Abstract Algebra Homework 3

Dr. Janet Vassilev September 5, 2012

- 1. Let G be a group and N_i be a collection of normal subgroups. Then $\bigcap_i N_i$ is normal in G.
- 2. Suppose $S \subseteq Z(G)$ is a subgroup of Z(G). Show $S \triangleleft G$. Also show if G/S is cyclic, then G is abelian.
- 3. If H is a subgroup of G and [G:H]=2, show that $H \triangleleft G$. Show the corresponding statement is false if 2 is replaced by 3.
- 4. Show that the normalizer, $N_G(H)$, of H is the largest subgroup of G containing H for which $H \triangleleft G$.
- 5. Let $M=\bigcap_{x\in G}xHx^{-1}.$ Show that $M\lhd G$ and M is the largest normal subgroup of G which is contained in H.
- 6. We say that H is *characteristic* in G written $H \triangleleft \triangleleft G$ if for any $\sigma \in \operatorname{Aut}(G)$, $\sigma|_H \in \operatorname{Aut}(H)$. Show if $H \triangleleft \triangleleft G$ then $H \triangleleft G$. Also show that if $K \triangleleft \triangleleft H \triangleleft G$ then $K \triangleleft G$.
- 7. Show $Z(G) \triangleleft \triangleleft G$.
- 8. Suppose $N \triangleleft G$, and [G:N] is finite. Suppose H is a finite subgroup and |H| and [G:N] are relatively prime. Show that $H \subseteq N$.
- 9. Suppose $N \triangleleft G$ and |N| finite. Suppose H is a subgroup of finite index and |N| and [G:H] are relatively prime. Show that $N \subseteq H$.
- 10. Suppose G is a group. A proper subgroup H of G is maximal if no proper subgroup of G contains H. Let $\phi(G) = \bigcap_{\substack{M \text{maximal} \\ M \text{ show that } \phi(G) \lhd G}} M$. Show that $\phi(G) \lhd G$. Let G be a subset of G and G are G and G and G and G and G and G are G and G and G and G are G and G and G are G and G and G are G are G are G are G and G are G are