(M × ... ×M) → N is symmetric multi-
plinear. Then there is a unique Φ : Sk(M)→ N such that φ = Φ ◦ i where i : M × ...×M︸ ︷︷ ︸

k−times

→ Sk(M) with

i(m1, ...,mk) = m1 ⊗ ...⊗mk + Ck(M).

• Universal property for R-algebras.

If φ : M → A with M an R-module and A an R-algebra then there is a unique Φ : S(M)→ A such that
Φ|M = φ.

φk : M×...×M → A defined by φk(m1, ...,mn) = φ(m1) · · ·φ(mk). Since A is commutative φk is symmetric
and also not hard to show that it is multilinear.

• Alternating Maps: φ : M × ....×M︸ ︷︷ ︸
k−times

→ N is an alternating multilinear map if φ is multilinear and

φ(m1, ...,mk) = 0 if mi = mj for some i 6= j.

• Exterior algebra: Let A(M) be the ideal generated by m ⊗m This is graded with A0(M) = A1(M) = 0
and A2(M) =< m ⊗m : minM >, A3 =< n ⊗m ⊗ n,m ⊗m ⊗ n,m ⊗ n ⊗m : m,n ∈ M >. The the
exterior algebra of M is T (M)/A(M) =: ∧M .

∧M can also be thought of as ⊕∞i=0T
i(M)/Ai(M) = ⊕∞i=0∧i (M). In this setting we have (m⊗n)+A(N) =:

m ∧ n.

• ex we have m ∧m for all m so, (m+ n) ∧ (m+ n) = 0 but by bilinearity we have

(m+ n) ∧ (m+ n) = m ∧ (m+ n) + n ∧ (m+ n) =

m ∧m+m ∧ n+ n ∧m+ n ∧ n⇒
m ∧ n+ n ∧m = 0⇒ m ∧ n = −n ∧m

sometimes it is useful to think of

∧k(M) = T k(M)/ < m1 ⊗ ...⊗mn : ∃ i, j s.t.mi = mj >
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• Universal Prop for alternating multilinear maps: Given φ : M × .... × M → N which is alternating
multilinear then there is a unique Φ : ∧k(M)→ N with φ = Φ ◦ i. where i : M × ...×M → ∧k(M) with
i(m1, ...,mk) = m1 ∧ ... ∧mk
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12 Feb 17

12.1 More on exterior, alternating and symmetric algebra

• Suppose that V is an n-dimensional F -vector space (M a rank n free R-module), Then

dim ∧k V =

(
n

k

)
, (rank ∧k M =

(
n

k

)
).

If e1, ..., en is a basis for V then {ei1 ∧ ... ∧ eik |i1 < ... < ik} is a basis for ∧kV .

For the symmetric algebra Sk(M) will have n2 −
(
n

k

)
basis elements.

• Suppose that V is 2-dimensional with basis e1 and e2. Bases for T 2(V ), S2(V ),∧2(V ).

T 2(V ) basis is e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2.

S2(V ) basis is e1 ⊗ e1, e2 ⊗ e2. e1 ⊗ e2.

∧2(V ) basis is e1 ∧ e2.

• R = Z[x, y], I = (x, y) is not a free R-module. Consider φ : I × I → Z by

φ(a(x, y)x+ b(x, y)y, c(x, y)x+ d(x, y)y) = a0,0d0,0 − b0,0c0,0

where subscript 0, 0 denotes constant terms (in general subscript (n,m) indicates coef of xnym. Lots of
writing but not hard to show that this is bilinear. Also easy to check that it is alternating i.e. φ(a(x, y)x+
b(x, y)y, a(x, y)x+ b(x, y)y) = 0.

So there is a unique Φ : ∧2I → Z by

Φ(ax+ by, cx+ dy) = a0,0d0,0 − b0,0c0,0.

Note Φ(x ∧ y) = 1. So we have ∧2 Z [x, y] = 0 but ∧2I 6= 0 so ∧1I → ∧2R is not an injection.

• Suppose that η ∈ T k(M). We say that η is symmetric if σ(η) = η for all σ ∈ Sk. where σ is defined by
action on simple tensor by σ(m1 ⊗ ...⊗mk) by mσ−1(1) ⊗ ...⊗mσ−1(k).

Define ε(σ) := sign(σ) (positive if σ is product of even number of transpositions and negative if product
of odd number of transpositions.

We say that n ∈ T k(M) is alternating if σ(η) = ε(σ)η for all σ ∈ Sk.

• Ex k = 3.

e1 ⊗ e2 ⊗ e3 + e1 ⊗ e3 ⊗ e2 + e2 ⊗ e1 ⊗ e3 + e2 ⊗ e3 ⊗ e1 + e3 ⊗ e1 ⊗ e2 + e3 ⊗ e2 ⊗ e1

is a symmetric tensor in T 3(V ) where V is 3-dimensional.

e1 ⊗ e2 ⊗ e3 − e1 ⊗ e3 ⊗ e2 − e2 ⊗ e1 ⊗ e3 + e2 ⊗ e3 ⊗ e1 + e3 ⊗ e1 ⊗ e2 − e3 ⊗ e2 ⊗ e1

is an alternating tensor.

• Define: Sym : T k(M) → T k(M) by Sym(η) =
∑
σ∈Sk

σ(η). Notice that Sym(η) is always a symmetric

tensor.

• Define Alt : T k(M) → T k(M) by Alt(η) =
∑
σ∈Sk

ε(σ)σ(η). Notice that Alt(η) is always an alternating

tensor.

• we have a 1-1 correspondence
1

k!
Sym : Sk(M) ↔ { symmetric tensors }. Similarly

1

k!
Alt : ∧k(M) ↔

{ alternating tensors }
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12.2 modules and vector spaces over PIDs

• Let F be a field and F [x] a PID. Let V be an F -vector space. Can make V into an F [x] module given a
linear transformation T : V → V let T 0 = I, T 1 = T , T 2 = T ◦ T , ...

Then can define, for any polynomial p = anx
n + ...a0, p(x) · v = p(T )(V ) = anT

n + ....a0I.

• Ex: If T = 0 then T i = 0 for all i so p(T ) · v = a0Iv = a0v.

• If T = I then p(T )(v) = (an + ...+ a0)v.

• Let V be d dimensional define T (x1, ..., xd) = (0, x1, ..., xd−1). Then we have T (ei) = ei+1 for i 6= d and

T (ed) = 0. and T k(ei) =

{
ei+k 1 ≤ i ≤ d− k
0 otherwise

.

Then for d > n, P (T )(e1) = a0e1 + a2e3 + ...anen+1. and for d ≤ n, P (T )(e1) = a0e1 + a2e3 + ...ad−1ed.

Similarly for P (T )(e2).
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13 Feb 19

• Homework: 11.5 - 12,14. 12.1 5,6,13,14,15 Due Friday Feb 28

13.1 More on Modules over PID

• from last time define T: V → V , e1, ..., en a basis of V , by T (x1, ..., xn) = (0, x1, ..., xn−1) then

T k(ei) =

{
ei+k 1 ≤ i ≤ n− k
0 otherwise

.

If m < n and amx
m + ...+ a0 then (amx

m + ...+ a0)(ei) = (0, 0, ..., a0︸︷︷︸
ith

, a1, ..., ak.

• Note: There is a 1-1 correspondence between

{V : V an F [x]−module}

and
{F vector space V paired with linear trans T}.

If V is an F [x] module and T is the linear transformation that describes the action of x on a vector. Let
W be an F -vector space of V . consider T (W ). Is W a submodule of V with respect to the F [x] action on
V . We have p(x)(w) = p(T )(w) ∈ V when is this in W? Need T (w) ∈ W , i.e when W is T -invariant. So -

W will be an F [x] submodule of W iff T (W ) ≤ W i.e. W is T -invariant or T -stable.

for the example above with T (ei) = ei+1 then Wi = {(0, .., 0, xi, .., xn : xi ∈ F} are T -invariant. but
Ui = {(x1, ..., xi, 0, 0, ..., 0} is not T -invariant.

• A finitely generated R-module M has rank n if the largest number of linearly independent elements in M
is n.

Ex: M = Rn has rank n. However if the module is not free then the rank is not necessarily equal to the
number of generators.

Ex: In Z[x.y], I(x, y) then if we let x = y, b = −x then ax + by = 0 with a 6= 0 and b 6= 0 so x, y are
linearly dependent. Hence rankI < 2. Now {x} is an R-linearly independent set so RankI = 1.

• Def: An R-module M is Noetherian if N1 ⊂ N2 ⊂ ... ⊂ Ni ⊂ ... is any chain of submodules in M there
is n such that for all i ≥ n, Ni = Nn. i.e. any ascending chain of submodules stabilizes (ascending chain
condition).

If all submodules of M are finitely generated then M is Noetherian.

Note! ascending chain condition and Noetherian are equivalent conditions (proved last semester).

• Theorem. Let R be a PID, M a free module of rank n and N ⊂ M then N is a free submodule of rank
m ≤ n. Moreover there is a basis y1, ..., yn of M such that a1y1, ..., amym is a basis of N and a1 divides a2

divides ... divides am.

Proof. take φ : M → R then φ(N) =⊂ R is a principle ideal i.e. there is aφ ∈ R with φ(N) = (aφ). now
let Σ = {(aφ) : φ ∈ HomR(M,R)}. Now for any 2 elements (aφ), (aψ) there is d the GCD of aφ and aψ,
(d) = {rφaφ + rψaψ : rφ, rψ ∈ R} and we have (aφ) ⊂ (d) and (aψ) ⊂ (d). Then by noetherianess we
have that σ will have maximal elements. let ν(N) = (a3) be a maximal element. Then aν 6⊂ (aφ) for
Σ 3 (aφ) 6= (anu). Set a1 = aν . Let x1, ..., xn be a basis of M then there is u ∈ N with ν(y) = a. The map
πi : M → R by πi(b1x1 + ....+ bnxn = bi. Now since a1 6= 0, N 6= 0 so πi(N) 6= 0 for at least 1 i.

We need to show for any φ ∈ HomR(M,R), a1|φ(y). Now (d) = (a1, φ(y)) and d = r1a1 + r2φ(y). Let
ψ(r1ν + r2ψ. then ψ(y) = r1a1 + r2φ(y) = d. So d ∈ ψ(N), but also (d) ⊂ ψ(N) and (a1) ⊂ (d) ⊂ ψ(N).
so ψ(N) ⊂ (a1)⇒ (d) = (a1) so a1|φ(y).
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Now a1|πi(y) for all i. Then π1(y) = aibi. Let y1 =
n∑
i=1

bixi. then a1y1 =
∑

a1bixi =
∑

πi(y)xi = y.

Since a1 = ν(y) = ν(a1y1) = a1ν(y1) so ν(y1) = 1. So we may write M = Ry1 ⊕Ker(ν) since for x ∈ M
we have x = ν(x)y1︸ ︷︷ ︸

∈Ry1

+ (x− ν(x)y1)︸ ︷︷ ︸
∈ker(ν)

. NOw if r1y1 = kerν ∩Ry1 then r1 = r1ν(y1 = ν(r1y1) = 0.

Then N = Ra1y1 ⊕ kerν ∩N .

Can repeat this process to get direct sum decomposition.
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14 Feb 21

14.1 midterm 1 review

• sections 10.1- 10.5, 11.3, 11.5.

• Major topics:

1. HomR(N,M)

2. free modules (Universal property)

3. direct sums

4. tensor products (universal property)

5. diagram chasing (definitely on test, look at unassigned diagram chasing problem)

6. projective modules

7. injective modules

8. flat modules.

9. dual vector spaces.

10. tensor algebras

• recall A2(V ) =< v ⊗ v : v ∈ V >

• basis for T 2(V ), V = F 3 with char(F ) 6= 2. then basis of V is e1, e2, e3 and basis for T 2(v) = e1⊗ e1, e1⊗
e2, e1 ⊗ e3, e2 ⊗ e2, e2 ⊗ e2, e2 ⊗ e3, e3 ⊗ e1, e3 ⊗ e2, e3 ⊗ e3, e1 ⊗ e2.

In C2 we identify ej × ei with ei ⊗ ej so basis for S2(V ) = T 2/C2 is e1 ⊗ e1 + C2, e2 ⊗ e2 + C2(V ), e3 ⊗
e3 + C2, e1 ⊗ e2 + C2(V ), e1 ⊗ e3 + C2(V ), e2 ⊗ e3 + C2(V ).

• example on flatness: R comm ring. M flat right R-module, N and (R, S) bimodule a flat S module. (from
homework).

if 0 // L // K injection of S modules. Then 0 // N ⊗S L // N ⊗s K is an injection of R
modules since N is flat S-module

then 0 //M ⊗R (N ⊗S L) //M ⊗R (N ⊗s K) is an injection since M is flat R module.

but by prop of tensors M ⊗R (N ⊗S L) ∼= (M ⊗R N)⊗S L and M ⊗R (N ⊗S K) ∼= (M ⊗R N)⊗S K so

0 // (M ⊗R N)⊗S L // (M ⊗R N)⊗S K in an injection as well.

• 10.5 problem 1d see book for statement:

There is c ∈ C with γ(c) = 0. since φ is surjective there is b ∈ B with φ(b) = x then 0 = γ(x) = γ ◦φ(b) =
φ′ ◦ β(b). then β(b) ∈ ker(φ′) = im(ψ′). Now there is a′ ∈ A′ with ψ′(a′) = β(b) since α is surjective there
is a ∈ A with α(a) = a′ then β ◦ ψ(a) = ψ′ ◦ α(a) = ψ′(a′) = β(b). Since β is injective b = ψ(a) and
φ(b) = φ ◦ ψ(a) = 0 but φ(b) = c = 0 so γ is injective.

Note to show a map is injective when diagram chasing start in top row. to show a map is surjective start
in bottom row.

• know examples, how to identify which modules are projective, injective, flat i.e. free ⇒ flat, projective ⇒
flat.

Ex: Z2[x] as a Z-module. Not free Z module since it has torsion. Since it has torsion not projective. not
divisible so its not injective. Also not flat (has torsion).

Ex: Z2[x] as a Z6-module. then is projective since Z2 is a direct summand of Z6. is divisible so it is
injective. and is flat (since it is projective).

Ex: Z as a Z module is projective but not projective

Ex: Q is injective but not projective

Ex: Q/Z is injective but not flat.
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15 Feb 26

• Note about test: For tensor product problem:

A× (B ⊗R C)

φ1
��

i // A⊗R (B ⊗R C)
Φ1

uu
(A⊗R B)⊗R C

for φ1(a, b ⊗ c) → (a ⊗ b) ⊗ c need to show that φ1 is bilinear. Then make similar diagram switching A
and C to get Φ2. Then Φ1 ◦ Φ2 = Φ2 ◦ Φ1 = Id.

15.1 Fundamental theorem for finitely generated PIDs

• Suppose M is a finitely generated module over a PID. Then M is isomorphic to Rk⊕R/(ai)⊕ ...⊕R/(am)
where a1|a2|...|am. In order to produce such a decomposition we can use the matrix game.

• F [x] is a PID when F is a field. If V is an F vector space and T a linear transformation then there is a
1-1 correspondence between F [x] modules and the pairs (V, T ).

• Recall some facts from linear algebra: λ is an eigenvalue of T if there is a non-zero vector v ∈ V with
Tv = λv. In this case we say that v is an eigenvector of T .

The eigenspace of λ is Eλ = {v ∈ V : Tv = λv}.
Note the following are equivalent:

1. λ is an eigenvalue of T

2. T − λI = 0. is non-singular linear transformation.

3. det(T − λI) = 0.

The characterisitc polynomial for a linear transformation T : V → V is CT (x) = det(xI − T ). Note that
if λ is an eigenvalue of T then CT (λ) = 0. By Fundamental theorem of fintely generated modules over

PIDs we have V ∼=
F [x]

a1(x)
⊕ ... ⊕ F [x]

am(x)
with a1(x)|a2(x)|....|am(x). Then we have am(x)V = 0. We say

the annihilator of V is the biggest ideal of F [x] such that IV = 0. In this case we have (am(x)) = AnnV .

The monic polynomial which is an associate of am(x) is called the minimum polynomial of T .

Consider F [x]/(a(x)) with a(x) = xn + an−1x
n−1 + ... + a0 monic. x1̄ = x̄. xx̄ = x̄2 and so on until

xx̄n−1 = x̄n = −a0 − a1x̄− ...an−1x̄
n−1.

So as an operator on F [x]/(a(x)), x can be represented by the matirx

x =


0 0 .... 0 −a0

1 0 .... 0 −a1

0 1 .... 0 −a2
...

. . .

0 0 .... 1 −an−1


This is called the companion matrix to a(x), Ca(x)

The rational canonical form (RCF) for
F [x]

a1(x)
⊕ ...⊕ F [x]

am(x)
with each ai(x) monic is


Ca1(x) 0 ... 0

0 Ca2(x) ... 0

0 0
. . . 0

0 0 . . . Cam(x)


29



given T : V → V create the matrix XI − T with respect to some basis (T (b1)...T (bn)) = A each T (bi) is
a column of A. then play the matrix game on xI − A to produce

1 0
. . .

1
a1(x)

. . .

am(x)



Matrix game with A =

(
2 1
3 4

)
(
x− 2 −1
−3 x− 4

)
→
(
−1 x− 2
x− 4 −3

)
→
(

1 2− x
x− 4 −3

)

→
(

1 2− x
0 −x2 − 6x+ 5

)
→
(
1 00 x2 − 6x+ 5

)
rcf is

(
0 −5
1 6

)
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16 Feb 28

16.1 More on rational Cannonical form

• Rational Canonical form is unique.

will show Ca(x) companion matrix for a(x) is unique. Given T , multiplying by x(T ) generates all the
basis elements. If we have subspaces Di which are T invariant it is enough to determine the ei for that
particular polynomial. i.e. given F [x]/(bi(x)) ∼= Di. Then T jei will give us the rest of the basis elements
for the block. So given b1|b2|....|bt such that V ∼= F [x]/(b1)⊕ ...⊕ F [x]/(bt) and F [x]/(bi(x)) ∼= Di. There
is a basis e1, T e1, ..., T

m−1e1, e2, T e2, ..., T
nt−1et. which puts T into the formCb1(x) 0

· · ·
0 Cbt(x)


If mT (x) = am(x) then bt(x)|am(x) and am(x)|bt(x) can work backwards to see that ai(x) = bi(x).

If S and T are similar matrices then they have the same invariant factors so the same rational canonical
form.

In particular if S ∼ T then There is UinV such that S = U−1TU so US = TU . Now if Sx ⊆ W for
some x ∈ W then UW is a subspace isomorphic to W (by invrtibility of U . Then TU(x) ⊂ UW ( since if
Sx = w ∈ W then T (Ux) = USx = Uw ∈ UW .

• Theorem: (Cayley Hamilton) if CT (x) = a1(x) · · · am(x) then am is the minimum polynomial mT (x). In
parituclar if CT (T ) = 0 then MT (T ) = 0. More generally mT (x)|CT (x) and CT (x)|MT (x)m and MT (x)n

for n ≥ m.

Ex: Suppose that A is a 3× 3 matirix with CA(x) = (x− 1)2(x+ 1). How many rational canonical forms
correspond to this characteristic polynomial?

invariant factors RCF

(x− 1)2(x+ 1)

0 0 −1
1 0 1
0 1 1



(x− 1), x2 − 1

1 0 0
0 0 1
0 1 0


Ex. Find all 4× 4 matrices with minimum polynomial x2 − 1.

invariant factors RCF

x2 − 1, x2 − 1


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



(x− 1), (x− 1), x2 − 1


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



(x+ 1), (x+ 1), x2 − 1


−1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0


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Ex: Problem from jan qual: A is a 10 × 10 matrix satisfying A10000 = 0 show A10 = 0 let f(x) = x10000

only irreducible factor of x10000 is x. So characteristic polynomial divides x10000 and has degree 10 so
CA(x) = x10 is the only polynomial dividing f having degree 10. Since the matrix has to be a zero of the
characteristic polynomial it follows that A10 = 0.

• To find the RCF of a matrix A we play the matrix game on XI − A.

Rules for matrix game:

1. Can swap rows or cols

2. Multiply by any non-zero element of F

3. replace a row/column by sum of multiple of that row/column with multiple of another row/column.

• note if you keep track of ROW ops (not col) then you can reconstruct invariant factors.

• EX:

A =

2 −3 3
0 −3 5
0 1 1


XI − A =

x− 2 3 −3
0 x+ 3 −5
0 −1 x− 1

→ (R1 ↔ R3)

XI − A =

 0 −1 x− 1
0 x+ 3 −5

x− 2 3 −3

→ (C1 ↔ C2)

XI − A =

 −1 0 x− 1
x+ 3 0 −5

3 x− 2 −3

→ (−R1)

XI − A =

 1 0 1− x
x+ 3 0 −5

3 x− 2 −3

→ (−(x+ 3)R1 +R2 → R2,−3R1 +R3 → R3)

XI − A =

1 0 1− x
0 0 x2 + 2x− 8
0 x− 2 3x− 6

→ ((x− 1)C1 + C3 → C3)

XI − A =

1 0 0
0 0 x2 + 2x− 8
0 x− 2 3x− 6

→ (R2 ↔ R3)

XI − A =

1 0 0
0 x− 2 3x− 6
0 0 x2 + 2x− 8

→ (−3C2 + C3 → C3)

XI − A =

1 0 0
0 x− 2 0
0 0 x2 + 2x− 8


So we have

RCF =

2 0 0
0 0 8
0 1 −2


.

To get invariant factors start with identity matrix and modify step by step with an operation for each row
operation in the order in which they came.

modification:

If we Ri ↔ Rj then swap Ci ↔ Cj.
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If we uRi → Ri then modify u−1Ci → Ci

If we a(x)Ri +Rj → Rj then modify −a(x)Cj + Ci → Ci.

The result of this will provide a matrix with the generators of the invariant factors
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17 March 2

17.1 More on RCF/matrix game

• last time we had 2 −3 3
0 −3 5
0 1 1


and performed the sequence of row operations

1. R4 ↔ R3

2. −R1

3. −(x+ 3)R2 +R2 → R2

4. −3R1 +R3 → R3

5. R2 ↔ R3.

on xI − A.

Now if we start with identity matrix and perform these on columns we get generators of the invariant
factors. 1 0 0

0 1 0
0 0 1

→ (C1 ↔ C3)

0 0 1
0 1 0
1 0 0

→ (−C1)

 0 0 1
0 1 0
−1 0 0


Now x+ 3 ∼ A+ 3I =

5 −3 3
0 0 5
0 1 4

 so to perform ((x+ 3)C2 + C1 → C1) we replace (x+ 3)C2 with the

column generated by (A+ 3I)c2 the resulting matrix is−3 0 1
0 1 0
0 0 0

→ (3c3 + c1 → c1

0 0 1
0 1 0
0 0 0

→ (c2 ↔ c1)

0 1 0
0 0 1
0 0 0


So can produce basis from e1 and e2

Now Ae1 = 2e1, Ae2 =

−3
−3
1

 and so U =

1 0 −3
0 1 −3
0 0 1

, U−1 =

1 0 3
0 1 3
0 0 1

 and U−1AU =

2 0 0
0 0 8
0 1 −2


which is a rational canonical form which corresponds to (x− 2), x2 + 2x− 8 = (x− 2)(x+ 4) as desired.
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17.2 Jordan Canonical Form

• Assume elementry divisors are powers of linear factors and we have a1(x)|a2(x)|...|am(x). The eigenvalues
are λ1, ..., λt so we may write

a1(x) = (x− λ1)α11 · · · (x− λt)α1t

...

aj(x) = (x− λ1)αj1 · · · (x− λt)αjt

where the αik may be zero. For i = 0, ..., j − 1.

• Suppose we have F [x]/(x−λ)k can choose basis as (x̄−λ)k−1, (x̄−λ)k−2, ..., (x̄−λ), 1. now we can compute

x(x̄− λ)k−1 = λ(x̄− λ)k−1 + (x̄− λ)k = λ(x̄− λ)

, similarly
x(x̄− λ)k−2 = λ(x̄− λ)k−2 + (x̄− λ)k−1

and
x(x̄− λ)i = λ(x̄− λ)i + (x̄− λ)i+1

until finally
x · 1 = λ+ x̄− λ

Hence multiplication by x is represented by the matrix
λ 1 0 . . . 0
0 λ 1 . . . 0

0
. . .

0 0 0 0 λ


called the JOrdan block for (x− λ)k. A Jordan Canonical form for a matrix A is

J1 0
J2

. . .

0 Js


where each Ji is a Jordan block.

• Ex for the matrix

(
2 1
3 4

)
we had RCF =

(
0 −5
1 6

)
so eigenvalues were 2, 3 so jordan form is

(
2 0
0 3

)
.

• Ex we did RCF of 3× 3 matrices with char poly (x− 1)2(x + 1) has ele divisors (x− 1), (x− 1), (x + 1)

or (x− 1)2, x+ 1 these correspond to

1 0 0
0 1 0
0 0 −1

 and

(
1 1 0
0 1 00 0 −1

)

• Ex: 4× 4 with minimal poly x2 − 1. had 3 sets of invariant factors

1. x2 − 1, x2 − 1

2. x− 1, x− 1, x2 − 1

3. x+ 1, x+ 1, x2 − 1.

which correspond to elementary divisors

1. x− 1, x− 1, x+ 1, x+ 1

2. x− 1, x− 1, x− 1, x+ 1

3. x+ 1, x+ 1, x+ 1, x− 1
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and JCFs of

1.


1
0 1
0 0 −1
0 0 0 −1



2.


1
0 1
0 0 1
0 0 0 −1



3.


1
0 −1
0 0 −1
0 0 0 −1


• In example finished at beginning of class we have invariant factors of (x − 2), x2 + 2x − 8 so elementary

divisors x− 2, x− 2, x+ 4 and JCF

2 0 0
0 2 0
0 0 −4


Can get this if we don’t already have RCF by following procedure:

In this case we had e1 generated a cyclic submodule of dim 1 and e2 generate a cyclic submodule of dim 2.

Suppose that f generates V ∼= F [x]/(a(x)) with a(x) = (x − λ1)α1 · · · (x − λt)αt . then
a(x)

(x− λi)

αi

gives

generators for submodule F [x]/(x− λi)αi .

Apply this to case above we have
x2 + 2x− 8

x− 2
e2 = (x+4)e2 = (A+4I)w2 = (−3, 1, 1) and

x2 + 2x− 8

x+ 4
e2 =

(x− 2)e2 = (−3,−3, 1) then U =

1 −3 −3
0 1 −5
0 1 1

 and U−1AU =

2 0 0
0 2 2
0 0 −4



36



18 March 4

18.1 More on Jordan Form

• To find P such that P−1AP = J where J is the Jordan form of A. let CA(x) = det(A − xI) is char
polynomial CA(x) = (x− λ1)m1 ...(x− λs)ms . F algebraically closed. Follow the process

1. For each λi calculate N(A− λiI). dim(N(A− λiI)) tells how many cyclic subspaces there are of the
form F [x]/(x− λi)sij there are. si1 + ...siri = mi.

2. Compute the null space N(A− λiI)k) for 2 ≤ k until dim(N(A− λiI)k) = mi the multiplicity of λi.
Stop at the smallest k where this happens - k = max{sij : 1 ≤ j ≤ ir}.
denote by Eλi = {v : λiv = Av} the eigenspace of λi. and let Gλi = {v : ∃ k s.t. (A − λiI)kv = 0}
the generalized eigenspace of λ.

3. Choose vi1 ∈ Gλi , vi1 ∈ N((A − λiI)k) \ N((A − λiI)k−1) then vi1, (A − λiI)vi1, ..., (A − λiI)k−1vi1
generate a cyclic subspace isomorphic to F [x]/(x− λi)k.

4. If k = mi, done. If not there is vi2 ∈ N(A − λiI)k \ N((A − λiI)k−1 ∪ span{(A − λiI)jvi1}k−1
j=0 .

generate vi2, (A − λiI)vi2, ...(A − λiI)k−1vi2 repeat if necessary. If there is not vi2 ∈ N(A − λiI)k \
N((A−λiI)k−1∪span{(A−λiI)jvi1}k−1

j=0 the search next in N(A−λiI)k−1) for such vectors. generate

vi2, (A − λiI)vi2, ...(A − λiI)k−2vi2. Keep going until we have a basis of Gλi formed by the cyclic
subspace bases.

• Ex: A =


3 1 4 2
−1 1 −3 3
0 0 2 0
0 0 0 3

 char poly is (x− 2)3(x− 3).

Now

A− 3I =


0 1 4 2
−1 −2 −3 3
0 0 −1 0
0 0 0 0


which has row eschelon form of 

1 0 0 −7
0 1 0 2
0 0 1 0
0 0 0 0


which gives (7,−2, 0, 1) as the eigenvalue for 3.

Now

A− 2I =


1 1 4 2
−1 −1 −3 3
0 0 0 0
0 0 0 1


which has row eschelon form of 

1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


which gives (−1, 1, 0, 0) as the eigenvalue for 2.

Now

(A− 2I)2 =


0 0 1 9
0 0 −1 −2
0 0 0 0
0 0 0 0


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which has row eschelon form of 
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


which has null space of span{(1, 0, 0, 0), (0, 1, 0, 0)}. Now (−1, 1, 0, 0) is in this space, so we need to
continue.

Now

(A− 2I)3 =


0 0 0 2
0 0 0 −4
0 0 0 0
0 0 0 0


which has row eschelon form of 

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


which has null space of span{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)}. Now e3 is not in the previous null space so
can use it to compute rest of basis.

we have (A−2I)e3 = (4,−3, 0, 0), and (A−2I)e3 = (1,−1, 0, 0). note this last one must be the eigenvector
(a good way to check work). Now we can write down P with these vectors as columns.

P =


1 4 0 7
−1 −3 0 −2
0 0 1 0
0 0 0 1



and one may compute P−1 =


−3 −4 0 29
1 1 0 −9
0 0 1 0
0 0 0 1

 and P−1AP =


2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 3

 which is a jordan form.

18.2 The field theory

• Let F ⊂ K be fields. We say that F is a subfield of K and K is a field extension of F . Let α ∈ K \ F .
could have 1, α, ...αn−1 be linearly independent over F and αn = −(bn−1α

n−1 + ...b0). with bi ∈ F . then α
is the zero of xn + bn−1x

n−1 + ...+ b0 ∈ F [x]. Then f(x) is irreducible so F [x]/(f(x)) is a field and a field
extension of F .
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19.1 Field theory continued

• F,K fields with F ⊆ K then K is called a field extension of F . for each r ∈ F we have rK ⊂ K so
multiplication by F gives scalar multiplication of F on K and K can be viewed as an F -vector space.

• Def: the index or degree of F in a field extension K is [K : F ] = dimFK. (The dimension of K considered
as a vector space over F .)

• Prop: Let φ : F → F ′ be a homomorphism of fields. Either φ is 1-1 or φ is the trivial homomorphism.

Proof. A field F has only the ideals 0 and F , so ker(φ) = 0 or ker(φ) = F . If ker(φ) = 0 then φ is one
to one and if ker(φ) = F then φ is the trivial map.

If we have a 1-1 homomorphism of fields φ : F → F ′ then φ(F ) ⊆ F ′ is an isomorphism. So often we call
φ(F ) F since they are isomorphic.

• Prop. Given F a field p(x) ∈ F [x] an irreducible polynomial there is a field extension K of F having a
zero of f(x) in it.

Proof. Consider K = F [x]/(p(x)). then K is a field since (p(x)) is a maximal ideal. Define π : F [x]→ K
by π(g(x)) = g(x) + (p(x)) and consider π|F : F → K which is a homomorphism F → K. Moreover π|F
is not trivial since π(1) = 1 + (p(x)) 6= (p(x)) so π|F (1) = 1 + (p(x)) 6= (p(x)). So π|f is not trivial and
therefore 1-1 so π|F ∼= F and can view the image as F . So we have F ⊂ K. Let x̄ = x + ((p(x)), then
p(x̄) = p(x) + ((p(x)) = (p(x)) = 0 in K. So x̄ is a zero of p(x) living in K.

• Theorem: Let F be a field and K ⊆ F be an extension of F . Suppose that α ∈ K is the zero of some
polynomial f(x) ∈ F (x). Then there is monic a polynomial mα,F (x) with minimal degree and mα,F (x)
divides f(x).

Let S = {g(x) : g(α) = 0} then deg(g) ∈ N and since N is well ordered it has a smallest element and so
{deg(g) : g ∈ S} also has a smallest element. Let g(x) be a monic polynomial smallest degree (we can
attain this by dividing by leading coefficient if g weren’t monic). We need to show that g is irreducible.
Suppose deg(g) = n.

Suppose g is not irreducible, g(x) = a(x)b(x) then 1 ≤ deg(a), deg(b) < deg(g). Then g(α) = a(α)b(α)⇒
a(α) or b(α) = 0, but then g was not such a polynomial of least degree, a contradiction, so g was irreducible.

Now we can use the division algorithm to write f(x) = q(x)g(x)+r(x) where r(x) = 0 or deg(r) < deg(g).
then

0 = f(α) = q(α)g(α0 + r(α) = r(α)

so r(x) = 0 (again my minimal degree of g. and we have that g(x) divides f(x).

• Def: The monic polynomial of minimal degree with coefficients in F with α as a zero is called the minimal
polynomial of α over F . this is denoted in different ways mα,F (x), irr(α, F ), etc...

• Cor: F ⊆ K ⊆ E, α ∈ E with α the zero of a minimal polynomial with coefficients in F then
mα,K(x)|mα,F (x). We have mα,F (x) ∈ F [x] ⊆ K[x] and mα,k(x) ⊂ K[x] and α is a zero of mα,K(x).
Since mα,K is the min poly for α with coefficients in K we have mα,K(x)|mα,F (x).

• Ex: x2 + 1 ∈ Q[x]. then i is a zero and x2 + 1 = mi,Q(x). If K = Q(i) then mi,K(x) = x− i.

• Thm: If K = F [x]/((p(x)) with p(x) irreducible over F then θ = x+ ((p(x)) then θ is a zero of p(x) and
1, θ, θ2, ..., θn−1 where n = deg(p) is a basis for K over F .
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Proof. We have already seen that θ is a zero of p. Need to show that 1, θ, ..., θn−1 spans K and are linearly
independent.

Take f(x) ∈ F [x] then f(x) + ((p(x)) = r(x) + ((p(x)) where f(x) = q(x)p(x) + r(x) where deg(r) < n.
and f(θ) = r(θ) = a0 + a1θ + ...+ an−1θ

n−1, so the θi span F [x].

Suppose that a0 + a1θ + ...an−1θ
n−1 = 0 then θ is a zero of g(x) = a0 + a1x + ... + an−1x

n−1. but then
p(x)|g(x) but this is impossible since deg(p) = n > deg(g) = n − 1. So each ai = 0 so the θi are linearly
independent.

• Let K = F [x]/((p(x)) and θ = x+ p(x). Sometimes we write this as K = F (θ) = {a0 + a1θ+ ...an−1θ
n−1 :

ai ∈ F}. if we take a(θ), b(θ) ∈ K then a(θ)b(θ) is a polynomial. If deg(ab) > n then ab ≡ r mod p with
deg(r) < n.

• Ex Z2[x]/(x3+x+1), θ is a zero of x3+x+1. Consider θ2(θ2+1) = θ4+θ2. Then θ3+θ+1 = 0⇒ θ3 = θ+1.
So θ4 = θ2 + θ. then θ2(θ2 + 1) = θ2 + θ + θ2 = θ. Which tells us that remainder of x4 + x2 divided by
x3 + x+ 1 is x (can confirm with long division).

• ex θ−1?

p(x) = b0 + b1x+ ...+ xn then
0 = p(θ) = b0 + b1θ + ..+ θn

−b0 = θ(b1 + b2θ + ...+ θn−1

so

1 = θ
−1

b0

(b1 + b2θ + ...+ θn−1)︸ ︷︷ ︸
θ−1

Given a(θ) with deg(a) < n then to find (a(θ))−1 use the euclidean algorithm to express 1 = a(θ)b(θ) +
p(θ)c(θ).

For example the inverse of (θ2 + θ + 1) from above is (θ2 + θ + 1)−1 = θ2.
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20.1 More on Fields

• To construct a field with pn elements where p is prime we construct Zp[x]/(p(x)) where p(x) is irreducible
in Zp[x] of degree n.

• Ex: In Z2[x] x3 + x+ 1 is irreducible, so Z2[x]/(x3 + x+ 1) is a field with 8 elements.

K = Z2[x]/(x2 + x + 1) field with 4 elements. There is no subfield of K isomorphic to L. If θ is a root
x2 + x+ 1 then we have θ2 + θ + 1 = 0⇒ θ2 = θ + 1. We can produce the following multiplication table.

· 0 1 θ θ + 1
0 0 0 0 0
1 0 1 θ θ + 1
θ 0 θ θ + 1 1

θ + 1 0 θ + 1 1 θ

• if F ⊂ K is a field extension A = {ai}, A ⊂ K the subfield of K generated by F and A is F (A) - the
smallest subfield of K containing F and A. If A ∈ {α1, ..., αs} then F (A) = F (α1, ..., αs). IN this case we
call F (A) a finitely generated subfield of K (does not imply finite basis).

Ex: F = Q K = C and A = {e}. Since e is not algebraic, e is not the zero of any polynomial with

coefficients in Q. The smallest subfield of C containing Q and e will be Q(e) = {p(e)
q(e)

: p, q ∈ Q[x], q 6=

0} ∼= Q(x).

• Def: A simple extension of F is of the form F (α).

• F ⊆ K ∼=
F [x]

mα,F (x)
:= F (α) = {b0 + b1α + ...+ bn−1α

n−1}.

• Isomorphism extension Theorem: Let F , F ′ be fileds and φ : F → F ′ be an isomorphism. Suppose
p(x) = a0+a1x+...an−1x

n−1+xn is irreducible with aiinF and p′(x) = φ(a0)+φ(a1)x+...+φ(an−1)xn−1+xn

is irreducible in F ′[x] then there is an isomorphism Φ : F (α)→ F (β) where α is a root of p(x) and β is a
root of p′(x) such that Φ|F = φ.

F (α) Φ //

��

F ′(β)

��
F

φ // F ′

Proof. φ extends to an isomorphism ψ : F [x] → F ′[x] by ψ(c0 + c1x + ... + cmx
m) = φ(c0) + φ(c1)x +

... + φ(cm)xm. Clearly we ahve ψ(g(x) + h(x)) = ψ(g(x)) + ψ(h(x)) and ψ(g(x)h(x)) = ψ(g(x))ψ(h(x))
and ψ is a bijection. Now let Φ : F [x]/(p(x)) → F ′[x]/(p(x)) since we have ψ(p(x)) = p′(x). then

ψ̃ : F [x] → F ′[x]

(p(x))
with ker(ψ̃) = (p(x)) so by the first isomorphism theorem F (α) ∼= F [x]/(p(x)) ∼=

F ′[x]/(p′(x)) ∼= F ′(β).

• example: Q(
3
√

2 ∼= Q[x]/(x3 − 2). Then
3
√

2 is a zero of x3 − 2 = 0. Other roots of this are
3
√

2ζ i3 where ζ3

is third root of unity i = 1, 2. We have Q(
3
√

2ζ3) ∼= Q[x]/(x3 − 2) but these fields are not equal.

• We say a field extension K of F if for every α ∈ K there is a polynomial f ∈ F [x] with f(α) = 0.

• example of extension where you only get 1 zero: K = Z2(t), Z2(t4) = F . then x4 − t4 is irreducible but
x4 − t4 = (x− t)4 ∈ K[x] so the only root is t.

• Prop: If α is algebraic then F (α) ∼= F [x]/(mα,F (x)) and [F (α) : F ] = deg(mα,F (x).

Proof. 1, α, ..., αn−1 is a basis for F (α) then 1, α, ..., αn are linearly dependent. so αn+an−1α
n−1+...+a0 = 0

is the minimum polynomial is the minimum polynomial for α, F .
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• Prop: Every finite extension of a field F is an algebraic extension.

Proof. Let [K : F ] = n be finite. Take α ∈ K then 1, α, ..., αn must be linearly dependent so there are ai
with so αn + an−1α

n−1 + ...+ a0 = 0 and α is a root of a polynomial in F [x].

• Note: Algebraic extensions are not always finite: A = {√p : p prime} then Q(A) is algebraic but not
finite.

Ex:
√

2 +
√

3 ∈ Q(A). then can write
α =
√

2 +
√

3⇒

α−
√

2 =
√

3⇒ α2 − 2α
√

2 + 2 = 3⇒

α2 − 1 = 2α
√

2→ α4 − 10α2 + 1 = 0

.

• next time: Thm: if F ⊆ K ⊆ L with [L : K] <∞ and [K : F ] <∞ then [L : F ] = [L : K][K : F ] <∞.
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21.1 Tower theorem, degrees of field extensions

• Homework: 13.1 2,6,7, 13.2 4,7,9,14

• Thm: if F ⊆ K ⊆ L with [L : K] <∞ and [K : F ] <∞ then [L : F ] = [L : K][K : F ] <∞.

Proof. Suppose n = [L : K], m = [K : F ]. Then there are α1, ...αn that form a basis for L over K and
there are β1, ..., βm which form a basis over F .

Claim: {αiβj}ij∈{1,...,n} form a basis of L over F . Pick a ∈ L then a =
∑

aiαi with ai ∈ K then

ai =
m∑
j=1

bijβj with bij ∈ F then

a =
n∑
i=1

(
m∑
j=1

bijβj)αi =
n∑
i=1

m∑
j=1

bijβjαi =

n∑
i=1

m∑
j=1

bijαiβj

so the αi, βj span L over F . So need to show αiβj are linearly independent. if
∑

bijαiβj = 0 then
n∑
i=1

(
m∑
j=1

bijβj)αi = but then each
m∑
j=1

bijβj = 0 since αi are linearly indep. but then bij = 0 since βj are

linearly indep. Now there are mn products in {αiβj} and the result follows.

• K is a finite extension of F if and only if K is generated by finitely many algebraic elements. If K =
F (α1, ..., αs) with degmαi,F (x) = ni then [K : F ] ≤ n1n2 · · ·ns.

Proof. if [K : F ] = n <∞ then there is a basis α1, ..., αn with αi algebraic. αi are the zero of polynomials
of degree ≤ n. so K = F (α1, ...αn).

(⇒) K = F (α1, .., αn) with αi algebraic. Then F [αi) : F ] = ni then [K : F (α1, ..., αs−1)][F (α1, ..., αs−1) :
F (α1, ..., αs−2)] · · · [F (α1) : F ].

If Ki = F (α1, ..., αi then Ks = K and since mαi,Ki−1
(x) divides mαi,F (x) so [Ki : Ki−1] ≤ [F (αi) : F ] so

[K : F ] = [Ks : Ks−1]...[K1 : F ] ≤ nsns−1...n1.

• example where degree is less. Take Q = F , α1 =
3
√

2, α2 =
3
√

2ζ3. Then [Q(α1) : Q] = [Q(α2 : Q] = 3 but
[Q(α1, α2) : Q] = 6 ≤ 9 since a basis for Q(α1, α2)/Q is 1,

3
√

2,
3
√

4, ζ3,
3
√

2ζ3,
3
√

2ζ3.

• Prop: If α, beta ∈ K algebraic over F then α± β, αβ, α/β are all algebraic over F .

Proof. α, β are algebraic then F (α, β) is algebraic over F , α ± β, αβ, α/β ∈ F (α, β) so are algebric over
F .

• Prop: IF F ⊆ K ⊆ L and K is algebraic over F and L is algebraic over K then L is algebraic over F .

Proof. Take α ∈ L. Since L is algebraic over K there is a polynomial p(x) = a0 +a1x+ ...anx
n ∈ K[x] with

p(α) = 0. Since a0, a1, ..., an inK and K algebraic over F then [F (a0, ..., an : F ] <∞ so we have produced
a finite extension then [F (a0, ..., an, α) : F (a0, ..., an] ≤ n. Then [F (a0, ..., an, α) : F ] = [F (a0, ..., an, α) :
F (a0, ..., an)][F (a0, ..., an] : F ] <∞ so F (a0, ..., an, α) is algebraic over F so α is algebraic over F .

• Suppose K1 and K2 are fields. The composite field K1K2 is the smallest field containing K1 and K2. If

{Ki}i∈I are fields then
∏
i∈I

Ki (finite sums of finite products) is the smallest field containing each Ki.
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• Prop: Let K1, K2 be field extensions of F with [K1 : F ] <∞ and [K2 : F ] <∞ then [K1K2 : F ] ≤ [K1 :
F ][K2 : F ].

Proof. [K1K2 : F ] = [K1K2 : K1][K1 : F ] = [K1K2 : K2][K2 : F ]. but [K1K2 : K1] ≤ [K2 : F ] and
[K1K2 : K2 ≤ [K1 : F ] so we have [K1K2 : F ] ≤ [K1 : F ][K2 : F ]

21.2 splitting fields

• def: a polynomial f(x) ∈ F [x] splits in K if F (x) = (x − α1) · · · (x − αn) ∈ K[x] with αi ∈ K (not
necessarily distinct).

• Def: A field E (an extension of F ) is a splitting field of f(x) ∈ F [x] over F if E is the smallest field where
f splits. Similarly given {fi}i∈I a collection of polynomials we say E is the splitting field of {fi} if E is
the smallest field where all fi split.

• Example: f(x) = x3 − 2 ∈ Q[x] The splitting field of f over Q is Q(
3
√

2, ζ3) = Q(
3
√

2, i
√

3).

• Example x4 + 4 = (x2 + 2x+ 2)(x2 − 2x+ 2) has roots ±1± i so the splitting field is Q(i)

• Theorem: Splitting fields exist.

Proof. Suppose that f ∈ F [x] is a degree n polynomial. If n = 1 then f is linear so its roots are in F , so
f splits over E = F . Now suppose n > 1 if f factors into linear polynomials in F [x] then done. Otherwise
there is an irreducible factor, p(x) of degree ≥ 2. Then f(x)/p(x) ∼= F (α) with α a root of p(x) then
f(x) = (x − α)f1(x) ∈ F (α)[x] so f1(x) ∈ F (α)[x] with degree f1 < 1 so by induction there is E such
that f1 factors into linear polynomials in E[x]. then K = ∩E over all E such that f factors into linear
polynomials in E[x]. then K is the smallest field over which f splits and K is the desired splitting field.
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22 March 13

22.1 more on field extensions

• A field extension K of F is normal if K is the splitting field of a collection of polynomials fi(x) ∈ F (x).

• Prop: If K is a splitting field for a degree n polynomial f ∈ F [x] then [K : F ] ≤ n!.

Proof. Take α ∈ K then [F (α) : F ] ≤ n where α is a root of f(x). Let f(x) = (x−α)f1, deg(f1) < n then
by induction [K : F (α)] ≤ (n− 1)! so [K : F ] = [K : F (α)][F (α) : F ] ≤ (n− 1)!n = n!.

• A cyclotomic field extension is one of the form F (ζn) where ζn is a primitive nth root of unity over F . If
F = Q then [Q(ζn) : Q] = φ(n) where φ(n) is the Euler-φ function i.e the number of integers k such that
1 ≤ k ≤ n which are relatively prime to n.

F (ζn) comes down to factoring xn − 1 over F . we have

xn − 1 = (x− ζn)(x− ζ2
n) · · · (x− ζnn ) = (x− 1)(x− ζn) · · · (x− ζn−1

n )

For example over Q we have x6− 1 = (x− 1)(x− ζ6) · · · (x− ζ5
6 ) but these have relationships for example

ζ2
6 = ζ3, ζ3

6 = −1. So the irreducible poly is Φn =
∏

(a,n)=1,1≤a<n

(x− ζan)

Example: Consider x2 + 1 ∈ Z3[x] this is irreducible. If α is a root of then we have α2 = −1, and
α−1 = −α, but α is not i since i lives in the complex plane and but Z3 does not.

Example: f(x) = xp − 2 (similar for xp − q where q is not a p-th power). f can be factored as

f(x) = (x− p
√

2)(x− p
√

2ζp) · · · (x− p
√

2ζp−1
p )

so the splitting field over Q is Q[ 2
√
p, ζp) and [Q(

p
√

2) : Q] = p(p− 1). THen the irreducible poly Φp(x) =∏
1≤a<p

(x− ζap ) = xp−1 + xp−2 + ...+ 1. With ζp ∈ Q(
p
√

2).

• Isomorphism extension theorem for splitting fields: Suppose F , F ′ are fields and φ : F → F ′ is a isomor-

phism. If f(x) =
n∑
i=0

aix
i ∈ F [x] and f ′(x) =

n∑
i=0

φ(ai)x
i then there is an extension of φ to the splitting

fields of f, f ′.

K
Φ //

��

K ′

��
F

φ // F ′

with Φ|F = φ.

Proof. By the isomorphism extension theorem there is ψ : F (α)→ F ′(β) such that Ψ|F = φ. Where α is
a root of f and β is a corresponding root of f ′(x).

F (α) Φ //

��

F ′(α)

��
F

φ // F ′

Since f(X) = (x−α)f1(x) and f ′(x) = (x−β)f ′1(x), f1 and f ′1 are degree n−1 polynomials so by induction
there is an extension Φ of Ψ to K,

K Φ //

��

K ′

��
F (α) Ψ //

��

F ′(α)

��
F

φ // F ′
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since Φ|F (α) = Ψ and Ψ|F = φ we have Φ|F = φ. so Φ is an isomorphism extension of φ.

• cor: If K and K ′ are splitting fields of f over F then K ∼= K ′

Proof. Apply isomorphism extension theorem of splitting field to the identity

K //

��

K ′

��
F

id // F ′

• Example: Splitting field of x3 +x+1 over Z2. is Z2(α) where α is a root (can check by division algorithm).

• Def: Given field F the algebraic closure of F is the field F̄ so that every polynomial f(x) ∈ F [x] factors
into linear factors in F̄ [x] and F̄ is an algebraic extension.

• Ex C is not the algebraic closure closure over C since π ∈ C is not algebraic over Q so C is not an algebraic
extension. But C is an algebraic extension of R and hence the algebraic closure.

• Def: we say a field K is algebraically closed if each f(x) ∈ K[x] factors into linear factors.

• Prop: the algebraic closure of F is algebraically closed.

Proof. F̄ is the algebraic closure of F . f(x) ∈ F̄ [x], α is a root of f(x) then F̄ (α) an algebraic extension
over F̄ but F̄ is algebraic over F so F̄ (α is algebriac over F so α is algebraic over F , α ∈ F̄ , F̄ = F̄ (α),
so F̄ is algebraically closed.
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