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The theory of star and semistar operations has been developed 
mostly over domains. Recently, Epstein defined star and 
semistar operations over more general commutative rings. We 
will compare some of the known results over domains with the 
non-domain setting. We conclude with a classification of the 
standard closures on the nodal curve.
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Both star operations and prime operations were introduced by Krull in his 1935 book 
Idealtheorie [12] without any distinction between the two. In fact, the symbol he used for 
such operations was the prime symbol (′). A year later Krull published another work on 
star/prime operations [13] where he switched the symbol to a star ∗. Krull worked in the 
domain setting where these two operations are in fact identical. Gilmer picked up the star 
notation and published it in his book Multiplicative Ideal Theory [6] and subsequently 
many results appeared on star operations over domains. However, the star symbol at 
some point morphed into � which is the more common symbol used to represent a star 
operation today. Petro in [21] used Krull’s original notation ′ and generalized the notion 
of prime operations to semiprime operations. In a quite dissimilar way, star operations 
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were generalized to semistar operations by Matsuda and Okabe [15]. Although work on 
prime and semiprime operations has been studied in the more general commutative ring 
setting in papers such as [22], until recently star operations and semistar operations 
were only in the domain setting. Epstein introduced star operations in [3] and semistar 
operations in [4] over a more general commutative ring. Surprisingly, many facts that 
are true in the domain setting are no longer the case.

In Section 1, we will review closure operations on the set of ideals, the set of fractional 
ideals and the set of R-submodules of the total ring of fractions of a commutative ring. 
We highlight some interesting examples which lead to some new definitions of closure 
operations. In Section 2, we review the history about counting star and semistar opera-
tions in the domain setting and prove a result about counting closure operations on rings 
with a finite number of ideals. In Section 3, we prove our main result which is to exhibit 
that there are precisely 24 standard closures on the nodal curve k[[x, y]]/(xy). Due to 
Epstein’s result [4] which exhibits a bijection between finite type semistar operations 
and standard closures, we conclude that there are 24 finite type semistar operations on 
k[[x, y]]/(xy).

1. Closure operations

Let R be a commutative ring with unity. We will denote the units of R by U(R)
and the zero divisors of R by Z(R). Throughout R× will denote the nonzero elements 
of R. We denote the set of ideals of R by I(R) and the set of finitely generated ideals 
by If (R). Let Q be the total ring of fractions of R. Recall that a fractional ideal of R is 
an R-submodule A of Q satisfying the property that there exists a regular element x ∈ R

such that xA ⊆ R. We denote the R-submodules of Q by F(R), the fractional ideals of R
by F(R) and the finitely generated fractional ideals by Ff (R). A closure operation on 
the set of ideals of a commutative ring R (respectively the set of fractional ideals of R or 
the R-submodules of Q) is a function c : I(R) → I(R) (respectively c : F(R) → F(R)
or c : F(R) → F(R)) satisfying:

• (Extension) I ⊆ Ic for all I ∈ I(R) (I ∈ F(R) or I ∈ F(R)).
• (Order Preservation) If I ⊆ J then Ic ⊆ Jc.
• (Idempotence) (Ic)c = Ic for all I ∈ I(R) (I ∈ F(R) or I ∈ F(R)).

A closure operation c on the set of ideals of R is called semiprime if in addition any 
of the equivalent conditions hold:

• For all ideals I, J ∈ I(R), IJc ⊆ (IJ)c,
• For all ideals I, J ∈ I(R), IcJc ⊆ (IJ)c,
• For all x ∈ R and all I ∈ I(R), xIc ⊆ (xI)c.

Epstein defined a closure operation c on the set of ideals of R to be weakly prime if for 
all non-zero divisors u ∈ R, uIc ⊆ (uI)c in [4]. Note every semiprime operation must be 
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weakly prime by the third bullet above. However, there are weakly prime closures which 
are not semiprime. The following example was suggested by Epstein [5].

Example 1.1. Let R = k[x]/(x2) with k a field. All the elements of R can be written in 
the form a + bx for some a, b ∈ k. As long as a �= 0, a + bx is a unit. Moreover, R is 
principal ideal ring because k[x] is a PID. Hence, the only ideals of R are (0), (x) and R. 
Define a closure operation c on the ideals of R as follows (0)c = (0) and (x)c = Rc = R. 
Note that the regular elements of R are of the form a + bx for any nonzero a ∈ k. 
(a + bx)I = I for all ideals I in R. Thus, c is weakly prime. However, c is not semiprime 
since x(x)c = (x) � (x2)c = (0).

In [3] Epstein defined a closure operation c on the set of ideals to be star if for all 
regular elements u ∈ R and all I ∈ I(R), (uI)c = uIc.

Example 1.2. Let R = k[[x, y]]/(xy). The non-zero divisors are the units a +
∑
i≥1

bix
i +

∑
j≥1

cjy
j for a nonzero and the elements of the form 

∑
i≥1

bix
i +

∑
j≥1

cjy
j where at least one 

bi �= 0 and at least one cj �= 0. It is clear to see the ideals of R are of one of the following 
forms:

• (0) or R,
• (xn) for some n ∈ N,
• (yn) for some n ∈ N,
• (xm, yn) for some m, n ∈ N,
• (xm + ayn) for some m, n ∈ N and a ∈ k×.

There are closure operations on the set of ideals of R which are not star operations. 
For example, define c as follows:

Ic =
{
I for I �= (x, y)
R for I = (x, y).

c is not star because (x + y)(x, y)c = (x + y) �= (x2, y2) = [(x + y)(x, y)]c.

Although there are many closure operations on R = k[[x, y]]/(xy) which are not star, 
we can show that there is only one star operation.

Proposition 1.3. Let R = k[[x, y]]/(xy). The only star operation on the set of ideals of R
is the identity.

Proof. Since R is the largest ideal, for any star operations �, R� = R. Thus for all regular 
elements r in R, rR = (rR)�. So all the ideals of the form (xm + ayn) must be �-closed.

Suppose (x, y)� = R. For all m, n ∈ N, the equality

(xm + yn)(x, y)� = ((xm + yn)(x, y))�
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implies (xm+1, yn+1)� = (xm + yn). Since (x, y2)� ⊆ (x, y)� = R either (x, y2)� = (x, y2)
or (x, y2)� = R. Suppose first that (x, y2)� = (x, y2). Then

(x + y)(x, y2)� = ((x + y)(x, y2))�

implies that (x2, y3) = (x2, y3)� = (x + y2) which is a contradiction. Now suppose 
(x, y2)� = R. We obtain another contradiction through the equalities

(x + y) = (x + y)(x, y2)� = ((x + y)(x, y2))� = (x + y2).

Hence, it must be the case that (x, y)� = (x, y), and we conclude that

(xm+1, yn+1) = (xm + yn)(x, y)� = ((xm + yn)(x, y))� = (xm+1, yn+1)�.

Thus (xm, yn)� = (xm, yn) for all natural numbers m, n > 1. Suppose (x, yn)� = (x, yk)
for 1 ≤ k ≤ n. Since

(x2, yk+1) = (x + y)(x, yn)� = ((x + y)(x, yn))� = (x2, yn+1)

then it must be the case that k = n. Similarly, (xn, y)� = (xn, y).
Since (xm)� ⊆ ∩∞

n=1(xm, yn)� = ∩∞
n=1(xm, yn) = (xm) we have (xm)� = (xm) for 

all m ∈ N. Similarly (yn)� = (yn) for all n ∈ N. Finally since (0)� ⊆ ∩∞
m=1(xm)� =

∩∞
m=1(xm) = (0) we have (0)� = (0). �

Remark 1.4. In the case that the base field is not F2 we can streamline the above proof 
by replacing the second paragraph above by:

Note that

(xm + ayn) ⊆ (xm, yn) ⊆ (xm−1 + byn−1)

for all nonzero a, b ∈ k, and
⋂

b∈k×

(xm−1 + byn−1) = (xm, yn).

Putting this fact together with order preservation we see that (xm, yn)� = (xm, yn).

A closure operation on the R-submodules of Q is termed divisible if for all regular 
elements u of Q and all R-submodules A of Q, (uA)c = uAc. A prime operation is 
a semiprime star operation. The terms semiprime operation and prime operation have 
typically been defined on multiplicatively closed sets of ideals contained in a commutative 
ring, for multiplicatively closed sets of filtrations of ideals in a ring or for multiplicatively 
closed sets of R-submodules of an R-module R. For some examples, see [23,21,24,19,20], 
or [7]. However, we can also define these notions on the set of fractional ideals of a 
commutative ring R using the same axioms as above. In fact, the current author analyzed 
the semiprime operations on the set of fractional ideals of a DVR in [25].
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Traditionally star operations were defined on the nonzero fractional ideals of a do-
main D. Epstein’s definition of a star operation on the ideals of a ring was motivated 
by Krull’s original definition of a star operation [12] and [13]. Note if D is a domain, 
all nonzero elements of D are regular and D is an ideal. A quick consequence is that 
D� = D. However, when one moves to the setting of fractional ideals, it may be the 
case that D � D�. Thus in the definition of star operation on the set of fractional ideals 
we need the extra assumption that D = D�. Matsuda and Okabe [15] not only relaxed 
this assumption in their definition of semistar operation but also defined a semistar op-
eration to be a closure operation on the nonzero R-submodules of the fraction field of 
a domain D which is divisible. We should mention here that originally star operations 
were defined on the nonzero fractional ideals of a domain D and semistar operations were 
defined on the nonzero R-submodules of the fraction field of a domain D. Epstein noted 
in [4] that one can define a semistar operation on all the R-submodules of the total ring 
of fractions of any commutative ring R as a divisible closure satisfying (0)� = (0). We 
note that a star operation can also be defined on the set of all the fractional ideals of a 
commutative ring R. However, to be consistent with star operations defined on domains 
we will define a star operation � on the set of fractional ideals of R as follows:

Definition 1.5. Let R be a commutative ring. A closure operation � on F(R) is a star 
operation if � is a divisible closure which also satisfies R� = R.

Note, that any star operation � on the ideals or fractional ideals of a domain is in 
fact semiprime. Let r ∈ IJ�. Suppose S = {iλ | λ ∈ Λ} is a generating set for I with all 
iλ �= 0. Then for some r1, . . . , rn ∈ J� and i1, . . . , in ∈ S, r =

n∑
j=1

rjij . Thus

r ∈
n∑

j=1
ijJ

� =
n∑

j=1
(ijJ)� ⊆ (IJ)�.

Hence, any star operation on the ideals or fractional ideals of a domain is a prime 
operation.

When R is a commutative ring and Q is its total ring of fractions, one defines the 
fractional ideal I−1 = {x ∈ Q | xI ⊆ R}. One of the most important star operations on 
the set of fractional ideals in the domain setting is the v-operation which was defined 
to be Iv = (I−1)−1 for all fractional ideals I of R. The v-operation, although mainly 
studied in the domain setting, was looked at briefly in [11]. In fact, Huckaba shows that 
if I is a fractional ideal with a regular element then I is the intersection of all cyclic 
R-submodules of Q containing I. This is, in fact, how Epstein defines Iv in [3] for any 
ideal I of R. However, Epstein’s definition does not agree with Huckaba’s when there 
are zero divisors. In fact, in [11] Huckaba mentions that even for fractional ideals which 
contain a regular element (I−1)−1 may not be the intersection of cyclic R-submodules 
of Q containing I.
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One condition of a star operation � that is lost when there are zero divisors is the 
condition that (x)� = (x) or (xI)� = xI� for all elements x ∈ Q and all ideals (or 
fractional ideals) of R. Huckaba actually defined star operations on the fractional ideals 
of some rings with zero divisors in [11] to be prime operations on F(R).

Example 1.6. Let R = k[x, y]/(x, y)2. Note that Q = R since R is Artinian. We define 
a star operation � on the ideals (also the fractional ideals) of R by (a)� = (a) for all 
principal ideals (a) of R and (x, y)� = R = R�. Note that (x)(x, y) ⊆ (0) in R. Thus 
((x)(x, y))� = (0). However, (x)(x, y)� = (x)R = (x). This example is motivated by 
[3, Proposition 4.1.7(iii)]. Epstein noted that this star operation is an example of a star 
operation which is not semiprime. Recall, this couldn’t happen for domains.

This prompts the following new definitions.

Definition 1.7. Let R be a commutative ring. Let � be a star operation defined on I(R)
(or F(R)). We say � is a principally closed star operation if for all a ∈ R (or a ∈ Q) 
(a)� = (a).

Let S be a multiplicatively closed subset of R which strictly contains the set of all reg-
ular elements of R. We will define a notion which is slightly stronger than weakly-prime 
but weaker than semiprime.

Definition 1.8. Let R be a commutative ring and S a multiplicatively subset of R con-
taining all the regular elements of R. Let c be a closure operation defined on I(R) (or
F(R)). We say c is an S-weakly prime operation if for all a ∈ S and all ideals I ⊆ R (or 
all fractional ideals of R) aI� ⊆ (aI)�. If in addition c is a star operation on I(R) (or
F(R)) we will say that c is an S-prime operation.

Example 1.9. Let R = k[x]/(x2). Again, because R is Artinian, Q = R. By the definition 
of star operation on either I(R) or F(R), all closure operations are star operations on R

since for all units u of R and all ideals of R uI = I. However, the only principally closed 
star operation on I(R) or F(R) is the identity. The closure c in Example 1.1 is also 
S-weakly prime for S = {0} ∪ U(R) where U(R) denotes the units of R.

Example 1.10. Let R = k[[x, y]]/(x2, xy). The regular elements are again only the units 
and uI = I. Once again, the total ring of fractions is R. So again all closure operations 
on I(R) = F(R) are star operations. It is clear to see the ideals of R are of one of the 
following forms: (0), (x) or R, (yn) for some n ∈ N, (x, yn) for some n ∈ N, and (x +ayn)
for some n ∈ N and a ∈ k×.

However, there are many principally closed star operations on I(R). They include the 
identity, � such that (x, yn)� = R for all natural numbers n and any closure c such that 
(x, yn)c = (x, ym) for all n ≥ m and (x, yn)c = (x, yn) for n < m. These non-identity 
closures are not semiprime.
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Those that satisfy (x, yn)c = R are also not S-weakly prime for

S = {ax | a ∈ k×} ∪ U(R)

since ax(x, yn) = (0) � (ax) = ax(x, yn)c. However, those that satisfy (x, yn)c ⊆ (x, y)
will be S-weakly prime.

2. Counting star and semistar operations

There have been many papers describing domains in terms of the number of star 
operations or semistar operations defined on them. These include [1,8,9,26,15–18]. For 
example, if D is a Noetherian domain, D is a one dimensional Gorenstein domain if 
and only if D has exactly one star operation. This is essentially due to Bass [2] and 
Matlis [14]. Anderson and Anderson show that if D is a valuation domain, then D has 
at most two star operations in [1]. Whereas Houston, Mimouni and Park describe all 
domains which have two or less star operations in [8] and the Noetherian domains which 
have three star operations [9]. Recently Houston and Park in [10] have determined all 
Noetherian domains with infinite residue field which have finitely many star operations. 
They also prove that a Noetherian domain D has a finite number of star operations if 
and only if the dimension of D is one or less in [9]. White classifies all the star operations 
on k+(x4)k[[x]] in [26]. Matsuda and Okabe show that D is a rank one discrete valuation 
ring if and only if D has precisely two semistar operations. In works of Mimouni and 
Samman [16–18], the authors find conditions on a domain D which guarantee D has at 
most five star operations. All these results mentioned are for the domain case where the 
zero ideal has been excluded. In the domain case, historically the zero ideal was excluded 
from F(R) and F(R).

If R is a field, then when we include the zero ideal, we technically have two star 
operations which are both semistar operations.

• The identity.
• The star operation (0)� = R = R�.

A zero dimensional ring with zero divisors will have a finite number of star (or semis-
tar) operations as long as the number of ideals is finite. In fact, since any star operation 
on I(R) is a closure operation it is enough to see the following:

Proposition 2.1. If R is a commutative ring with n nonzero ideals, then the number of 
closure operations is at most 2n.

Proof. First we prove the following claim.
Claim: There are precisely 2n closure operations if the ideals form a chain. The proof is 

by induction. If n = 1, then the identity and the closure operation sending all ideals to R

are the two closure operations. Suppose that (0) = I0 � I1 � · · · � In = R is the chain 
of ideals in R. Suppose that any ring whose only ideals form a chain of length n has 2n−1
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closure operations. Note that the ideals of R/I1 form a chain I1/I1 ⊆ I2/I1 ⊆ · · · ⊆ In/I1
of length n so R/I1 has 2n−1 closure operations. By the correspondence theorem, the 
ideals of R containing I1 are in one to one correspondence with the ideals of R/I1. Let 
π : R → R/I1 be the natural surjection. Suppose c is a closure operation on R/I1. The 
only ways to lift c to a closure operation d on R are by defining Idr = f−1((Ir/I1)c) for 
r ≥ 1, and then either setting Id0 = I0 or Id0 = Id1 . Thus there are 2n−1 · 2 = 2n closure 
operations on R.

Suppose now that R is a ring with r nonzero ideals which do not form a chain. We 
will show that R has fewer than 2r closure operations. Notice, if the ideals do not form 
a chain, then there are at least one pair of incomparable ideals I and J . There must 
be a chain of ideals C1 : I ∩ J � I1 � I2 � · · · � In = I + J and a chain of ideals 
C2 : I ∩ J � J1 � J2 � · · · � Jm = I + J with Jj not comparable to Ii for j < m. Note 
that it is very probable that we have not listed all the ideals. We saw above that there 
are 2n closure operations on the set of ideals in C1. However, note that if we extend any 
of these closures to the set of all ideals in both C1 and C2, then for every closure c among 
the 2n closures for which (I ∩ J)c = Ic1 , it must be the case that Jc

j = I + J . Similarly, 
there are 2m closures defined on C2 and extending any closure d such that (I ∩ J)d = Jd

1
to the set of ideals in C1∪C2 will force Idi = I+J . Thus, we have a set of n +m ideals of R
and there are only 2n +2m closures which is strictly less than 2n+m. Hence, if we extend 
these closures to the r nonzero ideals on R, we will clearly have less than 2r closures. �

The following is an illustration of the above proof in the case that there are precisely 
two maximal ideals which intersect in the zero ideal.

Example 2.2. Suppose the lattice of ideals is

R

I J

(0)

Then the closure operations on R are

(1) Kc = R for all ideals K ⊆ R.
(2) Jc = Ic = R = Rc and (0)c = (0).
(3) Ic = R = Rc and Jc = J = (0)c.
(4) Ic = R = Rc and Jc = J and (0)c = (0).
(5) Jc = R = Rc and Ic = I = (0)c.
(6) Jc = R = Rc and Ic = I and (0)c = (0).
(7) Kc = K for all ideals K ⊆ R.

Note there are 7 closures, not 8 = 23, where 3 is the number of nonzero ideals.
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Note that the above proof actually shows in general that the number of closure oper-
ations on a lattice with n + 1 elements is bounded above by 2n.

Certainly if R has a finite number of ideals, it isn’t surprising that there are a finite 
number of star or semistar operations. Proposition 1.3 is maybe more surprising. We can 
also show that k[[x, y]]/(xy) has a finite number of semistar operations of finite type.

3. Semistar operations and standard closures

There is a partial order on the semistar operations given by �1 ≤ �2 if I�1 ⊆ I�2 for 
all I. If this is the case (I�1)�2 = I�2 and (I�2)�1 = I�2 .

If �1 and �2 are semistar operations, we define �1 ∩ �2 to be the operation I�1∩�2 =
I�1 ∩ I�2 . Note that �1 ∩ �2 ≤ �1, �2.

Fact 3.1. If �1, �2 are star (respectively semistar) operations then �1 ∩ �2 is a star 
(respectively semistar) operation.

Proof. First we will show �1 ∩ �2 is a closure operation. For extension, since I ⊆ I�1

and I ⊆ I�2 for all ideals I, I ⊆ I�1 ∩ I�2 for all ideals I. For order preservation, we 
know that if I ⊆ J , I�1 ∩ I�2 ⊆ J�1 ∩ J�2 . For idempotence, since �1 ∩ �2 ≤ �1 and 
�1 ∩ �2 ≤ �2 we have (I�1∩�2)�1 ∩ (I�1∩�2)�2 = I�1 ∩ I�2 . For all regular elements a, 
(aI)�1 ∩ (aI)�2 = aI�1 ∩ aI�2 = a(I�1 ∩ I�2). Where the first equality holds since �1 and 
�2 are divisible closure operations and the second inequality holds since a is a regular 
element. Thus �1∩�2 is a divisible closure operation. If �i are star operations for i = 1, 2
then R�i = R. So R ⊆ R�1∩�2 ⊆ R�1 = R which implies R�1∩�2 = R. �

We will use Epstein’s [4] standard closures to see that k[[x, y]]/(xy) has finitely many 
semistar operations of finite type.

Definition 3.2. A closure c : I(R) → I(R) is standard if ((xI)c : x) = Ic for any regular 
element x ∈ R.

Definition 3.3. A closure operation c : A → A is of finite-type if

Ac =
⋃

{Ic | for all finitely generated I ∈ A with I ⊆ A}.

Theorem 3.4. (See [4].) There is a one to one order preserving correspondence between the 
set of finite-type standard closure operations on R and the finite-type semistar operations 
on R.

Counting the number of finite-type semistar operations on a ring R amounts to count-
ing the finite type standard closures defined on R. Our main result is to classify the 
standard operations on the ring R = k[[x, y]]/(xy).
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In the proofs we will frequently use the following fact pertaining to all closure opera-
tions:

Fact 3.5. Let R be a commutative ring and c a closure operation defined on the ideals 
of R. If J ⊆ I ⊆ Jc, then Ic = Jc.

Before stating the classification theorem, we state and prove several computational 
Lemmas which will be exploited in the proof of the theorem. The first such lemma allows 
us to conclude that a standard closure � fixes an (xn) (or (yn)) for some natural number 
n > 1, then � fixes all ideals of the form (xn) (or (yn)).

Lemma 3.6. Let R = k[[x, y]]/(xy). If � is a standard closure and (xn)� = (xn) (re-
spectively (yn)� = (yn)) for some n ∈ N with n > 1 then (xr)� = (xr) (respectively 
(yr)� = (yr)) for all r ∈ N.

Proof. Suppose (xn)� = (xn) for some n ∈ N. Consider

(((x + y)(xn−1))� : x + y) = ((xn)� : x + y) = ((xn) : x + y) = (xn−1).

Since � is standard (xn−1)� = (xn−1). By induction we can see (xr)� = (xr) for all r ≤ n. 
By the extension property, (xn+1)� ⊆ (xn)� = (xn). Now suppose (xn+1)� = (xn). We 
have

(((x + y)(xn))� : x + y) = ((xn+1)� : x + y) = ((xn) : x + y) = (xn−1).

Since � is standard this indicates (xn)� = (xn−1) which is a contradiction. By induction 
we can see (xr)� = (xr) for all r > n. �

The following two lemmas allow us to conclude that if � is a standard closure and 
there is some natural number such that (xn)� �= (xn) (or (yn)� �= (yn)), then for all 
natural numbers n > 1 (xn)� �= (xn) (or (yn)� �= (yn)). The second Lemma also allows 
us to make some conclusions about the (x, y)-primary ideals.

Lemma 3.7. Let R = k[[x, y]]/(xy). If � is a standard closure and (xn)� = (xi) (respec-
tively (yn)� = (yi)) for some n, i ∈ N, i < n then (xr)� = (x) (respectively (yr)� = (y)) 
for all r ∈ N.

Proof. Suppose (xn)� = (xi) for some i < n. For i ≤ r ≤ n,

(xi) = (xn)� ⊆ (xr)� ⊆ (xi)� = (xi)

implies that (xr)� = (xi). Consider

(((x + y)(xi))� : x + y) = ((xi+1)� : x + y) = ((xi) : x + y) =
{

(x) if i = 1
i−1
(x ) if i > 1.
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Clearly, if i > 1, then � is not standard. Thus i = 1. Clearly (xr)� = (x) for all 1 ≤ r ≤ n. 
We need to see that (xr)� = (x) for all r ≥ 1. We will show this using induction. Suppose 
(xr)� = (x). We need only see that (xr+1)� = (x). Since standard closures are weakly 
prime

(x2) = (x + y)(xr)� ⊆ ((x + y)(xr))� = (xr+1)�.

Applying � to the sequence of containments we obtain (x) = (x2)� ⊆ (xr+1)�. So (x) ⊆
(xr+1)�. So either (xr+1)� = (x), (xr+1)� = (x, yj), j ∈ N, or (xr+1)� = R. If (xr+1)� =
(x, yj) then

(((x + y)(xr))� : x + y) = ((xr+1)� : x + y) = ((x, yj) : x + y) =
{

(x, yj−1) if j > 1
(x, y) if j = 1.

If (xr+1)� = R then

(((x + y)(xr))� : x + y) = ((xr+1)� : x + y) = (R : x + y) = R.

Since both of these contradict standardness, it must be the case (xr+1)� = (x). So 
(xr)� = (x) for all r ≥ 1. �
Lemma 3.8. Let R = k[[x, y]]/(xy). If � is a standard closure and (xn)� = R (respectively 
(yn)� = R) for some n ∈ N then (xr)� = (xr + ays)� = (xr, ys)� = R (respectively 
(ys)� = (xr + ays)� = (xr, ys)� = R) for all r, s ∈ N.

Proof. Suppose (xn)� = R for some n ∈ N. Since R = (xn)� ⊆ (xt)� ⊆ R for all t ≤ n

we have (xt)� = R for all t ≤ n. Since � is standard, it is weakly prime. Thus

(x + y)(xn)� ⊆ ((x + y)(xn))� ⇒ (x + y) ⊆ (xn+1)�.

Hence (xn+1)� = (x + y)�.
Note if n ≥ 2,

R = (xn)� ⊆ (x + y)� = (xn+1)� ⊆ R.

So (xn+1)� = R. By induction (xr)� = R for all r ∈ N.
Suppose n = 1. We have (x)� = R. Either (x2)� = (x2), (x2)� = (x2, yj), j ∈ N, 

(x2)� = (x, yj), (x2)� = (x + ay), a ∈ k× or (x2)� = R.
Suppose (x2)� = (x2). We have

(((x + y)(x))� : x + y) = ((x2)� : x + y) = ((x2) : x + y) = (x).

Since � is standard this implies (x)� = (x), which is a contradiction.
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Suppose (x2)� = (x2, yj). We have

(((x + y)(x))� : x + y) = ((x2)� : x + y) = ((x2, yj) : x + y) =
{

(x, yj−1) if j > 1
(x, y) if j = 1.

Since � is standard both cases give a contradiction.
Suppose (x2)� = (x, yj). Now R = (x)� ⊆ (x, yj)� ⊆ R which implies (x, yj)� = R. 

This is a contradiction because (x, yj) must be � closed.
Suppose (x2)� = (x + ayj), a ∈ k×. We have

(((x + y)(x))� : x + y) = ((x2)� : x + y) = ((x + ayj) : x + y) =

⎧⎨
⎩

(x, yj) if j > 1
R if j = 1, a = 1
(x, y) if j = 1, a �= 1.

Since � is standard the first and third cases obviously give a contradiction. If (x)� = R

then j = 1, a = 1 so (x2)� = (x + y). Since � is weakly prime we have

(x + y2)(x)� ⊆ ((x + y2)(x))� ⇒ (x + y2) ⊆ (x2)�.

And then (x + y2) ⊆ (x2)� = (x + y) which is a contradiction. Thus (x2)� = R. And by 
above (xr)� = R for all r ∈ N.

Since R = (xr+1)� ⊆ (xr +ays)� ⊆ (xr, ys)� ⊆ R we have (xr +ays)� = (xr, ys)� = R

for all r, s ∈ N. �
Similarly to the last two lemmas, if � is a standard closure and we know that the 

maximal ideal is not closed then no (x, y)-primary ideals will be closed. We thank the 
referee for suggesting the clearer proof below.

Lemma 3.9. Let R = k[[x, y]]/(xy). If � is a standard closure and (x, y)� = R then

(xm, yn)� = (xm + ayn)� = R

for all m, n ∈ N and a ∈ k×.

Proof. Since � is standard, it is weakly prime. Thus we have

(xm+1, yn+1) ⊆ (xm + ayn) = (xm + ayn)(x, y)� ⊆ (xm+1, yn+1)�,

for any m, n ∈ N and a ∈ k×. Applying � to the above shows that

(xm+1, yn+1)� = (xm + ayn)�.

Next note that

(x, y) = (x + y2, x2 + y) ⊆ (x2, y3)� + (x3, y2)� ⊆ (x2, y2)�.

Since (x, y)� = R, it follows that (x2, y2)� = R. Moreover, (x + y)� = (x2, y2)� = R.
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We next show by induction that for all n, (xn, yn)� = R. So suppose this is true for 
some n. Then since � is weakly prime,

(x + y) = (x + y)(xn, yn)� ⊆ (xn+1, yn+1)�.

But since (x + y)� = R, it follows that (xn+1, yn+1)� = R, completing the induction.
Now for any m > n, (xm, yn)� ⊇ (xm, ym)� = R. If m < n, then

(xm, yn)� ⊇ (xn, yn)� = R.

So for all m, n ∈ N, we have (xn, yn)� = R.
Finally, for any m, n ∈ N and a ∈ k×, (xm + ayn)� = (xm+1, yn+1)� = R. �
The next lemma allows us to determine the possibilities for the closures of the mono-

mial (x, y)-primary ideals if the maximal ideal is closed for a standard closure �.

Lemma 3.10. Let R = k[[x, y]]/(xy). If � is a standard closure operation and (x, y)� =
(x, y) then either

(i) (xm, yn)� = (xm, yn) for all m, n ∈ N,
(ii) (xm, yn)� = (x, yn) for all m, n ∈ N or
(iii) (xm, yn)� = (xm, y) for all m, n ∈ N.

Proof. Since (x2, y2)� ⊆ (x, y)� = (x, y) then either (1) (x2, y2)� = (x2, y2), 
(2) (x2, y2)� = (x, y2), (3) (x2, y2)� = (x2, y), (4) (x2, y2)� = (x + ay), a ∈ k×, or 
(5) (x2, y2)� = (x, y).

(4) Suppose (x2, y2)� = (x + ay), a ∈ k×. Then

(((x + ay)(x, y))� : x + ay) = ((x2, y2)� : x + ay) = ((x + ay) : x + ay) = R.

Since � is standard this implies (x, y)� = R which is a contradiction.
(5) Suppose (x2, y2)� = (x, y). Then

(((x + y)(x, y))� : x + y) = ((x2, y2)� : x + y) = ((x, y) : x + y) = R.

So again we have a contradiction.
Thus only possibilities (1)–(3) remain.
(1) Suppose (x2, y2)� = (x2, y2). Since (x3, y3)� ⊆ (x2, y2)� = (x2, y2), we have five 

possibilities: (a) (x3, y3)� = (x2, y3), (b) (x3, y3)� = (x3, y2), (c) (x3, y3)� = (x2, y2), 
(d) (x3, y3)� = (x2 + ay2), for a ∈ k× or (e) (x3, y3)� = (x3, y3).

(a) Suppose (x3, y3)� = (x2, y3). Then

(((x + y)(x2, y2))� : x + y) = ((x3, y3)� : x + y) = ((x2, y3) : x + y) = (x, y2).

Since � is standard this implies (x2, y2)� = (x, y2) which is a contradiction.
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(b) Suppose (x3, y3)� = (x3, y2). Then

(((x + y)(x2, y2))� : x + y) = ((x3, y3)� : x + y) = ((x3, y2) : x + y) = (x2, y)

which again leads to a contradiction.
(c) Suppose (x3, y3)� = (x2, y2). Then

(((x + y)(x2, y2))� : x + y) = ((x3, y3)� : x + y) = ((x2, y2) : x + y) = (x, y)

which is a contradiction.
(d) Suppose (x3, y3)� = (x2 + ay2), a ∈ k×. Then

(((x + y)(x2, y2))� : x + y) = ((x3, y3)� : x + y) = ((x2 + ay2) : x + y) = (x + ay)

also a contradiction.
Thus we are left with (e) (x3, y3)� = (x3, y3). By induction we see for all n ∈ N that 

(xn, yn)� = (xn, yn).
Since (x, y2)� ⊆ (x, y)� = (x, y) we have either (x, y2)� = (x, y2) or (x, y2)� = (x, y). 

Suppose (x, y2)� = (x, y). Since � is weakly prime we have

(x + y)(x, y2)� ⊆ ((x + y)(x, y2))�

implies (x2, y2) ⊆ (x2, y3)�. Thus (x2, y3)� = (x2, y2)� = (x2, y2). Now

(((x3 + y2)(x2, y3))� : x3 + y2) = ((x5, y5)� : x3 + y2) = ((x5, y5) : x3 + y2) = (x2, y3).

Since � is standard this implies (x2, y3)� = (x2, y3) which is a contradiction. Thus 
(x, y2)� = (x, y2) and we can show similarly that (x2, y)� = (x2, y).

Suppose (x, yk)� = (x, yk) for all k < n, for some n ≥ 2. Since

(x, yn)� ⊆ (x, yn−1)� = (x, yn−1)

we have either (x, yn)� = (x, yn) or (x, yn)� = (x, yn−1). Suppose (x, yn)� = (x, yn−1). 
Since � is weakly prime we have (xn−1 + y)(x, yn)� ⊆ ((xn−1 + y)(x, yn))� implies 
(xn, yn) ⊆ (xn, yn+1)�. Thus (xn, yn+1)� = (xn, yn)� = (xn, yn). Now

(((xn+1 + yn)(xn, yn+1))� : xn+1 + yn) = ((x2n+1, y2n+1)� : xn+1 + yn)

= ((x2n+1, y2n+1) : xn+1 + yn) = (xn, yn+1).

Since � is standard this implies (xn, yn+1)� = (xn, yn+1) which is a contradiction. Thus 
for all n ∈ N (x, yn)� = (x, yn) and we can similarly see that (xn, y)� = (xn, y) for all 
n ∈ N. So (xm, yn)� ⊆ (x, yn)� = (x, yn) and (xm, yn)� ⊆ (xm, y)� = (xm, y). Thus 
(xm, yn) ⊆ (xm, yn)� ⊆ (x, yn) ∩ (xm, y) = (xm, yn). So (xm, yn)� = (xm, yn) for all 
m, n ∈ N.
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(2) Suppose (x2, y2)� = (x, y2). This is the base case. Now suppose (xk, y2)� = (x, y2)
for all k < n, for some n ≥ 2. Since � is weakly prime we have

(x + y)(xn−1, y2)� ⊆ ((x + y)(xn−1, y2))�

which implies (x2, y3) ⊆ (xn, y3)�. Thus

(x2, y3) ⊆ (xn, y3)� ⊆ (xn, y2)� ⊆ (xn−1, y2)� = (x, y2).

Since (x2, y3) + (xn, y2) = (x2, y2) we have

(x, y2) = (x2, y2)� ⊆ (xn, y2)� ⊆ (x, y2).

This implies (xn, y2)� = (x, y2) for all n ∈ N. Also

(((x + y)(xn, y))� : x + y) = ((xn+1, y2)� : x + y) = ((x, y2) : x + y) = (x, y).

Since � is standard (xn, y)� = (x, y) for all n ∈ N.
Now suppose (xm, yk)� = (x, yk) for all m ∈ N and 2 ≤ k < n. First we will consider 

those cases where m ≥ 2. Since (xm, yn)� ⊆ (xm, yn−1)� = (x, yn−1) we have either 
(xm, yn)� = (x, yn−1) or (xm, yn)� = (xj , yn) for 1 ≤ j ≤ m.

Suppose (xm, yn)� = (x, yn−1). Since � is weakly prime we have

(x + y)(xm, yn)� ⊆ ((x + y)(xm, yn))�

implies (x2, yn) ⊆ (xm+1, yn+1)�. Hence (xm+1, yn+1)� = (x2, yn)�. Since

(xm+1, yn+1)� ⊆ (xm, yn)� ⊆ (x2, yn)�

we have (xm+1, yn+1)� = (xm, yn)� = (x, yn−1). Now

(((x + y)(xm, yn))� : x + y) = ((xm+1, yn+1)� : x + y) = ((x, yn−1) : x + y) = (x, yn−2).

Since � is standard this implies (xm, yn)� = (x, yn−2) which is a contradiction.
Suppose (xm, yn)� = (xj , yn) for 1 ≤ j ≤ m. Consider the case where j > 1. We have

(((x + y)(xj−1, yn−1))� : x + y) = ((xj , yn)� : x + y) = ((xj , yn) : x + y) = (xj−1, yn−1).

This implies (xj−1, yn−1)� = (xj−1, yn−1). By induction (xj−1, yn−1)� = (x, yn−1) im-
plying j = 2. So we have (xm, yn)� = (x2, yn).

Since (xm+1, yn+1)� ⊆ (xm, yn)� = (x2, yn) either we have (a) (xm+1, yn+1)� =
(xm+1, yn+1), (b) (xm+1, yn+1)� = (xm+1, yn), (c) (xm+1, yn+1)� = (xm, yn+1), (d) 
(xm+1, yn+1)� = (x2, yn) or (e) (xm+1, yn+1)� = (xm + ayn), a ∈ k×.

(a) Suppose (xm+1, yn+1)� = (xm+1, yn+1). Then
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(((x + y)(xm, yn))� : x + y) = ((xm+1, yn+1)� : x + y)

= ((xm+1, yn+1) : x + y) = (xm, yn).

Since � is standard, (x2, yn) = (xm, yn)� = (xm, yn) implying m = 2. We conclude that

(x3, yn+1)� = (x3, yn+1)

and have

(((x + y2)(x2, yn−1))� : x + y2) = ((x3, yn+1)� : x + y2) = ((x3, yn+1) : x + y2)

= (x2, yn−1).

Since � is standard this implies (x2, yn−1))� = (x2, yn−1). This contradicts the inductive 
hypothesis (x2, yn−1))� = (x, yn−1).

(b) Suppose (xm+1, yn+1)� = (xm+1, yn). Then

(((x + y)(xm, yn))� : x + y) = ((xm+1, yn+1)� : x + y) = ((xm+1, yn) : x + y)

= (xm, yn−1).

Since � is standard this implies (xm, yn))� = (xm, yn−1) which is a contradiction.
(c) Suppose (xm+1, yn+1)� = (xm, yn+1). Then

(((x + y)(xm, yn))� : x + y) = ((xm+1, yn+1)� : x + y) = ((xm, yn+1) : x + y)

= (xm−1, yn).

Since � is standard, (x2, yn) = (xm, yn)� = (xm−1, yn). This implies m = 3. So 
(x3, yn)� = (x2, yn) and (x4, yn+1)� = (x3, yn+1). We have

(((x2 + y)(x2, yn))� : x2 + y) = ((x4, yn+1)� : x2 + y) = ((x3, yn+1) : x2 + y) = (x, yn).

Since � is standard this implies (x2, yn)� = (x, yn). This is a contradiction since (x2, yn)
must be �-closed.

(d) Suppose (xm+1, yn+1)� = (x2, yn). Then

(((x + y)(xm, yn))� : x + y) = ((xm+1, yn+1)� : x + y) = ((x2, yn) : x + y) = (x, yn−1).

Since � is standard this implies (xm, yn)� = (x, yn−1) which is a contradiction.
(e) Suppose (xm+1, yn+1)� = (xm + ayn), a ∈ k×. Then

(((x + y)(xm, yn))� : x + y) = ((xm+1, yn+1)� : x + y) = ((xm + ayn) = (xm−1 + ayn−1).
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Since � is standard this implies (xm, yn))� = (xm−1 + ayn−1) which is a contradiction. 
Thus j = 1 and (xm, yn)� = (x, yn) for all m ≥ 2 and n ∈ N. For the case where m = 1
consider

(((x + y)(x, yn))� : x + y) = ((x2, yn+1)� : x + y) = ((x, yn+1) : x + y) = (x, yn).

Since � is standard this implies (x, yn)� = (x, yn). Hence (xm, yn)� = (x, yn) for all 
m, n ∈ N.

(3) If we suppose (x2, y2)� = (x2, y) then by exchanging the roles of x and y and 
repeating the proof of (2) we obtain (xm, yn)� = (xm, y) for all m, n ∈ N. �

If the monomial (x, y)-primary ideals are not closed, the following Lemma allows us 
to determine the closures of the principal (x, y)-primary ideals.

Lemma 3.11. Let R = k[[x, y]]/(xy). If � is a standard closure operation and (xm, yn)� =
(x, yn) (respectively (xm, yn)� = (xm, y)) for all m, n ∈ N then (xm + ayn)� = (x, yn)
(respectively (xm + ayn)� = (xm, y)) for all m, n ∈ N and a ∈ k×.

Proof. We have

(xm+1, yn+1) ⊆ (xm + ayn) ⊆ (xm, yn).

Applying � to the chain we obtain

(x, yn+1) ⊆ (xm + ayn)� ⊆ (x, yn).

Since (x, yn+1) + (xm + ayn) ⊆ (xm + ayn)� and (x, yn+1) + (xm + ayn) = (x, yn),

(xm + ayn)� = (x, yn). �
Lemma 3.12. Let R = k[[x, y]]/(xy). If � is a standard closure operation and (ys)� =
(xi, yj) (respectively (xs)� = (xi, yj)) for some natural numbers s, i, j, then (yt)� =
(x, yt) (respectively (xt)� = (xt, y)) for all natural numbers t.

Proof. Now suppose that (ys)� = (xj , yk) for some s, i, j ∈ N. So (xi, yj) = (ys)� ⊆ (yj)�
implies (yj)� = (xi, yj)� = (xi, yj). Suppose j < s. We have

(((x + ys−j)(yj)j� : x + ys−k) = ((ys)� : x + ys−j)

= ((xi, yj) : x + ys−j) =

⎧⎪⎪⎨
⎪⎪⎩

(xi−1, y) if s > 2j, i > 1
(xi−1, y2j−s) if s < 2j, i > 1
R if s ≥ 2j, i = 1

2j−s

.

(x, y ) if s < 2j, i = 1
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The first three cases are obvious contradictions of � being standard. For the last case, 
since it must be the case that (x, y2j−s) = (xi, yj) we see that 2j − s = j which in turn 
implies s = j. Thus (ys)� = (x, ys). Since

(x, ys) = (ys)� ⊆ (xm, ys)� ⊆ (x, ys)� = (x, ys),

then for all natural numbers m, (xm, ys)� = (x, ys)�. We can now conclude from 
Lemma 3.9 that (x, y)� �= R, since there is a pair (m, s) ∈ N2 with (xm, ys)� �= R. 
Thus (x, y)� = (x, y). Now applying Lemma 3.10 we see that (xm, yn)� = (x, yn) for all 
natural numbers m and n since the other two cases would lead us to a contradiction. 
Now using this fact we will show that (yt)� = (x, yt) for all natural numbers t.

Suppose first that t < s. Then

(((x + yt)(ys−t))� : x + yt) = ((ys)� : x + yt) = ((x, ys) : x + yt) = (x, ys−t).

Since � is standard (ys−t))� = (x, ys−t). To show (yt)� = (x, yt) for all t it is enough 
to show (ys+1)� = (x, ys+1). Since (ys+1)� ⊆ (ys)� = (x, ys) either (ys+1)� = (x, ys) or 
(ys+1)� = (xr, ys+1) for some r ≥ 1. Suppose (ys+1)� = (x, ys). We have

(((x + y)(ys))� : x + y) = ((ys+1)� : x + y) = ((x, ys) : x + y) = (x, ys−1).

This implies (ys)� = (x, ys−1) which is a contradiction. Suppose (ys+1)� = (xr, ys+1) for 
some r > 1. We have

(((x + y)(ys))� : x + y) = ((ys+1)� : x + y) = ((xr, ys+1) : x + y) = (xr−1, ys).

Since � is standard (ys)� = (xr−1, ys) which implies r = 2. So (ys+1)� = (x2, ys+1). 
Lemma 3.10 implies that the ideals (xm, yn) are �-closed for all m and n (x2, ys+1)� =
(x, ys+1) which is a contradiction since (x2, ys+1) must be � closed. So r = 1 and 
(ys+1)� = (x, ys+1). Thus (yt)� = (x, yt) for all t.

To show that if (xs)� = (xi, yj) for some natural numbers i, j and s then (xt)� = (xt, y)
for all natural numbers t, we need only reverse the roles of x and y in the proof. �
Lemma 3.13. Let R = k[[x, y]]/(xy). If � is a standard closure operation, it cannot be the 
case that (xn)� = (xi + ayj) or (yn)� = (xi + ayj) for any natural numbers i, j and n.

Proof. Suppose that (xm)� = (xi + ayj) for some natural numbers i, j and m and 
some a ∈ k×. This cannot be a standard closure. If (x, y)� = R then by Lemma 3.9
(xi + ayj)� = R which is a contradiction since (xi + ayj) must be �-closed. If (x, y)� =
(x, y) then by 3.10 there are three possibilities. If we suppose (xm, yn)� = (x, yn) for all 
m, n ∈ N or (xm, yn)� = (xm, y) for all m, n ∈ N by Lemma 3.11 then (xi + ayj) is not 
�-closed. So suppose (xm, yn)� = (xm, yn) for all m, n ∈ N. Now

(xi + ayj) = (xm)� ⊆ (xm, yn)� = (xm, yn).
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This implies i ≥ m hence (xm) � (xi + ayj) which is a contradiction of the extension 
property. �

Now we are ready to state and prove the Main Classification Theorem:

Theorem 3.14. Let R = k[[x, y]]/(xy). There are 24 standard closures on R.

(1) �1: The identity.
(2) �2: I�2 = I for all I �= (xn + aym) and (xn + aym)�2 = (xn, ym) for natural 

numbers n and m and a ∈ k×.
(3) �3: (0)�3 = (0); (xn)�3 = (xn) and (yn)�3 = (yn) for all natural numbers n;

(xn, ym)�3 = (xn + aym)�3 = (x, ym)

for all natural numbers m and n, and all a ∈ k×; and R�3 = R.
(4) �4: (0)�4 = (0); (xn)�4 = (x) and (yn)�4 = (yn) for all natural numbers n;

(xn, ym)�4 = (xn + aym)�4 = (x, ym)

for all natural numbers m and n, and all a ∈ k×; and R�4 = R.
(5) �5: (0)�5 = (0); (xn)�5 = (xn) for all natural numbers n;

(ym)�5 = (xn, ym)�5 = (xn + aym)�5 = (x, ym)

for all natural numbers m and n and all a ∈ k×; and R�5 = R.
(6) �6: (0)�6 = (0); (xn)�6 = (x) for all natural numbers n;

(ym)�6 = (xn, ym)�6 = (xn + aym)�6 = (x, ym)

for all natural numbers m and n and all a ∈ k×; and R�6 = R.
(7) �7: (0)�7 = (xn)�7 = (x) for all natural numbers n;

(ym)�7 = (xn, ym)�7 = (xn + aym)�7 = (x, ym)

for all natural numbers m and n and all a ∈ k×; and R�7 = R.
(8) �8: (0)�8 = (0); (yn)�8 = (yn) and (xn)�8 = (xn) for all natural numbers n;

(xm, yn)�8 = (xm + ayn)�8 = (xm, y)

for all natural numbers m and n and all a ∈ k×; R�8 = R.
(9) �9: (0)�9 = (0); (yn)�9 = (y) and (xn)�9 = (xn) for all natural numbers n;

(xm, yn)�9 = (xm + ayn)�9 = (xm, y)

for all natural numbers m and n and all a ∈ k×; R�9 = R.
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(10) �10: (0)�10 = (0); (yn)�11 = (yn) for all natural numbers n;

(xm)�10 = (xm, yn)�10 = (xm + ayn)�10 = (xm, y)

for all natural numbers m and n and all a ∈ k×; R�10 = R.
(11) �11: (0)�11 = (0); (yn)�11 = (y) for all natural numbers n;

(xm)�11 = (xm, yn)�11 = (xm + ayn)�11 = (xm, y)

for all natural numbers m and n and all a ∈ k×; R�11 = R.
(12) �12: (0)�12 = (yn)�12 = (y) for all natural numbers n;

(xm)�12 = (xm, yn)�12 = (xm + ayn)�12 = (xm, y)

for all natural numbers m and n and all a ∈ k×; R�12 = R.
(13) �13: (0)�13 = (0); (xn)�13 = (xn) and (yn)�13 = (yn) for all natural numbers n; 

I�13 = R for all other I.
(14) �14: (0)�14 = (0); (xn)�14 = (x) and (yn)�14 = (yn) for all natural numbers n; 

I�14 = R for all other I.
(15) �15: (0)�15 = (0); (xn)�15 = (xn) and (yn)�15 = (y) for all natural numbers n; 

I�15 = R for all other I.
(16) �16: (0)�16 = (0); (xn)�16 = (x) and (yn)�16 = (y) for all natural numbers n; 

I�16 = R for all other I.
(17) �17: (0)�17 = (0); (xn)�17 = (xn) for all natural numbers n; I�17 = R for all other I.
(18) �18: (0)�18 = (0); (xn)�18 = (x) for all natural numbers n; I�18 = R for all other I.
(19) �19: (0)�19 = (xn)�19 = (x) for all natural numbers n; I�19 = R for all other I.
(20) �20: (0)�20 = (0); (yn)�20 = (yn) for all natural numbers n; I�20 = R for all other I.
(21) �21: (0)�21 = (0); (yn)�21 = (y) for all natural numbers n; I�21 = R for all other I.
(22) �22: (0)�22 = (yn)�22 = (y) for all natural numbers n; I�22 = R for all other I.
(23) �23: (0)�23 = (0); I�23 = R for all other I.
(24) �24: I�24 = R for all I.

Proof. Every non-unit, regular element in R has the form xn+aym, m, n ∈ N and a ∈ k×. 
By computing (((xn+aym)I)� : xn+aym) for I = (0), I = (xn), I = (yn), I = (xm+ayn), 
and I = (xm, yn) one can verify (((xn + aym)I)� : xn + aym) = I� to show each closure 
from the above list is in fact standard.

Now we will show that these are in fact all the standard closures on R.
Suppose � is a standard closure and there exists an ideal I such that I� �= I. If this is 

the case, the ideal I must be one of the following:

(a) I = (0).
(b) I = (xn) for some natural number n.
(c) I = (yn) for some natural number n.
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(d) I = (xn, ym) for some natural numbers n and m.
(e) I = (xn + aym) for some natural numbers n and m and a ∈ k×.

(a) Suppose I = (0). Either (0)� = (xn) for some natural number n, (0)� = (yn) for 
some natural number n, (0)� = (xn, ym) for natural numbers n and m, (0)� = (xn+aym)
for natural numbers n and m and some a ∈ k×, or (0)� = R.

If (0)� = (xn), then

(((xr + ays)(0))� : xr + ays) = (xn : xr + ays) =
{

(x) if r ≥ n− 1
(xn−r) if 1 ≤ r < n− 1.

Since � is standard, this contradicts (0)� = (xn) unless (0)� = (x). Since (0) ⊆ (xn) ⊆ (x), 
then (xn)� = (x). Since (0) ⊆ (ym) then (x) = (0)� ⊆ (ym)�. Thus (x, ym) ⊆ (ym)�. So 
either (ym)� = (x, yi) for some i ≤ m or (ym)� = R.

Note that if (ym)� = (x, yi) then Lemma 3.12 allows us to conclude that (ym)� =
(x, ym). Also Lemma 3.11 implies that for all natural numbers m and n and all a ∈ k×, 
(xm + ayn)� = (x, yn). Clearly R� = R and this is the operation described by �7.

If (ym)� = R for some m then by Lemma 3.8, (ym)� = (xn + aym)� = (xn, ym)� = R

for all m, n ∈ N. This is the operation described by �19.
If (0)� = (yn) instead of (xn) the same arguments used above exchanging the roles of 

x and y will produce the operations described by �12 and �22 respectively.
If (0)� = (xn, ym) for some natural numbers n and m, then

(((x + y)(0))� : x + y) = ((0)� : x + y) = ((xn, ym) : (x + y))

=

⎧⎪⎪⎨
⎪⎪⎩

(xn−1, ym−1) if n,m > 1
(x, ym−1) if n = 1 and m > 1
(xn−1, y) if n > 1 and m = 1
R if n = m = 1

exhibits that this closure is not standard so (0)� �= (xn, ym).
If (0)� = (xn + aym) for some natural numbers n and m and some a ∈ k×, then since

(((x + y)(0))� : x + y) = ((0)� : x + y) = ((xn + aym) : (x + y))

=
{

(xn−1 + aym−1) if n,m > 1
(xn, ym) if n = 1 or m = 1

exhibits that this closure is not standard so (0)� �= (xn + aym).
If (0)� = R, then I� = R for all I. Then � is standard and corresponds to �24.
For the remaining standard closures we may assume that (0)� = (0).
(b) Suppose I = (xn). Then (xn)� = (xi) for some natural number i < n, (xn)� =

(xi, yj) for some natural number j and some i ≤ n, (xn)� = (xi + ayj) for some natural 
number j and some a ∈ k× and i < n, or (xn)� = R.
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Suppose first that (xn)� = (xi) for some natural number i < n. By Lemma 3.7, then 
(xr)� = (x) for all natural numbers r. To determine � we need to determine J� for the 
remaining ideals J of R. By Lemmas 3.6 and 3.7 if (ys)� = (yi) for some i ∈ N either 
(ys)� = (ys) or (ys)� = (y) for all s ≥ 1.

Suppose (ys)� = (ys) for all natural numbers s. Since (xr)� = (x) for all natural 
numbers r, (x, ys) = (xr)� + (ys)� ⊆ (xr, ys)� ⊆ (x, ys)� for all natural numbers r
and s. Applying � to the chain we obtain (xr, ys)� = (x, ys)� for all r and s. Either 
(x, y)� = (x, y) and (x, y)� = R. Suppose the former. Since x ∈ (xr, ys)� for all r and s
by Lemma 3.10 (xr, ys)� = (x, ys) for r and s. Then by Lemma 3.11, (xr+ays)� = (x, ys)
for all natural numbers r and s and a ∈ k× if � is standard. This corresponds to �4 above. 
If (x, y)� = R, by Lemma 3.9 we obtain �14.

Now suppose that (ys)� = (y) for all natural numbers s. Since (xr)� = (x) for all 
natural numbers r, (x, y) = (xr)� +(ys)� ⊆ (xr, ys)� ⊆ (x, y)� for all r and s. Applying �

to the chain we obtain (xr, ys)� = (x, y)� for all r and s. If (x, y)� = (x, y), then � cannot 
be standard since

(((x + y)(x, y))� : x + y) = ((x2, y2)� : x + y) = ((x, y) : x + y) = R.

Thus (x, y)� = R and by Lemma 3.9, � corresponds to �16 above.
Now suppose that (ys)� = (xi, yj) for some natural numbers i and j ≤ s. Then 

Lemma 3.12 implies that (ys)� = (x, ys) for all s. Either (x, y)� = (x, y) and (x, y)� = R. 
Suppose the latter. Then by Lemma 3.9 (x, ys)� = R for all s. This is a contradiction 
since (x, ys) is � closed. Thus (x, y)� = (x, y). Since

(x, ys) = (ys)� ⊆ (xr, ys)� ⊆ (x, y),

by Lemma 3.10 (xr, ys)� = (x, ys) for all s. Moreover, Lemma 3.11 implies that

(xr + ays)� = (x, ys)

for all natural numbers r and s and a ∈ k×. This corresponds to �6 above.
Now suppose that (ys)� = R for some s ∈ N. Then Lemma 3.8 implies that

(ys)� = (xr, ys)� = (xr + ays)� = R

for all natural numbers r and s and all a ∈ R×. Thus � corresponds to �18 above.
We have not considered the case (ys)� = (xn + ayt) for some natural number n and 

t < s and a ∈ k×. However by Lemma 3.13 this is not possible.
Now consider the cases that (xn)� = (xi, yj) for some natural numbers i ≤ n and j. 

Again Lemma 3.12 implies that (xr)� = (xr, y) for all natural numbers r. Since

(xr, y) = (xr)� ⊆ (xr, ys) ⊆ (xr, y)
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for all natural numbers r and s, we see that (xr, ys)� = (xr, y) for all natural numbers r
and s. Applying Lemma 3.11, we obtain (xr + ays)� = (xr, y) for all natural numbers r
and s and all a ∈ k×.

We need only determine the closures of (ys) for all s and we will know what � is. If 
(ys)� = (ys) for some s, then Lemma 3.6 tells us that (ys)� = (ys) for all s. Thus �
corresponds to �10. If (ys)� = (yi) for some natural number i < s, then by Lemma 3.7
(ys)� = (y) for all s. Thus � corresponds with �11. Since (ys)� ⊆ (xr, ys)� = (xr, y) for all 
natural numbers r and s, it cannot be the case that (ys)� = (xi, yj) for natural numbers 
i and j nor can (ys)� = R.

By Lemma 3.13 we know it is not the case that (xm)� = (xi + ayj) for any natural 
numbers i, j and m or a ∈ k×.

Suppose (xn)� = R for some n. Then Lemma 3.8 implies that

(xr)� = (xr, ys)� = (xr + ays)� = R

for all natural numbers r and s and a ∈ k×. Either (ys)� = (ys) for all natural numbers s, 
this is �20, or (ys)� = (y) for all natural numbers s which is �21 or (ys)� = R for all 
natural numbers s which is �23.

For the remaining cases we will assume that (0)� = (0) and (xr)� = (xr) for all natural 
numbers r.

(c) I = (yn). It is either the case that (yn)� = (y) for some natural number n, 
(yn)� = (xi, yj) for some natural numbers n,i and j ≤ n, (yn)� = (xi + ayj) for some 
natural numbers n, i and j < n and some a ∈ k× or (yn)� = R for some natural 
number n.

Suppose first that (yn)� = (y) for some natural number n. Consider the case when 
(x, y)� = R. Then by Lemma 3.9 (xr, ys)� = (xr +ays)� = R for all r, s ∈ N and a ∈ k×. 
This is the operation described by �15.

Now consider the case when (x, y)� = (x, y). By 3.10 either (xm, yn)� = (xm, yn)
for all m, n ∈ N, (xm, yn)� = (x, yn) for all m, n ∈ N or (xm, yn)� = (xm, y) for all 
m, n ∈ N. However we cannot have (xm, yn)� = (xm, yn) since (y) = (yn)� ⊆ (xm, yn)�
implies that y ∈ (xm, yn)�. Similarly we cannot have (xm, yn)� = (x, yn). So suppose 
(xm, yn)� = (xm, y) for all m, n. Then by 3.11 (xm + ayn)� = (xm, y) for all m, n ∈ N
and a ∈ k×. This is the operation described by �9.

By Lemma 3.12 if (yn)� = (xi, yj) for some natural numbers i and j ≤ n then 
(yn) = (x, yn) for all natural numbers n. Since (x, yn) = (yn)� ⊆ (xm, yn)� = (x, yn) for 
all m, n ∈ N by Lemma 3.11 (xm + ayn)� = (x, yn) for all m, n ∈ N and a ∈ k×. This is 
the operation described by �5.

By Lemma 3.13 (yn)� �= (xi + ayj) for any natural numbers i and j < n with a ∈ k×.
Lastly, consider the case that (yn)� = R for some natural number n. By Lemma 3.8

(yr)� = (xr, ys)� = (xr + ays)� = R

for all r, s ∈ N and a ∈ k×. This corresponds to the closure �17.
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Let us assume for the remaining cases that (0)� = (0), (xr)� = (xr) and (yr)� = (yr)
for all natural numbers r.

(d) To determine � we need to determine I� for the remaining ideals of R. We are 
assuming here that there are some natural numbers m and n such that (xm, yn)� �=
(xm, yn). Consider first the case when (x, y)� = R. Then by Lemma 3.9 (xr, ys)� =
(xr + ays)� = R for all r, s ∈ N and a ∈ k×. This is the operation described by �13.

Now consider the case when (x, y)� = (x, y). By Lemma 3.10 since (xm, yn)� �=
(xm, yn) for some m, n ∈ N then (xr, ys)� = (x, ys) for all r, s ∈ N or (xr, ys)� = (xr, y)
for all r, s ∈ N.

Suppose (xr, ys)� = (x, ys) for all r, s ∈ N. Then by Lemma 3.11 (xr +ays)� = (x, ys)
for all r, s ∈ N and a ∈ k×. This is the operation described by �3.

Suppose (xr, ys)� = (xr, y) for all r, s ∈ N. Then by Lemma 3.11 (xr +ays)� = (xr, y)
for all r, s ∈ N and a ∈ k×. This is the operation described by �8.

(e) At this point (xr)� = (xr) for all r and (yr)� = (yr) for all r and (xr, ys)� = (xr, ys)
for all r, s ∈ N. Since (xm + ayn)� �= (xm + ayn) for some m, n ∈ N and a ∈ k× and 
(xm + ayn)� ⊆ (xm, yn)� = (xm, yn) we have (xm + ayn)� = (xm, yn). Let u, v ∈ N and 
b ∈ k×. Since � is weakly prime we have

(xu + b

a
yv)(xm + ayn)� ⊆ ((xu + b

a
yv)(xm + ayn))�

which implies

(xm+u, yn+v) ⊆ (xm+u + byn+v)�

and

(xm+u + byn+v)� = (xm+u, yn+v)� = (xm+u, yn+v)

Thus (xr + bys)� = (xr, ys) for all b ∈ k×, r > m and s > n. Now suppose r, s ∈ N. We 
have

((xm + yn)(xr + bys))� : xm + yn) = ((xm+r + byn+s)� : xm + yn)

= ((xm+r, yn+s) : xm + yn) = (xr, ys).

Since � is standard this implies (xr + bys)� = (xr, ys) for all b ∈ k× and r, s ∈ N. This 
is the operation described by �2.

The only closure that we are now missing is the identity �1. �
Remark 3.15. Due to Theorem 3.4 we conclude that there are 24 finite type semistar 
operations on k[[x, y]]/(xy). The only one which is a star operation is the identity.
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Note that if we only consider the nine standard closure operations �1, �7, �12, �17, �19,

�20, �22, �23 and �24, all the remaining standard closures can be obtained from these 
through intersections.

• �2 = �7 ∩ �12 ∩ �17 ∩ �20.
• �3 = �7 ∩ �17 ∩ �20.
• �4 = �7 ∩ �20.
• �5 = �7 ∩ �17.
• �6 = �7 ∩ �23.
• �8 = �12 ∩ �17 ∩ �20.
• �9 = �12 ∩ �17.
• �10 = �12 ∩ �20.
• �11 = �12 ∩ �23.
• �13 = �17 ∩ �20.
• �14 = �19 ∩ �20.
• �15 = �17 ∩ �22.
• �16 = �19 ∩ �22.
• �18 = �19 ∩ �23.
• �21 = �22 ∩ �23.
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