Math 421 – Spring 2014 Homework 9

- 1. Describe all extensions of the identity map of \mathbb{Q} to an isomorphism mapping $\mathbb{Q}(\sqrt[3]{2})$ onto a subfield of \overline{Q} .
- 2. Describe all extensions of the automorphism $\psi_{\sqrt{3},-\sqrt{3}}$ of $\mathbb{Q}(\sqrt{3})$ to an isomorphism mapping $\mathbb{Q}(i,\sqrt{3},\sqrt[3]{2})$.
- 3. Find the splitting field of $x^4 5x^2 + 6$.
- 4. Find the splitting field of $x^4 + 1$.
- 5. Show that if [E:F] = 2, then E is a splitting field over F.
- 6. Show that for any prime p the splitting field over \mathbb{Q} of $x^p 1$ is of degree p 1.
- 7. Let F be any field and n be any positive integer not divisible by p, the characteristic of F. Show that the splitting field of $x^n a$ for any $a \in F$ is $F(\alpha, \omega_n)$ where α is any root of $x^n a$ and ω_n is a primitive nth root of unity.