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ABSTRACT OF THE DISSERTATION

Test Ideals in Gorenstein isolated singularities and F-finite reduced rings

by

Janet Cowden Vassilev
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1997

Professor Richard Elman, Chair

The focal point of this thesis is an object called the test ideal defined in 1.14. Test
ideals are defined in commutative rings which contain a field. In particular. we
will restrict our study to commutative rings which contain a field of characteristic
p- Just over ten years ago, Hochster and Huneke developed tight closure, which
focuses on characteristic p methods in commutative algebra. Test ideals have
become an important object to study in tight closure in part because of their link
to the singularity type or the commutative ring. This thesis focuses on studying
aspects of the test ideal in commutative rings of characteristic p which are: 1)
F-finite (defined in 1.16) reduced quotients of a regular local ring and have F -pure
singularities defined in 1.22 and 2) Gorenstein local domains.

One of our main results is that if R is F-pure and  is the test ideal, R/ is also
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C

F-pure. Using this result, we can form a filtrationof B, (0) Cr=7Cn C
7; © ... 7. such that R/7; is F-pure, its test ideal is 7,4, /7 and R/7. is F-regular.
This filtration gives us some insight as to what power of the tight closure of an
ideal is contained in the ideal itself. For example, for any ideal J in R with J C 7.
then (J=)**! C J where k& = max{ht(P:)|P; C Ass(J)}.

We will classify all complete Gorenstein local domains with test ideal equal to
the maximal ideal which are one-dimensional and two-dimensional with the prop-
erty that the square of the maximal ideal is contained in any minimal reduction of
the maximal ideal. We show that the only complete one-dimensional local domain
with test ideal equal to the maximal ideal is k[[z2,23]]. In the two dimensional
case, we have a complete classification of all complete two-dimensional Gorenstein
local domains of the form R = kf[z,y,z]}/(z® — a) with test ideal equal to the

maximal ideal.

ix



Introduction

Let R be a commutative Noetherian ring of characteristic p > 0 and I be an
ideal of R with generators z,... ,z,. Denote powers of p by q. Define R° to be
the complement of the union of minimal primes. We say z € R is in the tight
closure of I if there exists a ¢ € R° such that cz? € I for all large q, where
14 = (z7,... z9). Denote the tight closure of I as I~. In the definition of tight
closure above we observe that the element ¢ must be chosen in R°. It is not
necessarily the case that if cz? € Il for all large ¢ and all z € I*, then for any
other ideal J in R and y € J= that cy? € J for all large q. However, if for all
ideals J C R, ¢(J*)l9 C Jll for all q we call c a test element. The ideal generated
by these test elements is called the test ideal.

Since Hochster and Huneke first defined tight closure several others have col-
laborated to solve many problems in both commutative algebra and algebraic ge-
ometry including: the “homological conjectures”, Big Cohen Macaulay Modules,
singularity theory, the Briangon-Skoda Theorem and more. Test elements and test
ideals play a key role in tight closure theory. Knowing test elements allows us to
compute tight closures of ideals and prove persistence of tight closure which we
state later in Theorem 1.18. Also in the case where R is a Gorenstein isolated
singularity (defined in 1.4), the singularity type of the ring R can be determined
by the test ideal. My thesis involves the study of test ideals in two situations: 1)

when the ring is F-finite and a reduced quotient of a regular local ring, and 2)



when the ring is a Gorenstein isolated singularity.

Recall a ring R is F-finite if F(R) is a finite R-module. Let S be an F-finite
regular local ring and [ an ideal contained in S. Define R = S/I. A special class of
reduced quotients of regular local rings in which we are interested are those which

are F-pure, defined as follows. A monomorphsim ¢ : R — § is said to be pure if

¢®1M:R®1W—+S®M

is injective for all R-modules M. A reduced ring is said to be F-pure if the
Frobenius homomorphism is pure. We require R to be reduced otherwise, the
Frobenius homomorphism need not be injective. In [5], Fedder gave a nice criterion
to check whether a quotient of a regular local ring R = S/ is F-pure. It states such
a ring is F-pure if and only if (/" :5 [) ¢ mlPl. We want to understand (1 :¢ I)
further. Even if I C .J we don’t necessarily have that (719 :g 1) C (JW ;5 J ). But
in such a ring we have shown that (19 :5 J) C (r,[;’] :s Tr) where 7g is the pull back
of the test ideal for R. In proving this, we have noted a new proof for Fedder’s
criterion. If R is F-pure then (I? :5 I) ¢ ml! implies that (r,[;’] ;s Tr) € mPl as a
consequence of the above theorem.

For all minimal primes P/ in R we know that Rpjr = (S/I)p;r = Sp/ P which
is a field. Since the regular locus is open in an excellent local ring we can conclude
that it is nonempty. Thus if we choose ¢ to be an element such that the primes
not containing c are contained inside the regular locus then R, is regular and thus

some power is in the test ideal (defined in 1.17). Since F-pure rings are reduced

o



then c is not nilpotent so it follows that ht((c)) = 1. Therefore, ht(r) > 1. Define
Ri=S5/rpand IC g in S.

Applying Fedder’s F-purity criterion we see that R; is F-pure. Since R; is
defined to be a reduced quotient of a regular local ring, we note that S/7gr,, where
TR,, the pullback of the test ideal in S, is also F-pure. We can continue in this
fashion defining R; = S/7r,_, where 7g,_, is the pullback of the test ideal of R,
in S as long as R;_; is not F-regular; otherwise S/TR;_; = 0. Now TR,/ [ define a
unique filtration of R such that R/(7g,/I) = R4 is F-pure with test ideal g, all
and (7g,.,/I)/(7r./I) have positive height.

To find examples of these filtrations I have made explicit calculations of test
ideals in polynomial and power series rings modulo monomial ideals. We see in

this case that the test ideal is given by the following theorem:

Theorem 0.1 Let R = T/I where T is either a polynomial or power series ring
and I = Pi(... P, is generated by monomials and R/P; are regular. Set J =
S(AN---N Isiﬂ. --NP,), where P: means P; is not included in the intersection.

Then J =T.

To make this more explicit for ideals generated by all (’:) square-free monomials

with  elements [ have shown:
Example 0.2 Let T = k[[zy,... ,Za]] or T = k[zy,... ,z,]. Set R =T/I where

I =<z ...55; >1<ii<..cig<n



then T =<z; ...T;, ...z, >1<ir<...<iz<n Where ;. means z;_ is not included in the

product.

Goto and Watanabe classify all 1 dimensional F-pure rings in [10]. One might
wonder if such a filtration is a possible classifying tool for n dimensional F -pure
rings where n > 1.

Another way to utilize the filtration of successive test ideals in F-pure rings is
to get a bound for n such that (I*)* C I. To make the filtration easier to work
with we reformulate the filtration by replacing ¢ with ¢ — 7 in the above to get the
following filtration, 7. C 1._; C ... € 1y C 7o such that 7:/Tix1 is the test ideal for
R/7iy1, the height of the successive test ideals are all greater than or equal to 1

and R/7; are all F-pure. We can formulate the following theorem:

Theorem 0.3 Let R = S/I, S an F-finite regular local ring. Suppose that R is
F-pure and J/I is an ideal of R. Let c+ 1 be the length of the unique filtration
described above. For somet € {0,1,....c}, J C 7 fori <t and if i € Ass(J)

then (J=)=—t+t C J.
Since ht(7;) > ht(7i41), for all ¢ we get the following corollary:

Theorem 0.4 Let R = S/I, S an F-finite regular local ring. Suppose that R is

F-pure. If J C 1o then (J*)**! C J where h = maz{ht(P;)|P; C Ass(J)}.

In local Gorenstein rings the parameter test ideal is precisely the test ideal.

For general Cohen-Macaulay rings this is not the case, and furthermore, the tight



closure of parameter ideals is not as well understood. For example, we can show

using concepts which Karen Smith defines in [28] that over Gorenstein rings

(z1,...,24) : T =(21,.-- ,T4)".

This statement is not known for Cohen-Macaulay rings. However, the above is
true for one dimensional Cohen-Macaulay domains, but the proof heavily relies on
integral closure since the test ideal is the conductor for 1 dimensional domains.
Using this result, we have classified one dimensional complete Gorenstein domains
with test ideal equal to the maximal ideal.

A main thrust in understanding test elements and test ideals in Gorenstein
isolated singularities is to try to link the type of singularity with the test ideal.
Recently Hara [11] used geometric methods to show that this tie exists in character-
istic 0. Of current interest is classifying Gorenstein domains with test ideal equal
to the maximal ideal. We show these are exactly the minimally elliptic singularities
classified by Laufer [25]. Our proof relies strictly on tight closure methods.

We use the tight closure Briangon-Skoda theorem, which follows, to break down
the classification of normal Gorenstein domains with test ideal equal to the maxi-

mal ideal into double points and triple points.

Theorem 0.5 Let R a Noetherian local ring of characteristic p. Let I be an ideal

in R generated by n elements. Then

"% C (I~

(W1}



Thus if d =2 and y, z is a system of parameters which is a minimal reduction
of the maximal ideal then the above theorem says m? C (y, z)=. Note rm? C (y, z).
If 7 = m then m® C (y,2z). But m? C (y,z) is possible so we break down the
classification down into the two cases: 1) m? C (y,z) and 2) m® C (y, z) where
m? & (y, z). The author classifies case 1) using the methods below. First one shows
that a Gorenstein normal domain satisfying 1) is isomorphic to a hypersurface
with a double point. Thus we can reduce the problem of finding the power series
representing this hypersurface to an element a that lies strictly in £{[y, z]]. Working

in this context, we show that the isomorphism classes will be determined by
a € (y,z)* or a in the form y° + b

such that b € (yz*) + (v, z)® where y%a™} ¢ (¥%,2%) and %% ¢ (y29.229) in

k[[y. z]]. To examine these a we use the following theorem.

Theorem 0.6 [21] Let (S, m) be an equidimensional two-dimensional graded ring
over a perfect field k = Sy or characteristicp >> 0. Assume Sp regular for P C m.
Then for any system of parameters y,z of S with the sum of the degrees equal to
6, then

(y7 Z)‘ = (yv 3) + Sz&

When f is quasihomogeneous we can use the above theorem to compute (y2, z2)*.
To compute which power series are in the same isomorphism class as some poly-

nomial f we use the Weierstrass Preparation Theorem 3.30.



CHAPTER 1

Preliminaries

1.1 Commutative Ring Theory

Let R be a commutative Noetherian ring. We define the dimension of R as

follows:

Definition 1.1 Let R be a commutative Noetherian ring. The dimension of R.

sometimes called the Krull dimension of R, equals
sup{n|Po S P, C ... C P,, where the P; are prime ideals.}

There are many structures inside a commutative ring and many types of com-
mutative rings that we must familiarize ourselves with.

If I and J are ideals in a commutative Noetherian ring R, we denote the ideal
generated by the elements multiplying J into the ideal I by (I :g J) = {z €
RlzJ C I}. If R is understood, we will supress the subscript and write it as

(I:J).

Definition 1.2 Let (R, m) be a local commutative Noetherian ring. The socle of

R is the ideal defined by (0 : m).

-~



A non-unit ideal [ is said to be a primary ideal if for every product ab € [
such that a ¢ [ then 6" € I for some integer n. The radical of a primary ideal
is a prime ideal called the associated prime. The proof of this fact can be found
in Matsumura [27, 6.6]. To avoid confusion we will always denote a primary ideal
associated to a prime ideal P as a P-primary ideal.

Let M =My D M; D...2 M, =0 be a filtration of M such that M /My =
R/m; where m; is a maximal ideal in R. If such a filtration exists then 7 is called
the length of M, and denote the length {(M). For an m-primary ideal q the
multiplicity of q denoted e(q) = limp—o %I(R/q") where d is the dimension of
R.

In a d-dimensional local ring (R, m), if z1,... ,z, generate an m-primary ideal,
we say Ij,....Tq is a system of parameters. If [ and J are ideals such that
I € J, then we say [ is a reduction of J if there exists an integer n such that
[J" = J**+!. The least such n such that equality holds for all reductions J is called
the reduction number. Reductions are often much nicer to work with because

they can have fewer generators.

Definition 1.3 We say J is a minimal reduction of an ideal I if we cannot

find an ideal K C J such that K is a reduction of I.

See Vasconcelos for more details on reductions [31, Chapter 5]. Also for any
reduction of an m-primary ideal we know that the multiplicities are necessarily

equal; a proof of this can be found in [27, 14.13]. Another theorem found in



Matsumura [27, 14.10] states that for a system of parameters q = (z1y--.24).
[(R/q) > e(q). We say a local ring (R, m) is regular if the maximal ideal is

generated by a system of parameters.

Definition 1.4 A local commutative Noetherian ring R is an isolated stngular-

tty if for every non-mazimal prime P we have Rp is a regular local ring.

Let R be a local commutative Noetherian ring. We say z, ... .z, is an R-
sequence if z; is a nonzero divisior on R/(z;,...,ziy) forall 1 < : < r. In
a local Noetherian ring (R, m), a maximal R-sequence is the longest R-sequence
Ty,....T, such that for every z € R such that z ¢ (zy,... ,Z,) then z is a
zero divisor on R/(zy,...,z,). We define the depth(R) equal to the length of the
maximal R-sequence. If depth(R) = dim(R) we say the ring is Cohen-Macaulay.
[n any ring R we say that R is Cohen-Macaulay if for every maximal ideal m of R,
the ring Ry is Cohen-Macaulay.

We say an ideal [ is irreducible if we cannot write I = J, N J, where [ c
and I C Ja. A local ring (R, m) is Gorenstein if R is Cohen-Macaulay and every

ideal generated by a system of parameters in R is irreducible.

1.2 Tight Closure

About ten years ago tight closure was created by Hochster and Huneke. Since
its invention, tight closure has been used to attack many problems in commutative

algebra including: the “homological conjectures”, Big Cohen-Macaulay Modules,



singularity theory, the Briancon-Skoda Theorem and more. To give a brief idea of
the subject in a recent Research Report [1], Bruns referred to tight closure as “a
synonym for characteristic p methods in commutative algebra.” Thus far no tight
closure theory is known for rings of mixed characteristic; hence, we require all our
rings to contain a field. Although an equicharacteristic notion in general, tight
closure is much simpler to define and understand in characteristic p > 0 since the

notion is directly linked to the Frobenius map, which is defined as follows:

Definition 1.5 Let R be a commutative Noetherian ring of characteristic p- The
Frobenius map, F : R — R is defined by F(r) = r* for all r € R. Similarly, we

define F*: R — R by F(r) = r*".

Note that F is an endomorphism of R since F(a+b) = a? + 6. We will pay tribute
to the Frobenius in many subsequent tight closure constructs. Throughout, we will
denote R viewed as an R-module after e applications of the Frobenius as F ‘(R).
Let R be a commutative Noetherian ring of prime characteristic p > 0 and
I be an ideal of R. Denote varying powers of p by q. We define R° to be the

complement of the union of minimal primes.

Definition 1.6 We say z € R is in the tight closure of I if there erists a c € R°
such that cz? € IW for all large q, where I1 is generated by all qth powers of I.

We denote the tight closure of I by I*.

Upon seeing the definition, one might wonder many things including:

10



1) fICJ areidealsin Ris [ C J*?

In what type of rings does the property cz? € I'¥ hold for all z € I*

(S
j—

and all ¢?
3) In what kind of rings are all of the ideals tightly closed?
4) Does there exist a ¢ € R° such that cz? € [W for all z € I~ all ¢

and all ideals I C R?

The following theorem illustrates some of the basic properties of tight closure

along with answering some of the above questions.

Theorem 1.7 [14] Let R be an Noetherian ring of characteristic p and I an ideal
in R.
a) ([)*=1I"and if [ CJ then [ C J=.
b) If R is reduced or if I has positive height, then = € R is in [~ if and
only if there ezists a ¢ € R° such that cz? € IW for all q.
c) An element z € R is in I if and only if the image of z in R/P is in
the tight closure of (I + P)/P for every minimal prime P of R.
d) I~ C1, the integral closure of I.
e) Let R be a regular local ring. Then I* = I for every ideal I C R.
f)  If I is tightly closed, then (I : J) = {z|zJ C I} is tightly closed for
every ideal J C R.
In locally excellent Noetherian rings R which are of equicharacteristic 0, Hochster

defines the notion of tight closure [18, 3.1, Appendix 1] as follows. Let I C R be

11



an ideal. We say that u € I is in the tight closure of R if there exists a finitely
generated Z-subalgebra Rz of R containing u such that, with [z = I'n Rz, one has
that, for all but at most fintely many closed fibers R, of Z — Rz, the image u, of
u in R, is in the characteristic p tight closure (as defined above) of the image of
I in R.. With such a definition for tight closure in equicharacteristic 0 the above
theorem excluding (b) holds and can be found in [18, 4.1, 6.3, 6.1, Appendix 1].
The tight closure of a submodule of an R-module M is also a well defined

notion.

Definition 1.8 Let R be a commutative Noetherian ring, M be an R-module and
N C M a submodule of M. Define Nk’,] = ker(F*(M) — F*(M/N)). We say
r € M is in the tight closure of N if there exists a ¢ € R® such that cz? € Nk',]

for all large q. We denote the tight closure of N in M by Nys.

When M is a non-finitely generated R-module, the tight closure of submod-

ules of M can be difficult to compute so Hochster and Huneke have defined the

following:

Definition 1.9 [14] Let R be a commutative Noetherian ring, M be an R-module

and N C M a submodule of M. The finitistic tight closure of N in M is

Ny = (N 0 M"Y,
MI

where M' ranges over all finitely generated R-modules of M.



The definition clearly indicates that N3/ C Nj, but this containment may be
strict in general.
Property e) only partially answers 3) above. In general, there are many more

rings that have the property that every ideal in the ring is tightly closed.

Definition 1.10 A Noetherian ring R of characteristic p is called weakly F -
regular if every ideal is tightly closed. If, in addition, Ry is weakly F-regular for

every maultiplicatively closed set W then we say R is F-regular.

The following theorem contributes many examples of rings which are weakly

F-regular but not necessarily regular.

Theorem 1.11 [18] Let (R, m) be a local Gorenstein ring of characteristic p. Then

R is weakly F-regular if and only if any parameter ideal is tightly closed.

In fact, R is F-regular if and only if any parameter ideal is tightly closed. As
not to mistake this property with F-regularity, Fedder and Watanabe [6] have

given a name to rings with all parameter ideals tightly closed:

Definition 1.12 A Noetherian ring R of characteristic p is called F-rational if

every ideal generated by part of a system of parameters is tightly closed.

Combining the above definition with the theorem, we see that the notions of
F-regularity and F-rationality are equivalent in Gorenstein rings.
If R is equicharacteristic 0, we say R is of F-rational type if there exists a

finitely generated Z-subalgebra Rz of R, one has that for all but at most fintely

13



many closed fibers R, of Z — Rz, R. is F-rational. Work of Smith [28] and
Hara [11] have shown that rings of characteristic 0 are of F-rational type if and
only if they have rational singularities. Recall a normal local ring R which is
essentially of finite type over a field k of characteristic 0 has rational singularities
if R? f.(Oz) =0 for all j > 0 where f : Z — Spec(R) a resolution of singularities.

Another important property of tight closure is called colon capturing where
colon refers to the colon ideal (I : J) = {z € R|lzJ C I } which is [ illustrated in

the following theorem:

Theorem 1.13 [18] Let (R, m) be a local equidimensional ring of characteristic
p which is a homomorphic image of a Cohen-Macaulay ring. Let z,,....z, be

parameters in R. Then

((21,-- s zect) iR @) © (21,000 2ecr)

Question 4) above thus far has been left unanswered but it is in fact the most
important question with regards to this thesis. The following definition names
such elements but says nothing about their importance or even if such elements

exist.

Definition 1.14 Let R be a Noetherian ring of characteristic p. If for c € R?,
cz? C I8 for all z € I, all ideals I C R and all ¢ = p® then we say that ¢ is a
test element. The ideal generated by the test elements is called the test ideal

and we denote it T or Tg.

14



Recall for any ring R and R-modules N C M that M is an essential extention
of ¥V if for any nonzero submodule U C M, UN N # 0. An injective R-module
E that is an essential extention of R is called the injective hull of R. Using the

injective hull, £, of R, we can show that the test ideal is equal to Anng(0%19).

Theorem 1.15 [1{] Let R be a Noetherian ring of characteristic p. The test ideal

T is equal to Anng(0%'9").

For example, if R is regular then the test ideal is in fact B. As long as we put
some finiteness assumptions on R and we assume that R is reduced then if there
exist a nonzero element c such that R, is regular then test elements exist. For our

purposes we need only assume that R is F-finite.

Definition 1.16 Let R be a Noetherian ring of characteristic p- We say that R

is F-finite if F(R) is a finite R-module.

Theorem 1.17 [15, Theorem 3.4] Let R be an F-finite reduced ring of character-
istic p. Let ¢ be a nonzero element of R such that R. is regular. Then ¢ has a

power which is a test element.

We say tight closure persists from Riffor ¢ : R — S a homomorphism of
Noetherian rings of characteristic p and I an ideal of R if z € I” implies é(z)is in
the tight closure of I'S. Until the existence of test elements was known, there was

no proof of persistence in any ring R.
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Theorem 1.18 [16] Let R be an F-finite reduced Noetherian ring of characteristic
pand ¢ : R — S a homomorphism. [fI C R is an ideal and z € I™ then &(z) is

in the tight closure of IS.
There is also a notion of a parameter test element and a parameter test ideal.

Definition 1.19 Let R be a Noetherian ring of characteristic p. An element ¢ €
R° is a parameter test element if cx? C I for all z € I™, all parameter ideals
I C R and all ¢ = p*. The ideal generated by the parameter test elements is called

the parameter test ideal and we denote it 1.

As F-regularity and F-rationality are equal in Gorenstein local rings so too are
the test ideal and the parameter test ideal. When working with parameter ideals in
d-dimensional local Cohen-Macaulay rings, an important tool is the d-the local
cohomology module with respect to the maximal ideal, H3(R). One way to

define HZ(R) is as follows:

Definition 1.20 Let (R, m) be a d-dimensional local Cohen-Macaulay ring and
I1,...,Z4 is a system of parameters in R. Define the d-th local Cohomology

module of R with respect to the mazimal ideal, HZ(R) = lim R/(z!,... ,z4).

In [29] Karen Smith defined the notion of F-stability in submodules of HZ(R):
and further defined ideals in R with F-stable annihilator in H%(R) to be F-ideals.

The definition follows.
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Definition 1.21 A submodule M of Hi(R) is said to be F-stable if F(M) C M.
An ideal J of a local ring (R, m) of characteristic p # 0 is an F-ideal if AnngapJ

is an F-stable module of HZ(R).

Karen Smith proves in [28] that the test ideal in a Gorenstein ring is an F-ideal.
Many of our results on the test ideal depend highly on the notion of F-stability.

F-purity is a concept that is very much part of tight closure theory, but was
actually studied by Fedder, Goto and Watanabe before tight closure theory came

about. We define it as follows:

Definition 1.22 A monomorphism f : R — S is pure if f®ly : RQM —
S® M is injective for all R-modules M. If R — F(R) is pure, then we say R is

F -pure.

[t follows from the definition that if R is F-pure then if z? € IPl then z € [
for any ideal /. One might hope that F-purity and F-regularity may be the same;
however, there are examples of F-pure rings that are not F-regular. There is also

a parameter version of purity which we call F-injective and it is defined as follows.

Definition 1.23 A Cohen Macaulay ring R is F-injective if zP € 7] implies

z € I for parameter ideals I.
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CHAPTER 2

Test ideals in reduced quotients of F-finite regular local rings

2.1 F-finite “Criteria”

In this section, (S, m) will always be an F-finite regular local ring of character-
istic p. Set R = S/I. Kunz has shown in [22] that F*(S) is a faithfully flat algebra
for regular local rings. Since we assumed that F(S) is a finite S-module, F*(S) is
also a finite S-module and hence it is free by [27, 7.10]. Fedder used the freeness
of F(S) to prove an F-purity criterion for quotients of regular local rings. We
exploit this freeness in a different way to give a new proof of his criterion and to

prove our main result about test ideals in F-finite reduced rings.

Lemma 2.1 Let S be a Noethertian ring and M a free S-module. Then MNier LM =
(Mier ;)M where {I;}icr are ideals in S. In particular, if S is an F-finite reqular

local ring of characteristic p and {I;} a collection of ideals in S then

(" I = (" LYF(S)( S=( LF(S)( S=( 1

where ¢ = p°.
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Proof. Let {z;},.; be a basis for M over S. Then M = @;¢; Sz;. We claim

that for any ideal A C S then AM = @;c; Az;. Thus we can consider

(( LM =P L)z;.

iel i€J iel
Trivially we can see that (N;e; ;)M C ier(I:M). To see the other inclusion, we
notice if z € (i (liM) then z € I;:M for all i € I. Now z = Z;¢; ajz; where

a; € [; for all i € I and j € J. This implies a; € Mig; Ii. Thus z € (Mg, [)M. O

We note another Lemma before we proceed with the new proof for the above

mentioned criterion.

Lemma 2.2 Let {J.} be a collection of ideals in S such that J, = [. Then

N(JE 1y = (.

Proof. Lemma 2.1 implies NJM¥ = [l Since [l C JW for all n € N,

(f.nc(J9:r.
To see the opposite containment we need only prove
((J@ .1 cu.r.

Let z € N(J¥ : I). Then Iz C Mnen J8 = 19, In other words, z € (d.n. O

Besides the freeness of F°(S) over S, we wish to use the fact that R = S/I is
approximately Gorenstein, i.e., there exist ideals {g,} cofinal with m such that

R/qn is a 0-dimensional Gorenstein ring for all n € N. To see that R = S/I is
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approximately Gorenstein recall that R = S/[ is a reduced F-finite ring and use

the following Theorem from Hochster [13, Theorem 1.6]:

Theorem 2.3 Let (R, m) be an excellent local ring with dim(R) > 1. Then R is
approzimately Gorenstein if and only if
a) m & Ass(R) and

b) If P € Ass(R) and dimR/P =1, then R/P © R/P is not embedable in R.
Now we give a new proof of Fedder’s F-purity criterion:

Theorem 2.4 [5, Proposition 1.7] Let R = S/I where (S, m) is an F-finite regular

local ring. Then R is F-pure if and only if (IP! : I) ¢ mbPl

Proof. (=) Since R is an F-finite local ring, by a Theorem of Kunz [23] R
is excellent. Since R is F-pure, it is reduced or in particular if dim(R) > | and
P € Ass(R), Rp is a regular local ring. If R/P & R/P were embedable in R
then Rp couldn’t be Gorenstein, contradicting Rp regular. Combining these two
points we see that R is approximately Gorenstein by 2.3. Thus, we have ideals g,
containing I with S/q, a 0-dimensional Gorenstein ring and Na>19n = 1.

Since S/¢n is a 0-dimensional a Gorenstein ring, Soc(S/¢.) = S/m, i.e., Soc(S5/qa) =
(¢n : m) can be generated by one element, say z, ¢ g,. We know from [2, exercise
3.2.15] that

(Qn : (‘In : m)) =m.



Thus (¢» : z.) = m. Since the Frobenius is faithfully flat on regular local rings,
(¢P1: 22) = mPl.
By Lemma 2.2, we know
((gf:1)= (¥ : ).

Since (¢¥! : I) form a descending chain of ideals in S, if (I : ) C ml! then for
some large n,

(g% : 1) C mlPl = (g1 : 22).

Hence
(q¥: (¢ : 22)) C (g : (g2 : 1).
But
2 € (¢ : mPl) = (g, : m)lPL.
Thus

8 € (g : (¢¥: 1)).

We claim that

(g¥1: (qF1: D)) = gl 4+ 1.
We need only show that
(g : 1) = (¢ g¥1 4+ 1,
since S/qn is a 0-dimensional Gorenstein ring. First note that

g+ 1C (¢ : (¢ : 1)).
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Thus

(¥ : 1) = (g : (¢¥): (P : I))) C (P! : gP! + 1)

However, I C gl + I implies that
(aF: ¥+ 1) C (P : ).

Thus z? € ¢! + I. Since z, was chosen not in ¢, and z2 € ¢, we conclude that
R is not F-pure.

(<) Suppose (IP!: [) ¢ mPl. Let J be an ideal of S containing /. If z* €
JVPl + I, then we conclude

(I : [)zP C JPL.

Thus
(I - cJ: )Pl
and (J : z)PP! is not contained in mf! by assumption. Thus z € J and thus R is
F-pure. a
Fedder has shown the above criterion for ¢ = p. It is fairly easy to show when
q = p° with e > 1 that (I : I) ¢ ml is equivalent to (IP! : I) ¢ mPl. Thus we
can check F-purity on a quotient of an F-finite regular local ring for any power of

D-

Theorem 2.5 Let R = S/I where S is an F-finite regular local ring. Then (It .

I) ¢ ml¥ if and only if (IP) : I) ¢ mb).



Proof. (=) If ¢ = p there is nothing to show. Suppose (/7! : [) C mP!. Apply

the (e — 1)st power of the Frobenius to get
(1P )Pl = (flal . [9/71y C .

But

(1l . I) C (14 : [la/7l) C mld

which is a contradiction.

(<=) Suppose there exists a ¢ such that
(Il ; 1y C mldl.

Since S is regular, m = (zy,... .z4) where z,,... ,z4 is a system of parameters.

The socle of S/ml! is
(mP! o m) = (P (2., .20)P 1) /mlP]

If (Pl : I) ¢ mlP! then there exists z € (IP: [ ) such that z generates the socle of

S/mlPl. We conclude that
= (z1...24)"" " + @12} + ... aquzh.
Note that
Me? € Mg (17 : NPT = W (1™ - 18) ¢ (1671 1),
By an easy computation we see that
MEda? = 255 = (21 20" + byl 4.+ bazh

for some b; € R. But this is in the socle of S/mPP"l. Thus (IF": 1) ¢ mP™. O
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2.2 Test ideals in F-finite reduced rings

F'-pure rings are a special class of reduced rings in which z? € I!9 only if z € [
for all g. Fedder and Watanabe have shown that in F-pure rings the test ideal 7 is
radical which implies that R/7 is reduced. Many examples including the following

seemed to indicate that R/7 was in fact F-pure.

Example 2.6 Let R = k[[z,y, 2]]/(z? — (y®+ yz* + 25)) where k is an algebraically
closed field of characteristic p > 5. By Theorem 2.4, R is F-pure since (z* — (y° +
yzt + 2%))P"1 ¢ (z,y,2)Pl. We will see later in 3.34 that R has test ideal equal to

the mazimal ideal (z,y,z). Clearly R/(z,y,z) is F-reqular and hence F-pure.

The following Theorem of of Goto and Watanabe classifies one dimensional

F'-pure rings containing an algebraically closed field in [10].

Theorem 2.7 [10, Theorem 1.1] Let (R, m, k) be a one dimensional local ring with
k algebraically closed with positive characteristic. If R is F-finite then R is F -pure
if and only if R is isomorphic to K([z1,... .z.]]/(ziz;)ic; where T is the number of

associated primes of R.
This Theorem prompts us to examine if
R =k[[zy,... ,zd]]/I (or R = k[zy,...,z4/])
where [ is generated by squarefree monomialsis in general F-pure. We observe that

if I is generated by squarefree monomials (z; ---z4)?~! € (I : I) thus Fedder’s
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Criterion 2.4 implies R is F-pure. One of our goals in this section is to show that
the test ideal r in such R is generated by squarefree monomials and thus R/T is
F-pure.

To show that R/t is F-pure when R = S/I is F-pure where (S,m) a regular
local ring, we need to show that (f~'(7g)PPl : f~(7g)) € ml! where the canonical
surjection is given by f : S — R. This will be trivial if one can demonstrate that
(IF1 - ) C (f~Y(rr)P! = F~Y(rR)). Using some of the same techniques from the

previous section, we show the following:

Theorem 2.8 Let S be a F-finite reqular local ring, R=S/I. If f : S — R is the

canonical surjection, then (IP1: I) C (f~!(rg)P! : f7Y(7R)).

Proof. If J C S is an ideal with [ C J, denote J/I C R as J. Notice that
for all J C R, we have mr(J )P C 7{}’1. Choose ¢ and z in S such that € 7 and
T € 7. We note that zz? € 7%\, In other words after pulling elements and ideals

back to S. we have cz? € JP! + [. Thus
RIS B 4 1
Let w € (I : ), so that
wf~ (rR)(fTH (TP ¢ S 4 [P C ]
in S. Thus

wf™(rr) C (JP :s (FTH TN = (J i 1T
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So

wf ™ (rr) C [ (J s F7H(T7))PL
cJ

Using Lemma 2.1, we see that

[T s I = ([ (J:s £ T)))PL

IcJ crs
If

[T f7T) = f(w)

IcJ

we are done. To see this we note that

ve [ (J:s YD)

IcJ
if and only if

ve(J:s f YT ))forall TC R

if and only if

vfW (T )CJforall TC R

if and only if
f(v)J CJTforall TC R
if and only if
fwye(J:rT )forall JCR
if and only if

f(v) €E™r
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if and only if

v € f~Y(rn).
Thus w € (f~Y(mr)P! : f~1(rR)). =

Notice that the proof holds for any ¢ = p®. Fedder has noted that to dis-
cuss F-purity of a ring R, we must assume that R is reduced. The proof of the
next Theorem relies on the fact that in an F-finite, F' -pure ring the test ideal is
nonzero and has positive height. To see the test ideal is nonzero recall the following

Theorem of Hochster and Huneke:

Theorem 2.9 [15, Theorem 3.4] Let R be an F-finite reduced ring of character-
istic p. Let c be any nonzero element of R such that R. is reqular. Then some

power of c is a test element.
Now we have the key ingredients for the main theorem of this section.

Theorem 2.10 Let R = S/I be an F-finite, F-pure ring. Let mp be the pullback

of the test ideal of R in S, then S/Tr is F-pure and ht(r) > 1.

Proof. Recall that F-pure rings are reduced. For each minimal prime P/[ in
R, we know that Rpj; = (5/I)p;1 = Sp/P which is a field. The regular locus is
open in an excellent Noetherian local ring. A Theorem of Kunz [23] shows that
F-finite rings are excellent. We conclude that the regular locus of R is nonempty.
Thus if we choose c to be an element such that the primes not containing ¢ are

contained inside the regular locus then R. is regular and thus some power is in the



test ideal by Theorem 2.9. Since R is reduced, ¢ is not nilpotent. It follows that
ht((c)) = 1. Therefore, ht(tg) > 1.

Define R, = R/mr = §/f~'(r). Since R is F-pure, Fedder’s F-purity criterion,
Theorem 2.4, implies that (I?! : I) Z mbl Applying Theorem 2.8 we see that
(f~"(mr)P! : f~'(rr)) € mPPl. Thus another application of Theorem 2.4 implies

that R; is F-pure. |

An immediate Corollary of Theorem 2.10 is the following filtration of R by test
ideals. In [30] Smith shows the test ideal is a D-modules where D is the ring of
differential operators on R; thus, the following filtration is also an example of a

filtration of R by D-modules.

Corollary 2.11 Let R = S/I be an F-finite, F-pure ring. Then there ezists a
unique filtration of R, o C 1 C ... C 7._; C 7. such that Ti+1/7; is the test ideal

for R/t; and R/; are all F-pure for all i.

Proof. Applying 2.10 to R; = S/7;_; where 7;_; is the pullback of the test
ideal of R;_; in S we see that R; is F-pure for all ; and we get the unique filtration
0SrCn/l...Cn/I C...7. where is the last such ¢ such that 7. # R and in

which all of the R; are F-pure and ht(rg,,, /75,) > 1. O

In fact, Theorem 2.10 implies the following Theorem of Fedder and Watanabe.

Theorem 2.12 [6, Proposition 2.5] Let R be an F-pure ring. Then the test ideal

is radical.



As noted above, we will find an algorithm to compute the test ideal of reduced
rings R where R=T/I, T = k[z,... ,z.) or T = kf[zy, ... yZn]] and I is an ideal
generated by square-free monomials in z;,... ,Tn- For a thorough discussion of
monomials see [4, 15.1] and for a reference to monomials in the tight closure context
refer to [14. 7.3]. For the following theorem we note that the sum of two ideals
generated by monomials is an ideal generated by monomials and the intersection

of two such ideals is also generated by monomials.

Theorem 2.13 Let R = T/I with T as above where [ = PiN...N P, is generated
by monomials and R/P; are regular. Set J = 2(AN... ﬂpg N...NP,). Then

J=7=Tp
Proof. To show that J C T we need only see that
(P ... B .. P)CL
However. since I* = (\(I + P),
(P i Bl oo PSP o B ... P)I+P)
=2 ... B .. P)ICI.
To show the other inclusion, take a nonzero
i€ (P ... B[ ... P.).

Then z; + ...+ z, is not in the union of minimal primes and it is the generator of

a parameter ideal. Note that z; € (z; +... + z,)" since

(Z1+...F+ o)zl = (21 + ...+ z,)2;



for all ;. Take a minimal prime p over J. If 7 ¢ J then by a prime avoidance

argument there exists a ¢ € 7 such that ¢ ¢ p. Thus c is 2 unit in B, and
(1 +--. +.‘L'n)'R,, =(z1+... + z,) R,

In Ry, we have

T; €(T1+...+z4)R,
Le., i = a(ry + ...+ T,). We see
(l—a)zi=a(z1+ ...+ i +... +z,).
Since R, is local, either @ or 1 — a is a unit. Thus either
T € (T4 .o+ Eit ...+ 2a)
which implies z; € P; or
(ti+...+ &+ ...+ z,) € (i)

which implies (z, + ...+ &; +... + z,) € (Plﬂ...ﬂf";ﬂ...ﬂPn). From both of

these conclusions, we can conclude z; = 0 for some i. But we assumed the z; were

nonzero.

Note this argument also shows that J = Tpar, SlICE We can assume that the
ideal [ in the first sentence of the proof is a parameter ideal and replace T by 7y,

throughout the rest of the proof. O

Recall the strong test ideal from [20]:
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Definition 2.14 Let R be a commutative Noetherian ring. A strong test ideal is
an ideal J C 7 such that JI* = JI for all ideals I in R. We denote J = Tstr A4S

the largest one.
Corollary 2.15 If all the assumptions of Theorem 2.13 hold, then J = 1, .

Proof. We know that 7y, C 7 =J. And
(P oo B oo PSP . B P+ P)
=(Plr--—rpir---rpn)l

implies that JI* = JI. Thus 74, = J. O

Note that we can also prove Theorem 2.13 as a corollary using the following

more general Theorem.

Theorem 2.16 Let R be an F-pure ring and I and J be ideals in R such that
INJ = (0). Suppose also that Ann(I) = J and Ann(J) = I. Let Tr/r and Ty be
test ideals in R/I and R[J lifted back to R respectively. Ifa = I TRys +J N TR/I

is a radical ideal then T = a.

Proof. We need only see that a C r, since the other containment follows from
a proof similar to showing that 7 C J in Theorem 2.13. It is enough to show that

Ity € 7 and J7gy C 7, since
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Irgps + Jrrpr S INTRs + TN TR
C Rad(I'N7rys) + Rad(J N 7ryr)
C Rad(I7gr/s) + Rad(J7r/r)
C Rad(Itr/s + JTryr)

Ca.

If Ris F-pure then 2.12 shows 7 is radical. Let b be an ideal in R,
b= f7H(6+ D)) g7 ((6+J)7)
where f: R — R/l and g : R — R/J are the natural surjections. Note that
(Itpys)b" C I(b+J)C I6 Cb.

By symmetry

JTR/[b' g__: b.
]

To give some examples of F-pure filtrations, we use the above Theorems to

prove the following:
Theorem 2.17 Let T = k[[z,,... ,z,]] or T = k[z,... ,z,]. Set R = T/I where
I =< Ty - z;, >1$il<---<idsn .

Then T =< Tiy - -Tip ---Tiy >1$i1<...<i45n-
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Proof. Note that I is generated by (Z) elements each missing (n — d) of the
zi’s. If {zj,,... ,zj,_,,, } are (n —d+1) distinct z;’s, then for a fixed {Ziyyo-- iy}
some z;, is a factor of z;, ...z;, (i.e., j, = im where Ti, € {zi,-.. . Ti,}) since
Z;, -..Z;, is only missing (n — d) of the z;'s. Take Py dnarr = (Tipr oo Tjan)-
The P;, . j._4,, are minimal primes and there are (n_: +1) of them. Theorem 2.13

says that 7 = Sﬂix‘#ke Pfl wdn—gyy SOME {klv R k'n—d-H}- But
[ ot Pt dneas = (@1 - Tl < Ty - 20y, >)
where {{,,...l4_1} is the complement of {ki,... .ka—gs1} in {1....n}. Thus

T=LZY - Ty, >1511<,__<1d_1_<_n=< Tip oo Tipo--Tiy >1Si1<---<id5n .

Example 2.18 I. Let R = k[[z,y, z]]/(zy,zz,yz) where k is algebraically closed.
By Theorem 2.7, the ring R is F-pure. By Theorem 2.11 then R/7 is also F-pure.
Thus we need to compute v. By Theorem 2.17, we have T = (z,y,z) = m. So the
filtration is (zy,zz,yz) Cm C R.

2. Let R = k[[z,y, z, w]]/(zyz, zyw, z2w, yzw) where k is algebraically closed.
Using Fedder’s F-purity criterion, the ring R is F-pure. By Theorem 2.11, we also
know that R/t = R, is F-pure. By Theorem 2.17, we have T = (zy,zz, zw,yz, yw, zw).

As in the previous ezample, Tr, = m. Thus the F-pure filtration is

(zyz, zyw, zzw, yzw) C (zy, 2z, 7w, yz,yw, zw) C m C k[[z, vy, =, w]].
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3. Let R = k{[z,y,z]]/(zy,yz) where k is algebraically closed. By Fedder’s
F-purity criterion, R is F-pure. Note that P, = (y) and P, = (z,z). By Theorem
2.13, we have T = (z,y,z). So the filtration is (zy,zz,yz) Cm C R.

4- Let R = k[[z,y, z,w]]/(zy, zw) where k is algebraically closed. Using Fed-
der’s F-purity criterion, R is F-pure. By Theorem 2.11, we also know that
R/t = R, is F-pure. By Theorem 2.17, we have T = (zy,zz,zw.yz,yw, zw).

As in the previous ezample, Tr, = m. Thus the F-pure filtration is
(zy, zw) C (zy. 72, 2w, yz, yw, zw) C m C kf[z, y, =, w]].

One hopes the above filtration is a partial classifying tool for n-dimensional

F-pure rings containing an algebraically closed field.

2.3 Powers of tight closures of ideals

What power of [~ is contained in /? When the closure operation we are dealing
with is integral closure or T 3.7, then in an F-pure ring we know the following

Theorem of Huneke {17, Proposition 4.9]:

Theorem 2.19 Let R be a d-dimensional Noetherian Cohen-Macaulay local ring

which is F-pure. Then for all ideals [
[H#1C .

Theorem 2.19 can be improved slightly. The proof is similar to the proof of 2.19.
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Theorem 2.20 Let R be a d-dimensional Noetherian Cohen-Macaulay local ring

which is F-pure. Then for all ideals I
[ C ™.

Proof. Without loss of generality assume that I is a minimal reduction 1.3.
Thus [ is generated by at most d elements. Take u € 4", Fix an integer k such
that u**™ € [™@+n) Set m = g — k. Then u? € [(3—Fd+n) Rewriting the power
(¢ —k)d+n)=gq(d+n—1)+q— k(d+n) and choosing ¢ > k(d + n) we see
that u? € [old+n-1) C [laljad+n-2) ¢ (Jldyn=tfed C (Jll)n = ([m)ldl. Since R

is F-pure then u € [™. a

Both of the above Theorems imply (/*)4*! C I. But we would like a better
bound. Theorem 2.11 gives us a hint on how to find this bound in F-pure rings.
Recall the setup for Theorem 2.11. Let R = S/ be an F-finite, F-pure ring. As
noted earlier in F-pure local rings test elements exist. Let 7, be the test ideal of
R. As we noted before, ht(rp) > 1. Since R/7 is again F-pure, we can define 7,
to be the test ideal of R/7y. Continue until 7. = R for some ¢. Now our filtration
looks like 79 € 7, € ... C 71—y C 7. such that r;;;/7; is the test ideal for R/7;
and R/7; are all F-pure and ht(ri41/7) > 1. To make the following Theorems’
proofs and statments easier we shall relabel the above filtration setting i = ¢ — ;.
Thus our new filtration looks like: 7. C 7._; € ... C 7 C 70 with 7 [Tis1 the test
ideal for R/741 and ht(r;/741) > 1. To make the proofs of our Theorems more

understandable recall Theorem 1.18:
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Theorem 2.21 [16, Theorem 6.24] Let ¢ : R — S be a homomorphism of F-finite
reduced Noetherian rings of characteristic p. Let I be an ideal of R and w € I*.

Then ¢(w) is in the tight closure of IS.

The notion in the above theorem is referred to as persistence.

Theorem 2.22 Let R = S/I, with S an F-finite regular local ring. Suppose that
R is F-pure and J is an ideal of R. Let c+ 1 be the length of the unique filtration
described above. Suppose for some t € {0,1,... .c} we have J C 1; fori < t. Then

(J-)c—t+2 C_: J.

Proof. Note that Rad(J) = Rad(J"). Thus if J C r, then J* C 7, since 7 is
reduced. We know by Theorem 1.18, that if z is in the tight closure of an ideal J
of R then z + 7; is in the tight closure of J 4 7; in R/7; for all <. In the ring R/,

we know the test ideal is 7;/7;+;. Thus by persistence we know that

TtJ. Q J + (Tt+l n J').

Note that multiplying by J* gives us the following:

()2 C T+ (71 NI C T + (reg2 N JT7)

again by persistence. If we continue to multiply by J* after c — ¢ + 1 steps we have

Tt(.]')c_H.l g J

Thus (J=)*+2 C J. |
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This result can be slightly improved if ; is not contained in the union of the

associated primes of J.

Theorem 2.23 Let R = S/I, with S an F-finite regular local ring. Suppose that
R is F-pure and J/I is an ideal of R. Let c+1 be the length of the unique filtration

described above. Suppose for some t € {0,1,... ,c} we have J C 1; fori < t. If

7o € Ass(J) then (J=)—t+1 C J.

Proof. Following the proof of Theorem 2.22. we see that

n(J7) T C U

Thus

(S CcJ:in)=J
since 1, € Ass(J). a

We see from Theorem 2.23 that the 7; not contained in the associated primes
of an ideal J/I can virtually be ignored. In effect, for each J/I we can reduce the
length of the filtration by successive test ideals from ¢+ 1 to ¢ — s where s is the
largest integer such that 7, € Ass(J). We relabel 7, by 7o and for all i > s, =
becomes 7;_,. Thus our new filtration looks like 7._s_; € ... C 7y C 7 and it has
all the same properties of the above filtration. We can reformulate the statements
of both 2.22 and 2.23 in terms of our new filtration in the following two Theorems

respectively:
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Theorem 2.24 Let R = S/I, with S an F-finite regular local ring. Suppose that
R is F-pure and J/I is an ideal of R. Let c—s be the length of the unique filtration
described above. Suppose for some r € {0,1,... ,c —s — 1} we have J C 7; for

t <r. Then (J=)—s—m+L C J.

Theorem 2.25 Let R = S/I, with S an F-finite regular local ring. Suppose that
R is F-pure and J/I is an ideal of R. Let c—s be the length of the unique filtration

described above. If J C 14 then (J=)* C J.

From these new statements we can estimate a bound on the power of the
tight closure of an ideal which is contained in the ideal in terms of heights of the
associated primes of the ideal J. Note since 1 is the only element of our filtration
not contained in any associated primes of J and ht(7;) > ht(ri4;) for all i, since
ht(7:/7i41) 2 1, we have ¢ — s — 1 < max{ht(P:)|P;, C Ass(J)}. Asa consequences

of 2.24 and 2.25 we have:

Corollary 2.26 Let R = S/I, with S an F-finite regular local ring. Suppose that
R is F-pure and J/I is an ideal of R. Let c—s be the length of the unique filtration

described above. Suppose for somer € {0,1,... ,c —s — 1} we have J C = for

i < r. Then (J*)*=+2 C J where h = maz{ht(P,)|P; C Ass(J)}.

Corollary 2.27 Let R = S/I, with S an F-finite regular local ring. Suppose that
R is F-pure and J/I is an ideal of R. Let c—s be the length of the unique filtration

described above. If J C 1o then (J*)**! C J where h = maz{ht(P;)|P; C Ass(J)}-
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CHAPTER 3

Test ideals in Gorenstein domains

3.1 Test Elements

Now we will concern ourselves with rings that are Cohen-Macaulay isolated
singularities defined in Definition 1.4. We would like to show a few interesting
facts about parameter test elements. The fact that we are in an isolated singularity

guarantees that they exist [14].
Theorem 3.1 Let R be a local d-dimensional Gorenstein ring. Then
(z1e- 2 24)” = (71, . 24) 2 T)
where (zi,... .rq4) is a system of parameters.
Proof. 1t is trivial to see that
(Z1,--- . 2a)” C((215--- ,Za) 1 7).
Thus we need to show that if
z € ((z1,..-.24) : 7), then z € (z4,... ,z4)".
But in [28, 4.5}, Smith proves that 7 is an F-ideal and thus by [28, 3.6]

Tz C (Z1,... ,zq) implies 727 C (z1,... ,zY)
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for all ¢ which are powers of p. Thus z € (zy,... ,z4)". a

Proposition 3.2 Let R be a local d-dimensional Cohen-Macaulay ring. Then
Toar = (T15...,Zd) : (T1,... ,Z4)" where (z1,... ,24) is a system of parameters

which are test elements.
Proof. By [28, 4.4]
Tpar = {€ € Rle(z},... ,z5)" C(zf,... ,z%), for all £ € N},
where z1,... ,zq is a fixed system of parameters. We need to show
((z15-- s2a) s (21,--. ,2a)") C Tpar-
Let c € ((z1,-.. .x4) : (Z1,-.. ,24)"). We need only check
o(zys- - 1 2g)" C (21, - ,Z)
by the above. Since z,... ,zq are test elements, if z € (z},...,z5)" then
€ (211 7d)  (21ee e, 2a)) = (3,0 s 2l (210 2a)' Y.
Without loss of generality, we may assume z = u(z,- - -z4)"". But then
u(zy---zqg)' "t € (28,... ,zh)".

Hence by colon capturing [14], u € (z1,...,24)" and cu € (zi,...,z4). This
implies that

ez € (2l 2).

Thus by [28, 4.4], we have ¢ € Tpq,- a
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Theorem 3.3 Let (R, m) be a d-dimensional Cohen-Macaulay local isolated sin-
gularity. If z1,... ,z4 is a system of parameters and z,,... ,z4_; are parameter

test elements then £ € Tpe, if and only if (z4,. .. y 9™ C (21, - -+ ,24).

Proof. (=) If 2" € Tyer then
x;-l(zlv' .- 71:,‘{)' g (21,. .. ,:z:fi).

Thus

(zla'-- vzfl). g (Ilv~-- ?Ifi) :zfi—l = (.’L’l,... 7Id)'

(<) Since R is an isolated singularity Rp is a regular ring for all nonmaximal
primes P. Since z4 is part of a regular sequence, it is not nilpotent. Thus the primes
of R., are in one to one correspondence with the primes in R not containing z4.
The primes in R not containing z4 are not maximal and since (R, d)pR:d = Rp,
we easily see that R, is regular. Thus some power of 4 is a test element. If

Ty is a test element for n > ¢t — 1 then, using Theorem 3.2, we get that Tpar =

(21, 223) t (2rs- - 23)"). I
zg-l ¢ ((11,... 71'2) : (.'171,... 733)-)
then
(zlv-“ 71:2). g ((.'1:1,... ,.’D;) :32_1) = ($1,... szd)'
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Corollary 3.4 Let (R, m) be a d-dimensional local Gorenstein isolated singularity.
If z1,....z4 is a system of parameters and ,,... ,z4_, are test elements then

7t € 1 if and only if (zy, ... ,Z25)" C (z1,- .- ,Z4)-

Proof. In a Gorenstein ring, T, = 7. Thus Theorem 3.3 translates directly

into 5! € 7 if and only if (zy, ... ,Z9)" C (z1,--. ,Ta)- d

3.2 One-dimensional domains with test ideal the maximal ideal

It would be interesting to know Theorem 3.2 holds for Cohen-Macaulay local
rings also, but it is not known that the parameter test ideal is an F-ideal in a
generic Cohen-Macaulay isolated singularity. For one-dimensional domains with
an infinite residue field we can prove Theorem 3.2, but the proof relies on the fact
that in a one-dimensional domain with an infinite residue field. (z)* = (z) [18],
where (z) is the integral closure of the ideal (z) in R.

Let us recall some definitions about integral extensions. For more detail a good
source is [27].
Definition 3.5 Let R be a Noetherian ring. Suppose S is an R-algebra and z € S.

We say z is integral over R if x is a root of a monic polynomial f(t) € R[t]. We

say S is integral over R if for every element z € S we have z is integral over R.

Definition 3.6 Let R be a Noetherian domain and K its fraction field. We say
z € K is in the integral closure of R, denoted R, if = is integral over R. We

say that R is integrally closed if R = R.



Similarly we can define what it means for elements of a Noetherian ring R to

be integral over an ideal I of R.

Definition 3.7 Let R be a Noetherian ring and [ C R an ideal in R. We say

z € R is integral over I if there ezists a monic polynomial
ft) =t"+art" ' +... +a, € R[t]

such that a; € I' for all i € {1,... ,n}. The set of elements integral over [ form
an ideal denoted I. We call T the integral closure of I in R. [ is said to be

integrally closed if [ = I.

We show that in any integral domain R then zBN R = (z).

Theorem 3.8 Let R be an integral domain. Let z be an nonzero element of R.

Then zRN R = (z).

Proof. First we will show that zRN R C (z). Suppose w € zRN R. Then
there exists a y € R such that w = yz € R. By definition y is the root of a monic

polynomial

f@)=t"+ait* ' +...+a, € R[t].

Set

g(t) =t + zart" ' 4+ ... + z"a,.

43



Note that

g(zy) =z"y" + zayz* Yy + ...+ z"a,
=z™(y" +ay” +... +a,)
=z"f(y) =0.
Thus by definition w = zy € (z).
Now we show that (z) C £RN R. Suppose y € (z). Then y is the root of a

monic polynomial of the form
g(t) =t"+za)t" ' + ... +z"a,

where a; € R. Define f(t) = z™(t" + a;t™! +... + a,). Note

fE) =z(@Er+a@)t o+ an)
I ey T
=y +ray" ' +... +a.
=g(y) =0.
Thus £ € R. Since R is a domain, y € zR. But we assumed y € R; therefore,

ye€cRNR. O

We can also show in one-dimensional domains that the test ideal is equal to

the conductor. Recall the following definition:
Definition 3.9 Let R be a domain. We define the conductor, c, to be the ideal
{c € Rlc=¢(1),6 € Homg(R,R)}.

Remark 3.10 The conductor is actually isomorphic to Homp(R, R).



Proof. To see this, consider the homomorphism % : Homg(R, R) — ¢ defined
by ¥(4) = é(1). It is clear that 3 is onto. We need only see that 3 is one to
one. Suppose not, then ¥(@) = ¥(p) i.e. ¢(1) = p(1) But s¢(Z) = ré(1). Thus

#(3) = Z¢(1). The same is true for p. Thus ¢ = p. a

s

We can also show that the conductor, ¢ is, in fact, equal to N,cp(z) : (z) which

is the key to the proof of the following.

Theorem 3.11 Let R be a [-dimensional local domain with infinite residue field,

k. Then the parameter test ideal, Tper, is the conductor.

Proof. As noted above (r)™ = (z) in a domain. If we can show

c= rzeR(I) : (z)
then by the definition of the parameter test ideal ¢ = 7,4-. Let ¢ € c. Then
é(zR) = z¢(R) C ()

for all £ € R. By Theorem 3.8, zB N R = (z). Thus (z)#(1) C (z) for all z € R.
Thus

é(1) € [ (z):(z)

r€R

which gives us
cC rreR(z) : (z).

The other inclusion is as follows. Suppose that

y€([ @) :@N\e
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Then yz ¢ R for some z € R. But z = 2 where both w and z are in R. Thus
yw ¢ zR. However, by Theorem 3.8, we have w € zRN R = (z) which gives us

that y ¢ (z) : (z), and that is a contradiction. a

Remark 3.12 In a one-dimensional local domain R with infinite residue field, the

parameter test ideal Tp,, is the test ideal 7.

Proof. Note every ideal I in a one-dimensional local domain has the same

integral closure as some principal ideal (z) C I. Thus

(zy*CI"Cl=(z)=(z)".

Hence I" = (). Recall 7 = N;cp({ : [7) and 1per = Niz)cr((z) : (z)7), since every
nonzero element in a one-dimensional domain is a system of parameters. Note for

all ideals [ C R, there exists some y such that (y)* = I~ and
() : @) cU:())=:T).

Thus Tpar g 7. But we know that 7 g Tpar- Thus 7 = Toar- |

Theorem 3.13 In a one-dimensional local domain R with with an infinite residue

field (z)* = ((z) : T), where T is the test ideal of R.
Proof. By Theorem 3.11, we know 7 = ¢. We need only show that

(2) : ¢ S (z)" = (=)
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Let y € (z) : c. Then cy C (z). We want to show that y € (z). If we use the
determinant trick, i.e., if we show that ¢y C cz then we are done. Let J = (¢y : z).

If we can show that J C ci.e., if for s € R then sJ C J, then
cy=cyN(z)=Jz
implies that ¢y C cz. But z € J implies zz = cy where ¢ € c. But szz = scy = za

for some a € R which gives us that sz € R which implies that sJ C J. a

Remark 3.14 A complete local domain R with test ideal equal to R is isomorphic

to K[[t]].

Proof. Note in a complete Gorenstein local domain R with test ideal equal
to R, Theorem 3.13 implies that for every nonzero z € R then (z) = (z)*. Hence
by Theorem 1.11, R is F-regular and hence regular since (z) = (z)* = m implies
that R is normal. By the Cohen Structure Theorem R = k[[t]]. a

Using Theorem 3.13, we can also characterize all one-dimensional complete

Gorenstein local domains with test ideal equal to the maximal ideal.

Theorem 3.15 All complete one-dimensional local Gorenstein domains (R, m)
with the test ideal equal to the mazimal ideal, m, with algebraically closed residue

field k of characteristic greater than or equal to 5 are isomorphic to k[[t?,t%]].

Proof. Let R be such a ring. Since R is Gorenstein we know that for any

minimal reduction 1.3 (y) of the maximal ideal m,

(y) :m=(z,y)
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where z ¢ (y). Thus

(y)"=(y) =m=(y,2)
and
m(y)” = m? C (y).
Thus I(R/(y)) < 2. But R is not regular, thus {(R/(y)) = 2. Since R is Cohen-
Macaulay and y is a maximal R-sequence, the multiplicity of the ring R, denoted
by e(m) is given by
e(m) =e((y)) = l(R/(y)) = 2.
Since R is complete, the Cohen Structure Theorem tells us that R is finite over
k[[y]]- Since e(m) = 2. {1,z} form a basis of R over k[[y]]. Thus we can write
z? = bz + b, where b, and b, € k[[y]]. Setting a; = —b; and a, = —b, then
% + a1z + a3 = 0. Set

f=z*+ a1z +as.

Replacing £ — a;/2 by z we see
f=z*-a

where a € k[[y]]. Also by the Cohen Structure Theorem, we know R is a quotient
of k{[z,y]] and since k[[z,y]]/(f) is a domain then R = k[[z,y]]/(f). Note a € (y)
otherwise f is a unit. Thus f = z? — ay® where « is a unit.

We show if : > 3, then y is not in c. We will break this claim down into two

parts. First note that R is a domain, so f is irreducible. First assume i = 2n is
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even. Since k is algebraically closed and the characteristic is not 2, square roots
exist in k. Thus

T = :tal/Zyr ,

contradicting our assumption that f is irreducible. Now assume that i = 2n +1 is
odd. Then o!/?%y™*! is a root of the monic polynomial 2?2 — yz? over
K[[z.y]]/(z® — ay® *')[z]. Thus a'/2y"*! € (z). Suppose y € c. Then ya'/2y"+! €
(z)- So

r+2 __ bl’ - C(.’L’2 _ ay2r+l).

a1/2y

Rewriting this equality we get

r+2

a2y 4 cay? ! = bz + .

We know that y?"+! € (z); thus the right side of this equality factors if n+2 > 2n+1
L.e. 3 2 :. Note that i # | otherwise R is regular. Thus R = k[[z,y]]/(z? — ay®).
Using Hensel’s lemma z® — o has distinct roots since the characteristic is not

3. Thus we can write a = 32 with 3 a unit and we see that

R = K[[z,y]l/(z* — (By)?) = k[[t*,£*]].
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3.3 Two-dimensional Gorenstein normal domains

A main thrust in understanding test elements and test ideals in Gorenstein
isolated singularities is to try to link the type of singularity with the test ideal.
Recently Hara [11] used geometric methods to show that this tie exists. Before we

state his main result we note the following definition:

Definition 3.16 [12] Suppose g : W' — W is a proper birational morphism of
nonsingular varieties W’ and W. Let V C W be a subvariety. We say that
g~ Y (V) is a divisor with normal crossings if g~ Y(V) is nonsingular and when
r irreducible components Yy, ... .Y, meet in a point P, then the equations f,... . f;

of the Y; form part of a regular system of parameters at P.

Theorem 3.17 [11] Let R be a local Cohen Macaulay normal isolated singularity
over a field of characteristic 0 and X a desingularization of Spec( R) with normal

crossings. Then H"'(X,Ox) = 0%e(my-

Remark 3.18 In the case when R is a 2-dimensional complete Gorenstein isolated

singularity HY(X,Ox) = R/T.

Proof. Recall that the test ideal is equal to Anng(05/%) by 1.15 where E is
the injective hull of R/m. But we know in a Gorenstein ring that £ = Hi(R).
Thus

T = A.n.nR(O;Ig‘(R)f'g').
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Smith notes in [29, 3.3] that

= f-g. —_n=
mir = Opg ()

She also shows in [29, 3.1] that
Annp(0zg(r) = Anna(Og(p) )
where ¥ denotes the Matlis dual. Smith also shows in [29, 3.1] that
;fg(R) = (OZIg(R)V)V = R/AHDR(O;Ig(R)V) = R/T.

a

We use the tight closure Briancon-Skoda theorem, which follows, to break down
the classification of normal Gorenstein domains with test ideal equal to the maxi-

mal ideal into double points and triple points.

Theorem 3.19 Tight Closure Briancon-Skoda Theorem [14] Let R be a
Noetherian local ring of characteristic p > 0. Let I be an ideal in R generated by
n elements. Then

I c(ry

forallr > 1.

Thus if d = 2 and y, z is a system of parameters which is a minimal reduction of
the maximal ideal then the above Theorem says m? C (y,z)". Note rm? C (y,z2).

If - =m then m® C (y,z). But m®2 C (¥, z) is possible so the classification breaks
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down into the two cases: 1) m? C (y,z) and 2) m® C (y, z) where m? Z (y,z). We
will classify case 1) using the methods below but case 2) remains unsolved.

To simplify the proof of the classification when m? C (y, z), we use the following
Theorem to reduce the problem to hypersurfaces of the form £[[z, y, z]l/(z%? — a)

where a € k[[y, z]].

Theorem 3.20 Let (R, m) be a two-dimensional complete normal Gorenstein do-
main of characteristic p > 2 with test ideal contained in the mazimal ideal. Suppose
that m? C (y,z) where (y,z) is a minimal reduction of the mazimal ideal. Then

R = K[[z.y.z]]/(2® — a) where a € K[y, z]].

Proof. Since R is Gorenstein and (y, z) is irreducible we know ((y,z) :m) =
(z,y,z) where z ¢ (y,z). m? C (y,z) implies {(R/(y,z)) = 2. Since R is Cohen
Macaulay and y, z is a maximal R-sequence, e(m) = e((y,z)) = (R/(y,2)) = 2
Since R is complete, applying the Cohen Structure Theorem shows that R is finite
over k[[y, z]] with basis generated by e(m) = 2 elements. Thus {1,z} form a basis
of R over k[[y,z]]. We write z2 = bz + b, where b; and b, € k{ly,z]]. Setting

a) = —b, and a; = —b, then 22 + a;z + a; = 0. Set
f=z2+aiz +a,.
Replacing z — a;/2 by z we see

f=:z:2—a



where a € £{[y. z]|. Note that k[[z,y, z]]/(f) is a two-dimensional complete normal
Gorenstein ring contained in R by [7, Lemma 11.1}. The Cohen Structure Theorem

also tells us that R is a two-dimensional quotient of the ring k[[z,y, z]]. Thus R is

isomorphic to k{[z,y, z]]/(f). a

We have formulated the following criterion to classify which complete Goren-

stein normal domains have test ideal equal to the maximal ideal.

Theorem 3.21 Let R = k[[z.y, z]]/(z*—a) with a € k{[y, z]] and k an algebraically
closed of characteristic p. Then the following are equivalent:
A)m=r,

B) There ezists a minimal reduction (v, w) of m such that

) m = (v,w)" and

2) (v?,w?)" C (v, w)?.

C) For every minimal reduction (v, w) of m,

1) m = (v,w)" and
2) (v*,w?)" C (v,w).

Proof. (C = B) requires no proof.

(B = A) Suppose v, w satisfy 1) and 2). Since R is an isolated singularity then
for some power n, v" and w” are test elements. By Proposition 3.2, 7 = ((v",w") :
(v7,w")"). Note that 7 + (v,w) = ((v,w) : (v,w)"). By 1) ((v,w) : (v,w)") =
((v,w) : m) =m since z € (v,w)". Thus z + a1v + a,w € T where a;,a; € R.

Assuming 2) we know that (v?,w?)” C (v,w)?. Again T+ (v?, w?) = ((v2.w?):

(v, w?)"). Thus 7 4 (v*,w?) 2 ((v?%w?) : (v,w)?) = (v,w). This implies that
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(v,w) C 7. Since (z + a1v + a,w, v, w) = (z,v,w) = m then 7 = m.
(A = C) If m is the test ideal then for any minimal reduction (v,w) of m
m = ((v,w) : (v,w)") by Proposition 3.2. Since R is Gorenstein and v, w € m are

test elements we can conclude by Theorem 3.1 that
m = ((v,w) : m) = (v, w)".
Also after applying Theorem 3.1
(0%, w?)" = ((v*,w?) : m) = (u,v?, w?)

where u is a generator for the socle of (v?,w?). Thus vu and wu € (v?,w?) or

u € (v.w?) and u € (v?, w). Hence
u € (v,w?) N (v, w) = (v, w)>.

O

When (2% —a) is a quasihomogeneous polynomial then we can apply the follow-
ing nice result of Huneke [19] to R = k{[z, y, z]]/(z® — a) determine which elements

lie in the tight closure of any system of parameters.

Theorem 3.22 [19] Let R be the ring k[z,,... ,z4d)/(f). Assume that R is an
isolated singularity which is quasihomogeneous, where k is a field of characteristic
p. Assume that the partial derivatives aﬁé form a system of parameters in R for

1 <2< d. Further assume that p > (d—1)(deg(f)) — E1cicadeg(z;). Let y,... ,ya
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be a homogeneous system of parameters of degrees a,, ... ,ay. Set A = ay + ...aq4.
Then

(¥1,---,92)" = (y1,- - . ¥a) + Rya-

Using the above Theorem, we see that an element u € § = kfz, y, z]/(z? — a)
is in the tight closure of a homogeneous system of parameters v, w if deg(u) >
deg(v) + deg(w). Since S is torsion-free, module-finite and generically smooth
over k[y, z], a regular domain we can apply Proposition [14, 6.9] to get the same
inequality of degrees over § = R. Hence in the quasihomogeneous case we have

the following Corollary of Theorem 3.21:

Corollary 3.23 Let R = k[[z,y, z]]/(z? — a) be an isolated singularity defined by
the quasihomogeneous polynomial z* — a in k(z,y,z]. Assume that k is a field of
characteristic p > deg(z? — a) — deg(y) — deg(z). Then the test ideal is equal to the
mazimal ideal if and only if the following three inequalities hold:

1) deg(z) > deg(y) + deg(z),

2) deg(zy) < deg(y?) + deg(z?) and

3) deg(zz) < deg(y?) + deg(z?).

Proof. By Theorem 3.21 to show that the test ideal is the maximal ideal is
equivalent to showing the following two properties hold for the minimal reduction
¥, z of the maximal ideal:

1) (y,2)" =m and



2) (¥,2%) C (v,2)%

? — a is a quasihomogeneous polynomial then we can apply Theorem

Since z
3.22 to the ring k[z,y, z]/(z? — a) to compute which elements are in (y,2)" and
(y?, 2%)" over the ring S = k[z,y, z]/(z? — a).

Denoting (z,y,z) = n C S and § the n-adic completion of S, we note that
§ = R. Thus by Proposition [14, 6.9], (¥,2)"R = ((y,2)R)" and (32,z2)"R =
((¥%.2*)R)". Thus showing z € (y,2z)" and zy,zz ¢ (32, z2)* over the ring R
is equivalent to showing z € (y,z)" and zy,zz ¢ (y2,z%)" over the ring S. By
Theorem 3.22 this is equivalent to showing:

1) deg(z) > deg(y) + deg(=),

2) deg(zy) < deg(y?) + deg(*) and

3) deg(zz) < deg(y?) + deg(?). O

To apply Theorem 3.21 when (z? — a) is not quasihomogeneous in practice we
+1

want to reduce our calculations to elements that lie in £[[y, z]]. Since z9*+! = a %%

and a*F € k[[y, z]] we can formulate Theorem 3.21 over Elly, z]] to read:

Remark 3.24 Let R = k[[z,y,2]|/(z? — a) with a € k[[y,2]] and k algebraically
closed. Then the test ideal is the mazimal ideal if and only if the following two
properties hold over k{[y, z]]:

1)a%F € (y9,29).

2) y%a*F ¢ (3%,:%) and %0 ¢ (y%, 2%9).
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Proof. Combining Theorem 3.21 B and C we need only show that z € (y, z)*
and (y%,2%)" C (y,2)°. Recall in the proof of Theorem 3.21, that we may assume
z is a test element. Thus we need only show that z9*! € (y%,2%) and z9*(a%y? +
Biz) ¢ (y*?,z%) for any a and B in R. In this case, these statements translate
into:

I) a € (y?,27) and

IT) a " (a%y? + B72%) ¢ (377, 2%).

We note that if either a or 3 is zero this translates into 2). Now suppose neither
a nor f is zero and presume aq_l(a"y"-{-ﬂqz") € (y*,z%). Then aF € (y%9.2%9) :

(a%y? + 3927) = ((y%,2?) : (ay + Bz))H = ((y, z)?)19! which is a contradiction. [

Theorem 3.25 Let R = k{[y, z|] where k is algebraically closed of characteristic
p. Let a € m be square-free. Then P = (y?, z%) for all large q if and only if after

a change of variables a € m* or a is of the form y® + b where b € (yz*) + m®.

In proving Theorem 3.25 we need a few lemmas about binomial coefficients
in characteristic p. We also refer to some Lemmas in the Appendix to determine

analytic isomorphism classes of forms of low degree having terms of higher order.

Definition 3.26 [9] Let n(m) be defined to be the number of times that p divides

m!, ie., n(m) = (2] + 5] +...+ |%] where p**! doesn’t divide m.

Lemma 3.27 Ifq = p°, e > 1 and p > 5 we can find an integer k such that
PN
k< L and ( I?: ) #0 mod p and 3(E: — k) < q.
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Proof. We break the proof down into two cases. First let p = | mod 4. The
ﬂﬂ) (L)

first £ < Ihis k= 2. We have( 2 -. Suppose g = p* = 4k, +1

)~ (DNED
4 4 4 /7
q+1 g+t
and for general n, we have p” = 4k, + 1. (135) = 0 mod p if p divides (9_3_5)
4 4

This happens if n(2£t) > n(252) + n(%1). Note

qg+1 p°+1 pF+1 pF+1
n(T)=l. 2p J+'. 2p2 J+'°’+l~2pe—IJ

e—2

e—1
=5+ 5+ B = 2k 4 4 2,

'

since — <1 forp” > 1.
2p
¢=5,_ =5 , -5 P =5
n(=—) =1 o J+L4p2 J+...+L4PHJ
e—1 e—2
=2 2 P|_
| 1 I+l 1 J+”'+L4J—k—l+---+kl
since 2 _DZOforp"Z.S.
4p”
q+7, p+7 pPP+T P°+T
M) =1 J+L4p2 N =
e—1 e—2
p p P
= I § - R
L4J+L4J+ + 1! 1+ +h
since l<lfor7<3p’. Thus n(Y‘;—‘)zn(ﬂ%s.).f_n(gi-_T) so p doesn’t divide

r

g+1
( 2 ) Also note for ¢ > 21, we have 3t7)
925. © q indad ] n q
1

Now suppose that p = 3 mod 4. I will do the case ¢ = 3 mod 4. and leave
q = 1 mod 4 to the reader since it is basically the same. Note if n is odd then

P =4k, +3 and if n is even p” = 4k, + 1. The first £ we can choose such that

g+1
k< 2tis k=232 But (é)EOmodpsince
4

q+1 PrF+1 pF+1 pF+1
n(_o_)zl. 2p J+l. 2p2 J+"'+|.2pe_]_J

&
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e—1 e—2

D p 14 e—
=1 9 I+l 9 J+'--+L§J=2i=1l2ki+ai

where
0 for:even
a; =
1 for z odd.
q—3, p°—3 -3 P°—3
pe-l pe—2 P
= I ]+1 1 J+...+LZJ=ke_1+...+k1
since —— >0forp” > 1.
4p”
q+5,  p°+5 pF+35 p¢+3
n( 4 )—l. 4p J+L 4p2 J+"'+I.4p¢_l.'
pe—l pc—2 p
= PR — =k_ e o k
R R e R LT SRR
since -*;-) > 1 for 3p” > 5. Thus n(132) + n(2) = 2k_y + ... + 2k < n(ZEL).
e e—l 2 nt 1 e __ ne—l 2 e e—1
If we take k=2~ +2 hen g Bl _ PP 42y G pTHp" .
4 2 4 4
Also
e e—~1 ¢ e e—1 ¢ e—1 ¢ e -1 ¢
PP +2 pt—pT 42 pF—pT +2 p°P—pT +2
e~1 e—2 e—2 e=3
P —p pPF—p Pl cer, g _
—L 4 J+l_ 4 J+—--+l_ 4 J—..J:=lkt k,_l-i-a,
where
—1 for i even
a; =
0 for z odd.
n(pe +pe—l)= ch +pe—1J +[pe +pe-1J + + |.pe +pe-lJ
4 4p 4p? 4pe-t

59



e—1 e—2 e—2 e—3
P +p P +p p—1 .
=g+t ==kt ko + L
Thus
e e—~1 e e—1
2 + 1
n( p4 ) +n(E 4p ) =2%key +2ke2+1+.. +"k1+1—n(q+ ).
O

Lemma 3.28 Forp > 5 and e > 1 there ezists a k such that 1‘{‘5—5 < k < 1 where

g4l
k is mazimal with respect to the property ( Z ) # 0 mod p.

Proof. Let p =1 mod 6. Then for all powers of n, p” = | mod 6. Denote p” =

: 1 = ()
6k, + 1. The first £ we should check is k& = £==. Note (g;_l = US—T!(@ =0

g+l
if p divides (é

3

). This happens if n(%+) > n(45*) + n(Z£2). Note

p+1

p+1
=

(5 = 15

J+ e L

2pe—

e-2

sl o (5] =3k . 43k,

g—1.  p°—1 p —1
e—1
P §J=2ke_l+...+2kl
and
q+5,  p°+3 P +5 pF+5
e—1 e—2
—Lp6 I+ Lp (R +LJ—ke_1+ -+ ki
gﬂ
Thus n(%*) = n(252) + n(22) so p doesn't divide (é) .
3
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Now let p = 5 mod 6. Since p* = 1 mod 6 write p** = 6k,, + 1. Similarly,

p**! =5 mod 6 so we denote p**! = 6ky, 1, + 5. The first k£ we can choose such

g+l
thatk<%isk:%ifeisevena.ndk:gg—zifeisodd. But (é)zﬂmodp
3
since
q+1 pPF+1 PF+1 PF+1
w15 = ) + e+ 1
pe—l pe—2 y\e—l e+1
=l=-l+151+- +L—J= L3k +2[——],
g—1. p°-1 c—1 pF—1
n( 3 )—l. 3p J+'. 3p2 J+"'+!.3pc_1J
e—l e—2 p
L J+L J+...+L§J=2ke_1+..-+2k1
and
q+35, p‘+5 p +3 PP+
l_ NI R
Thus n(250) + n(ZE2) =3k +... + 3k, < n(2£L). If we can find any k between
s . i 2pc_pe-—l+3
—‘li— and £ then there will exist a maximal k. Notice if & = 5 then
9 — ne—1 ‘
for p > 35, 27 p6 +3>3q1-(*]-5.
2p° — e—1 i .
n(EET 3 st ok — eey) + (-1
And

—1

. “’ )= S ks + kioy + L.

i=1

npc+1 2pe_pe—l+3

Thus
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e+1
2 I-

LGk + e+ (-1)* = Sh3k) + 2
d

One more lemma of the same nature which we will exploit later is the following:

Lemma 3.29 Suppose p > 3 then (qqél) # 0 mod p.
2

Proof. Since ¢ = p® = | mod 2 there exists an integer k. such that p® = 2k.+1.

q—1 (g—1)! q—1 e g q—1 :
(9;_1)=m Note g_;_l = 0 mod p if p divides 1%1_ . This

happens if n(q — 1) > n(22) + n("z'—:"). Note

pc_l pc_l

pr—1
L J 7 J+~-+Lpe_1

]

n(g—1) = + [

l
pe—l

= b = e Sl -

p

1 1 1
= [21‘?—1+1—;J+|_2ke-2+1—?J+---+l_2k1+1—;e_—lj =2ke1 +... + 2k

since an <lforp” >1.

g+l p°+1 pF+1 p°+1
pe-l pe—2 p
=5+l 4 A Sl =kt b

since1>%_>_0forp>lfora.ﬂn€N.

q-3 p*—3 pc—3 pF—3
n(—2-)=|. 2p J+I. :)pz J+"’+l.2pe_1.|
pe—l pe-2

=5 +1 5 J+...+L§J= -1+ ...+ k
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r

S

since 5 < Ifor p>3. Thusn(g—1) = n(Zt) + n(%2) so p doesn’t divide

g—1
) :
2

Proof. (Theorem 3.25) Note for any a € (y,z)*, a5 C (y?, 27), since
(1, 2))%F = (y,2)20) C (37, 29).

Suppose a ¢ (y,z)*. Then by elimination of all other possibilities we need to show
that a = y> + b where b € (yz*) + (y, z)°.

First consider the case where a is of the form a quadratic plus an element
b € (y,z)°. After a change of variables we can rewrite the quadratic in the form
yz or y2.

By Lemma A.1 we can rewrite yz + b = y’2’. Thus after a change of variables
we can treat all elements of the form yz + b as yz. But (yz)ﬂ%l ¢ (y?,z7). Hence
this case is eliminated.

By Lemma A.2 we can rewrite y2 + b as y2 + cz® where c is either a unit or
a unit times z' where 7 > 1. Thus after a change of variables we may assume
y> +b = y*> 4+ cz® The first term in the expansion of (32 + cz3)%" with the
exponent of y less than g is (Z)y?~1cz3. But y?-123 ¢ (y7,29). If ¢ is not a unit,
then Lemma A.2 guarantees that y? + cz® = y2 + dz' where d is a unit and i > 4.
Note that i must be finite; otherwise, y? is not square-free. As in the case y2 + c23
we can choose ¢ > 7 and we again see that y7~'z* ¢ (7, z9). Now this case is also

eliminated.
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Now consider the case where a is a cubic plus an element b € (y,z)%. After
a change of variables we can write the cubic in one of the three following forms:
yz(y + 2), 9%z, 4%

By Lemma A.3 we can rewrite yz(y + z) + b as yz(y + z). The first term where
the exponent of y is less than ¢ in the expansion of (yz(y+z)) =l ((ﬁ—))y?- P
By Lemma 3.27 ((?)) # 0 mod p and y?~12%" ¢ (y9, 29) for ¢ > 3. This case is
now eliminated.

By Lemma A.4 we can rewrite y%z + b as y%z + cz* where ¢ is either a unit
or a unit times z* for ¢ > 1. For ¢ a unit, the first term in the expansion of
(y2z + cz*)% where the exponent of y is less than ¢ is (Z£)y?~! =% And for
q > 7,y"‘lz£2i ¢ (y?,2%). If = divides c, then by Lemma A.4 we can find a
finite ¢ such that y®z + cz* = y?: + dz* and d is a unit. Now for ¢ > 2i — 1,
¥~ 1z ™57 ¢ (47, 29). This case is also eliminated.

Suppose that a = y3 + b where b € (y,z)!. By Lemma A.5 after a change
of variables we can rewrite y* + b as y® + uz® where u € (y,z). Assume that
u € (y,z)\(y,2)% If (33 -{-u::‘")%l € (y?,27), then the monomials in the expansion
of

(v° +u2®)
must be in (y7, 2?). These monomials have the form

+1
(B)etorn
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By Lemma 3.28 we can find a largest k, such that (1?) # 0 mod p and 3‘{;’—5 <
k < %. Assume

FuT RSO € (37, 29) + (g, 2)00 %,

yrue
Then
W e (%, ) 4 (y, )R
But
q+1.2—2k < 6k—2q—3 for q1-2 < 3q1-(i)-5 < k.

Also note that

1—2%  g—1 3¢+5
g—3k<1F for T2 2915

k.
) 1 10 <

So if u € (y,2)\(y, z)? then

u € (3, R 4 (g, 202

[n otherwords, u € (y,z?). Now rewrite y° + uz® as y(y2 + z3) + d=°. First let us
look at the expansion of
(y(y* + %)%
By Lemma 3.27 we can find k£ < 2% such that (%) # 0 mod p and 3443=6k o
Thus
y RS g (g, ).
We need to make sure that the z° term does not change the coefficient of yﬂ:&zﬂ‘.=:'3""‘,'g;6'i .

We need to look at the expansion of

i sil—2i
2 (y(y? + %) 73
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for any i < 2%, We want to find an ! such that 5i+3[ = 2436k Sol = 3943106k
With such an [/, the exponent of z will be the same. We need to see for which i

the exponent of y will be the same. The exponent of y will be 3""‘—3"'6%. Setting

3g4+342i+12k _ g+I1+4k
2

= = we see that z = 0. Thus

(y(y? + 2°) + d=°)F ¢ (37, 29).

Thus we have eliminated the case when a = y* + b where b € (y, z)*.
Now suppose that @ = y* + b where b € (y, z)°. Again use Lemma A.5 to
rewrite y> + b as y® + uz* after a change of variables where u ¢ (v,2)\(y,2)% If

(y3 +uzt)5 € (y%,2%), then the monomials in the expansion of

1
(v +uzh)F

must be in (y?, z7). These monomials have the form

+1
(gz—) yaku(ﬁ;-‘—k) LR

By Lemma 3.28 we can find a largest k, such that (?) # 0 mod p is nonzero and

:191;'—5 < k < . Assume

yPRu TR AR R @ (g1 1) 4 (g, 2)THR

Then

5 e (y"‘ak,z'u_-:u) + (yvz)ﬂsz;zk'
But

q+12‘2k < Sk—:""4 for 3q1;5 <k
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Again note that

qg+1 -2k

g—1 3q+5
1 < T < k.

-3k < for

(8]

So if u € (y,z)\(y, 2)? then

e R R

In otherwords, u € (y, z?). Now rewrite y° + uz* as y(y2 + z*) + dz®. Now note in
the expansion of

(W(y® + =) +d=°) %
that monomials will be in the form

i+2l 3q+3—6i44i—4l __ _ i+2]_ 3q+3—-2i—4l
y et =Y < .

For the exponent of y, i + 2!, to be less than ¢, the exponent of = will be greater
than g + 3. Thus (y(y? + z*) + dz5)%F € (y?,29).

Now we only need to check that y* + b where b € (y, z)° satisfy the Theorem.
Again use Lemma A.5 to rewrite y> + b as y* + uz® where u = (cy + dz) € (y, 2).
When we expand

(y(y? +c2°) + d=°)
we want all monomials to be in (7, z7). The monomials are in the form

i+2[ _3q+3-6i+5:-5! = i+2 z3q+3-i-51

y y

If the exponents of y, i + 2[, are less than ¢ then the exponent of z will be greater

than ¢ + 3. Thus if a = y® + b where b € (y, 2) then a % € (y?,2%). a
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Let R = k{[z,y, z]]/(z® - a) with a € (y,z) N K[[y, z]]. We want to classify all
such rings that have test ideal equal to the maximal ideal. Using Theorem 3.21, we
need to look at (y,z)" and (y, 22)* and (y2, z)*. We will break the proof down into
several steps. By Theorem 3.25 we know that z € (y,z)" ifa = y> + b where b €
(yz*)+(y,2)% or a € (y, z)* where (y, z) is seen as an ideal of K{ly, z]]. Thus we need
to find polynomials f = z? — a that also satisfy the second condition of Theorem
3.21 we need to look at a € (y, z)°\(y, 2)*, a € (y,2)*\(y,2)% and a € (y, z)%\(y, z)8.
Note that if @ € (y, z)° then a* 52 = g3(e+1) ¢ (y%. 2%) and (y%, z9).

To find the isomorphism classes of @ for which k[[z,y, z]]/(z2 - a) have the test
ideal equal to the maximal ideal we need to invoke the Weierstrass Preparation

Theorem [24]:

Theorem 3.30 Let (R,m) be a complete local ring and let f(X) € R[[X]] be
of the form f(X) = Za;X* where a; € m for i # n and a, is a unit. Then

fIX) =u(X" +b,1. X" +... 4 bo) where b; € m and u is a unit in R[[X]].

In a few instances we show that two forms are isomorphic by a Theorem of
Cutkosky and Srinivasan (3] for which we recall the Jacobian of a form. Let
f € k([z1, 22, .- ,d]]. Define the Jacobian of f, A(f) = (f, &,... + 2L). Their
Theorem [3, Theorem B| states that there exists an automorphism taking f to g

in k[[z1, T2,...,z4]] if f=g mod m(A(f))2.
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3.4 Classification — the case when « € (y, z)%\(y, z)*

In the classification of R = k{[z,y,z]]/(z? — a) where a = y3 + b with b €
(y,2)"*'\(y,2) *?, we need to determine the isomorphism classes corresponding
with each . We determined by Lemma A.5 that we can replace a = y® + b with
a = y* +cz” where c € (y,z) Nk[[y, z]] and n > 3. By the Weierstrass Preparation
Theorem y° + cz* can be rewritten u(y, z)(y* + f(z)yz" + g(z)z") where u(y, z)is

a unit in k[[y. z]] and f(z) and g(z) are elements of k[[z]]. Multiplying

(* — u(y. )y + f(=)y=" + g(z)2"))

by u~!(y.z) and as long as the characteristic of & is greater than 2 we can set

T = u-Tl(y,z):z: and we see that

(2 ~ u(y 2)(* + f=)y=" +9(2)2")) = uly, 2)(? = (& + fl=)y=" + g(2)=").

However since the ideals (u(y, z)(z? — (y° + f(2)yz" + g(z)z"))) and (22 — (® +

f(2)yz" + g(z)z")) are equal then
R=kz,y,2])/(z* — u(y, 2)(3° + f(z)yz" + g(z)="))
is isomorphic to

R = k([z,y,2]l/(z* - (4° + f(2)y=" + g(2)2")).

To determine the distinct isomorphism classes determined by

(° + f(z)yz" +g(2)z")
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we need to consider the three cases when:

i) f(z) =0and g(z) #0,

ii) f(z) #0 and g(z) =0 and

i) f(z) #0 and g(z) #0.
Note for nonzero h(z) € k[[z]] h(z) = az” for a a unit in k{[z]]. Thus i)-iii)

break down into the following three cases:

i) a=y®+az’, wherei > n,
i) a=1y>+ ayz’, where: > n and

iii) a=y3+ ayz'+ Bz’, wherei > n and j > n.

The following lemma determines the only isomorphism classes for case i) and
i).

Lemma 3.31 Suppose the characteristic of k is greater than i and let
R = K[z.y,z]]/(z* — a) or R = k[z,y,2]]/(z® — ¢’) where a = y3 + az' and
d = y® + ayz' and a is a unit in K[y, z]] in both cases. Then there ezists an
automorphism of k([z,y, z]] taking 2> — (y* + z) to 22 — a and 2% — (y3 + y=) to

2 —-da.

Proof. Since the characteristic of R is greater than 7 and if oy is the component
of a € k then ' — o4 has a root in k[t] Since k[[z,y, z]] is complete then Hensel’s
lemma implies that ¢' — a has a root in k{[z,y, z]][t]. Suppose that @ is a root of

t' — a. Setting z, = #z, we can rewrite

y3+az‘=y3+z{
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and

Y +aoyz =y + yz{.
Thus the automorphism s : kf[z,y,2]] — k[[z,y,z]] given by s(z) = z,s(y) =
y and s(z) = 0z maps (z? — (y° + 2')) to (2 —a) and (2% — (y° + y=z')) to (22 — ).

a

Case iii) is more complicated. We must consider the cases when ¢ > j and
1 < J. Note when ¢ > j we can rewrite a =y +ayz' + Bz/ as y> + (B + ayzt=i)zI
which is exactly case i) since B+ ayz*~/ is a unit. When 7 < j there will be several
different isomorphism classes depending on how large j is in comparison with i.
When j = ¢ + 1 we have the following Lemma which follows similar reasoning to
proofs found in Matsuki’s classification of canonical, log canonical and terminal

singularities [26]:

Lemma 3.32 Suppose the characteristic of k is greater than i + 1 and let R =
k([z,y,z]]/(z*—a) where a = y® + ayz' + Bz*t! and « and B are units. Then there

is an automorphism of k{[z,y, z|] taking z2 — (y° + z**') to 22 — a.

Proof.  Since the characteristic of R is greater than ¢ + 1 and if Gx is the
component of 3 € k then t*+! — g has a root in k[t] Since k[[z,y, z]] is complete
then Hensel’s lemma implies that ¢*+! — 3 has a root in k[[z, y, z]][t]. Suppose that

0 is a root of t*t! — 3. Setting z; =z and oy = 37, We can rewrite
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Let 1 : k[[z,y,2]] = klz,3, 2]] given by s1(z) = 2, 51(y) = y and s1() = 6.
Now set z = z; + 7Y and suppose a; and 7 are the induced unit coefficients

of y2z5~! and y® respectively. We can rewrite

2_i-1

t+1 3 i+1
=Y oyt 4zt

Y +ayz+z

Let s2 : k[[z.y, z]] = Kk[[z,y. z]] given by s2(z) = z,52(y) =y and sa(2) = z + y.
Set y; = 75'y and suppose a3 is the induced unit coefficient of y2z3~'. Since

t > 3 then 2(z — 1) > 1+ 1. Thus we can rewrite

3 21, i+l _ 3 2.i-1 , _it+l
VYt oy,  +z =y tasyiz +zp.

Let s3 : k[[z,y, z]] — k[[z.y. z]] given by s3(z) = z,s3(y) = ¥3y and s3(z) = =.
Now set y, = y; + %aszé'l and suppose ¢ is the induced unit coefficient of z5*!.
We can rewrite

.3 T TS S S
hitasyiz; +22 =y texm .

Let s4 : k[[z,y, z]] — k[[z,y, z]] given by s4(z) = z,s4(y) = y+3a3zt! and s4(z)

~
-

4 .
Setting z3 = (€) T z,, we can rewrite

3 L+l 3 i+l

Let ss : k[[z,y, z]] = k[[z,y, 2]] given by ss(z) = z,s5(y) = y and s5(z) = (¢)F7 z.

Thus the automorphism s : k[[z,y, z]] — k[[z, y, ]] given by

8§ =8108208308408Ss



maps (z? — (y* + z**1)) to (2% — a). a

For j > ¢ we have the following Lemma:

Lemma 3.33 Suppose the characteristic of k is greater than i and let
R = k[[z,y,z]]/(z* — a) where a = y® + ayz’ + Bz, o and B are units and

J 2i. Then there ezists an automorphism of k[[z,y, z|| taking y3 + y=* to a.

Proof. Setting y1 =y + 227, we can rewrite

38 ,

i it 38 . B i
v +ays + Bz =y — —YiE + e

- -—333’ + ay, 2.
a

If we set v = (1 — 3By22i-i 4 gylz”“' we see that
v a vl a

- - - 3 .
¥ Hays'+ 82 =y s — Y

Let s, : k[[z.y, z]] — k[[z,y, z]] be the automorphism defined by s,(z) = z, s,(y) =

y+ g-zj and s;(z) = =.

Set z; = 7%2 and suppose f; is the induced coefficient of zfj . We can write

Wi+ = B2 = yf + oyt + BV

Let sz : k[[z, y. z]] — k[[z, y, z]] be the automorphism defined by s5(z) = z, sa(y) =

L
t

-
-~

y and s2(z) = v
But 35 > ¢ +j. Thus if we define y, = y; + 8,2z~ and proceed as above we
can rewrite

¥+ 3zt + B72Y = yf + nyest — f300
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where v, is the induced coefficient of y2*. Let s3 : k[[z,y, z]] — [[z,y, z]| be the
automorphism defined by s3(z) = z, s3(y) =y + 512~ and s3(z) = =.

Setting z, = v+ z; and suppose 3 is the induced coefficient of z° (-9 We can
write

yr +nyz = BP0 =y 4oy 2t 4 g3500,

Let s4 : k[[z.y, 2]] = k[[z,y, z]] be the automorphism defined by s(z) = z, sa(y) =

-

y and sy(z) = v =.
Again 3(3j —7) > 3j and 3%~ € m(A(z? — (y®+yz*)))? Thus by [3, Theorem
B, there exists an automorphism s : k{[z.y, z]] — k[[z.y, z]] taking y3 + y=* to a.

a

Theorem 3.34 Suppose the characteristic of k is greater than 11 and let
R = k[[z.y,2]l/(z* — a) where a € (y,2)°\(y,2)* N k[[y,z]], then m is the test
ideal if and only if after a change of variables we can write a in one of the follow-

ing forms:

) a=y3+26<i<12,
2) a=y +y 4<i<8§,
3) a=y*+yz'+ Bz, where B is a unit, 4 < i < 8 and 2 <j<zq,
t=8and j=2,3 andi=9 and j = 2.
Proof. We need only show that = € (y,z)" and zy ¢ (32, 2%)" and z= ¢ (y2, 22)"
if and only if 1) - 3) hold by Theorem 3.21. By Theorem 3.25, z € (y,z)" or

equivalently aF € (y?, 27) if and only if after a change of variables we can write
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a = y* + b where b € (yz*) + (v,2)® or @ € (y,z)*. By Lemma A.5 after a
change of variables we can replace y® + b by y* + cz*"1 if b € (y, 2)"\(y, 2)*+* where
¢ € (y,z). Note that by Remark 3.24 we need only show that y"agzg‘l ¢ (y*,z%)
since ﬂ%{'ﬂ < 2q for ¢ > 3 implies that z"yyq%l which is 2 monomial in the
expansion of z%aF is not in (y%,2%) or in otherwords, zz ¢ (y2, 2%)~.
As noted above after application of the Weierstrass Preparation Theorem we
need only check which power series in the following three forms:
[) a=y®+az,
II) ¢+ ayz' and
IIl) y*+ayz'+ 827

have the property that zy ¢ (y2, z2)".

[) As long as a € k then z? — (y® + az‘) is quasihomogeneous. Hence, we can
apply Theorem 3.23 with the deg(z) = 3i,deg(y) = 2i, and deg(z) = 6. Thus
zy ¢ (y*,2%)" if and only if deg(zy) = 5¢ < 4¢ + 12. In otherwords, if and only if
t < 12 and Theorem 3.25 implies that z > 6.

If o ¢ k then a = X 50auy*z'. The monomials in the expansion of (y3 +
az')%" are of the form

y 2 (k=3)r  (i+)r

Since y9(y® + agoz’)F ¢ (y%,2%) for 6 < i < 12 then there exists an integer r
such that the coefficient of

y e ir
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is not congruent to 0 modulo p and

ig43_ 3, i
P ¢ (g%, o),

y <

As long as no other monomial in the expansion of y?(y° + azi)g% has the same

exponents for both y and z then
Yy +a2')F ¢ (v, 2%).

Suppose there exists k,{ > 0 and some integer s such that

243 3—I!r::,:ir Sg43 3+(k—3)33(i+l)3.

y =Yy

This equality yields the following system of equations:
—3r = (k —3)s and ir = ( + )s.

Multiplying the first equation by ¢ and the second by 3 and adding them together
yields the following: 0 = (ik + 3{)s. But k,{ > 0 implies s = 0. After substituting
s = 0 back into the above equations, we have r = 0 which is a contradiction since

S

¥ 5 € (v, %),

Thus k={=0and r =s.

By Lemma 3.31, there exist an automorphism of k[[z,y, z]] taking y® + a=* to
y> + z*. Thus y° + z* where 6 < i < 12 determines an isomorphism class of rings
with test ideal equal to the maximal ideal. Thus we have 1).

[I) As long as a € k then then

z? — (y° + ayz’)
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is quasihomogeneous. We again apply Theorem 3.23, with the deg(z) = 37,deg(y) =
2, and deg(z) = 4. Thus zy ¢ (y%,22)" if and only if deg(zy) =5t < 4:+8. In
otherwords, if and only if i < 8. But we were assuming from Theorem 3.25 that
1> 4.

If ¢ k then @ = ¢ poany*z’. The monomials in the expansion of (y° +
ayz)3 are of the form

y G k=2)r (i)

Since y*(y® + agoyz')F ¢ (y%,2%) for 6 < i < 12 then there exists an integer r

such that the coefficient of
y§3;—3—2r ,ir
is not congruent to 0 modulo p and

yiq,‘,ﬂ—2rzir ¢ (y2q.22q).

As long as no other monomial in the expansion of y?(y3 + ayz")g% has the same

exponents for both y and z then
(5 + ez ¢ (v, 5).

Suppose there exists k,[ > 0 and some integer s such that

2943 o, I

y5 5—'133+(k—2)sz(i+l)s'

=Yy
This equality yields the following system of equations:

—2r = (k—2)s and ir = (¢ + {)s.
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Multiplying the first equation by ¢ and the second by 2 and adding them together
yields the following: 0 = (ik + 2{)s. But &, > 0 implies s = 0. After substituting

s = 0 back into the above equations, we have r = 0 which is a contradiction since

5

¥ 5 € (y¥, 22).

Thus k=[(=0and r = s.

By Lemma 3.31, there exists an automorphism of [[z,y, z]] taking y3 + ayz*
to y° + yz*. Thus y3 + yz* where 4 < i < 8 determines an isomorphism class of
rings with test ideal equal to the maximal ideal. Thus we have 2).

[II) We need only consider the case when 7 < j since Lemma 3.31 implies that
if £ > j there exists an automorphism of k{[z,y, z]] taking z2 — (y° + y=* + 32/)
to 22 — (y* + z7) which was case 1) for 6 < j < 12. Also when j = i + 1, Lemma
3.32 implies there exists an automorphism of k{[z, y, z|] taking z° — (y3 + yz' + 32 )
z? — (y® + z7) which is also case 1) for 6 < j < 12. Thus we need only consider
J >t + 1. For simplicity replace j by i + j where j > 2.

We show that the test ideal must be the maximal ideal by looking at the

monomials in the expansion of
y'(y° + oy’ + ") T
Taking into account that

- _ {_k
a = Em,r?_obmrym‘r a.nd ﬂ = zl,kzoblky <,



these monomials are in the form

yéﬂzﬂ+(z-3)r+(m-2)sz(x'+j+k)r+(i+r )s

for 0 <r<#land0<s< L _ r. Setting r = 0 gives us monomials in the

expansion of

+1

y'(y° + ayz’) T
and we know from II) that zy ¢ (¥, 22)" for 4 < i < 8 and in particular there

exists an integer s such that

yEIE g (g7, )

and the coefficient of

yi'l;—a—Zs,is

is not congruent to 0 modulo p. Thus as long as there is no other monomial with

the same exponents for both y and z then
y(y® + ayzt + B2 ¢ (y, %),
Suppose not, then for some pair (¢, u),
—2s = (I - 3)t + (m — 2)u and is =(@+j+ k)t +(i+n)u.

Multiplying the first equation by ¢ and the second by 2 and then adding the two
together yields

0= (i(l = 1) + 27 + k)t + (im + 2n)u.
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We assumed k,I,m,n > 0 thus u = ¢ = 0 since u,t > 0. By plugginginu =¢t =0
back into the original equations we see that s = 0 which is a contradiction. Thus
eitherm =n =0or ({(/-1)+2(j + k)) = 0. Since j > 2, (i(I - 1) +2(+k))=0
if and only if / =0 and ¢ = 2(j + k). Thus ¢ must be even, i.e. t=4ort=6.

When ¢ = 4, this implies that j + £ = 2. Since we are assuming that j > 2,
this can only happen when j = 2 and k¥ = 0. But 2% — (3 4+ yz* + 25) is a
quasihomogeneous polynomial with the following degrees: deg(z) = 12, deg(y) =
8, and deg(z) = 4 satisfying deg(zy) = 20 < 16 + 8. Thus by Theorem 3.23,
z ¢ (v*, %)

When : = 6, this implies that j + £ = 3. Since we are assuming that j > 2, this
can only happen when either j =2 and k = 1 or j = 3 and k£ = 0. However in both
of the above cases the monomials come from the expansion of z2—( y3+yz%+29), and
z? — (y® +y=z® + 2°) is a quasihomogeneous polynomial with the following degrees:
deg(z) = 18, deg(y) = 12, and deg(z) = 4 satisfying deg(zy) =30 < 24 + 8. Thus
by Theorem 3.23, = ¢ (32, z2)".

When j > £, (i({ = 1) +2(j + k)) > 0 forces ¢ = 0. Thus
y(y° + ayzt + BT ¢ (37, 27)

for4<i<8and £ <j<i.
[fi=70r8a.nd2$j$3ori=5.,60r9a.ndj=2themonomia.lsaga.inwill
be in the form

yi?;i+(l-s)r+(m-z), (k) +(i4r)s
< ’
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forOSrS’Z—landOS.ssg"z'—l—r.

Suppose a, 8 € k and s = 0, then the monomials come from the expansion of
¥y + )%

for which we know zy ¢ (y?,2%)" for i + j < 12 which holds for all of the above

cases. Moreover, there exists an integer s such that

yiqéti-iisz(i-{-j)s ¢ (qu. z2q)

and the coefficient of

yi‘gﬂ-ss ~li+7)s

is not congruent to 0 modulo p. Thus as long as there is no other monomial with

the same exponents for both y and =z then
y(y° + ayz' + B=H)T ¢ (37, ).
Suppose not, then for some pair (¢, u),
—3s=(-3)t+(m—-2)uand (i+j)s=(+j+k)t+(+n)u.
Multiplying the first equation by i + j and the second by 3 yields
0=((E+7)+3k)t+ (G +7)m—2)+33G+n))u

or 0 = ((¢+7){+3k)t+((m+1)i+(m—2)j+3n)u. We know that (i+7){+3k > 0 and

forr=Tor8and 2<j<3ori=560r9andj=2 (m+1)i+(m—2)j+3n > 0.
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Thus since £, u > 0, then u = 0. Plugging u = 0 into the above equations forces

{=k=0and ¢t =s. Thus
yU(y® + )T ¢ (3, 2%9)

fori=8,2<j<3andi=9,5=2.

Note that if j > ¢, Lemma 3.33 implies that there exists an automorphism of
kl[z.y, z]] taking 2 — (y* + ayz' + Bz**) to 22 — (3 + y=*)) which is case 2) for
4 < i < 8. Thus 2% — (y° + ayz’ + Bz**7) determines an isomorphism class for

4§i<8a.nd25j<i,i=8,2§j§3andi=9,j=2Whichisca.se3). a
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3.5 Classification — the case when a € (y, z)*\(y, z)°

When the a a quartic plus higher order terms there will be at least as many
isomorphism classes as there are distinct linear factorizations of quartics. These
factorizations are among the following:

A) a product of four independent linear terms, yz(y + z)(y + Az),

B) a product of a square and two independent linear terms, y2z(y + z),
C) a product of two independent squares, y2z2,

D) a product of a cube and an independent linear term, 73z,

E) a fourth power of a linear term, y*.

Using the Lemmas in the appendix if we have a quartic in one of the above
forms plus higher order terms we can make a change of variables absorbing units
into z to rewrite these quartics as:

A) yz(y+z)(y + Az), A a unit,

B) (¥*+c¢z")z(y + z), c a unit, n > 3,

C) (¥*+cz")(2?+dy™), c and d units, n,m > 3,
D) (3 +cz')z, c€(y,z) and i > 3,

E) (y*+c¢z")? +dz™, cis either a unit or 0 and d € (y,2) and m > n > 3.

We can easily check that if R is defined by k[[z,y, z]]/(z? — a) where a is in
the form A, B or C then y%a™" ¢ (y%,22) and z%a™F ¢ (y*,z%). In case D,
we can use many of the lemmas in chapter 8 to analyze which ¢ € (y, z) will force

yia's ¢ (y%9,24) and z%aF ¢ (y¥,2%). Case E is probably the most difficult to
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analyze because we need to consider the following six cases:
I) y*+az', where  is a unit in £[[y, z]],
II) y*+ ayz*, where  is a unit in £[fy, z]],
III) y*+ayz* + Bz’, where @ and B are units in [[y, z]],
IV) (3% + 2)*+ az", where « is a unit in K[y, z]],
V)  (#®+2')? + ayz", where a is a unit in K[fy, z]],

VI) (¥ +2')* +ayz" + Bz™, where a and 8 are units in k{[y, z]].

The following lemma is useful in cases [-III:

Lemma 3.35 Suppose the characteristic of k is greater than i and let
R = k[[z.y,z]]/(z? — a) or R = k[[z,y,z]]/(z* — a') where a = y* + az' and
a' = y' + ayz' and « is a unit in k[[y,z]] in both cases. Then there erists an
automorphism of k[[z,y, z]] taking z* — (y* + 2*) to % — a and z* — (y* + y=') to

I —a.

Proof. Since the characteristic of R is greater than  and if oy is the component
of a € k then ¢ — o has a root in k[t]. Since k[[z,y, z]] is complete then Hensel’s
lemma implies that ¢* — a has a root in k[[z,y, z]|[t]. Suppose that  is a root of
' — a. Setting z; = 0z, we can rewrite

y4+azi=y4+z{

and

y* +ayz' = y* +yz.
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Thus the automorphism s : k[[z,y,z]] — k[[z,y,z]] given by s(z) = z,s(y) =
y and s(z) = 0z maps (z® — (y* + z')) to (2% —a) and (2% — (y* + yz?)) to (2% —a’).

a

In case [V we observe that if @ = (y* + 2%)% + a2® then there exists an auto-

morphism taking a to y* + yz* + 8z° where 3 is defined in the following lemma.

Lemma 3.36 Let k be an algebraically closed field of characteristic p > 5 and
suppose R = k[[z,y, z]]/(z? — a) where a = (y® + 23)? + a=z®, a a unit. Then there
ezists an automorphism of k[[z,y, z]] taking y* + yz* + Bz° to a where 3 is a unit

defined in the proof.

Proof. Set z; = (a + z)%z and o) = ﬁl— then we can rewrite
a+$z)5

(Y + )2 +az® =yt + ary?zd + 23,

Let s : k[[z.y, z]] — k[[z,y, z]] be the automorphism defined by s,(z) = z, s,(y) =
y and s,(z) = (a + z)5=.

Set zo = z; + (’T‘;,l)%y and suppose that v, § and a; are the unit coefficients of
y*,y%22 and yz} then

y“ + alyzzf' + zf = 7y4 + 6y3.=:§ + agyz‘; + :-:g.

Let sz : k[[z,y, 2]] — K[[z,y, z]] be the automorphism defined by s5(z) = z, s,(y) =

—agy L
y and sy(z) = z + (53)=y.
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Set y1 = 7%y and suppose that 6, are the unit coefficients of yiz2 and y;z3

then
19" +6y°2 + eayz; + 25 =i + 61932E + aaprzd + 25

Let s3 : k[[z.y, z]] — k[[z,y, z]] be the automorphism defined by s3(z) =z, s3(y) =
vty and s3(z) = =.

Set y2 = y1 + %22 and suppose that a, and 6, are the unit coefficients of Y2zq
and z3 then

yi +6yiz2l ozt + S =y + Qqy225 + 8225.

Let sy : k{[z.y, z]] — k[[z, y, z]] be the automorphism defined by s4(z) = z, s4(y) =
y+ 222 and sy(z) = 2.

1 .
Set z3 = aiz, and 3 = & then we can rewrite
3 2 :
o 3
4

Y3 + Quy2z; + 6225 = y3 + yazs + B23.

Let ss : k[[z,y, z]] — K{[z,y, ]] be the automorphism defined by s5(z) = z, s5(y) =
y and s4(z) = aiz.
Let s : k[[z,y, z]] — k[[z,y, z]] be the automorphism defined by s = s; 0 55 0

530 54 0 s5. Then s takes y* + yz* + 825 to a. a

In cases [-V we can determine which i and j force y%a™F ¢ (y?,:%) and
%a™F ¢ (y¥,z%) but in case VI we need the following lemma to reduce (y? +
z%)? + ayz” + Bz™ to one of the following two forms: f = (y2 + 2%)? + vz or

9=+ +yyz".
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Lemma 3.37 Let k is an algebraically closed field of characteristic p>n+1 and
suppose R = k[[z,y,z]]/(z? — a) where a = (y® + 2°)2 + ayz" + Bz"*™, a and 8
are units and n 2 5. Then form = 1,2 there ezists an automorphism of k{[z.y, =]
taking (y* + 2°)? 4+ vz° to a where v is a unit defined in the proof and for m > 3

there ezists an automorphism of k[[z,y, z]] taking (y? + 23)2 + yyz" to a.

Proof. First assume that m > 3. Set y; = y + gz”‘ and suppose that ; is the

transformed coefficient of z3. Then
(" +2°) +ayz" + Bz = (3} + 12°)? + ap 2.

Let sy : k[[z.y, z]] = k[[z,y, z]] be the automorphism defined by si(z) =z, 81(y) =
y+ gz’" and s;(z) = =.

L
Let z; = %7z and suppose that 7 is the transformed coefficient of y12". Then
(47 +M2°)% + agnz” + B = (y2 + 23)% + vy 2]

Let s : k{[z,y, z]] = K[[z,y, z]] be the automorphism defined by s2(z) =z, 82(y) =
y and sp(z) = 71%2.

Let s : k[[z.y,2]] — k[[z,y, 2]] be the automorphism defined by s = s; o s,.
Then s takes (y? + z3)% + vyz" to a.

Now assume m = 1. Then a = (y? + z%)2 + ayz" + Bz"*!. Let z; = B7riz
and suppose a; and v; are the transformed coefficients of yz] and z? respectively.
Then

(v* +2°) + ayz" + B2 = (¥ + 12})? + awyzy + 2



Let s1 : k[[z,y, z]] = k[[z,y, z]] be the automorphism defined by s:(z) = z, s;(y) =
y and s,(z) = ﬂanz.
We set z; = z; + %4y and expand (y® + 1, 27)%. Suppose az, B2, 72 and 6, are

the transformed coefficients of y2z3, y3z2, z§ and y* respectively. Then
(¥° +m21)? + awyz] + 27 =6yt + Boy®s) + cay®2} + Mzt

Let s2 : k{[z,y, z]] — K[[z,y, z]] be the automorphism defined by s,(z) = z, s5(y) =
y and sy(z) = z + 2Ly

1
Let y1 = 83y and suppose that as, 83 and 3 are the transformed coefficients

of y#z3, y3:2 and z§ respectively. Then
oy + Bay°2] + aay®z] + 1223 =yl + BayizE + asylzd + a2t

Let s3 : k{[z,y, z]] — K[[z, y, z]] be the automorphism defined by s3(z) = z, s3(y) =
63y and s3(z) = =.
Let y =y + %:% and suppose that o, and v4 are the transformed coefficients

of z3 and :f after completing the square then
Yl + Bsyiz; + cayizy + vaz5 = (y5 + uz3)? + 1ash.

Let s4 : k[[z,y, z]] — k[[z,y, z]] be the automorphism defined by s4(z) = z, s4(y) =
y + 222 and s4(z) = =.

1
Let z3 = a§ 2, and suppose that 7 is the transformed coefficients of z§. Then

(v3 + 242®)® + 142° = (y2 + 23)% + 725
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Let ss : k[[z,y, z]] = K[[z,y, z]] be the automorphism defined by s5(z) =z, s5(y) =
y and ss5(z) = af:’-z.

Let s : k[[z,y, z]] = k[[z,y, z]] be the automorphism defined by
$=510520530840Ss.

Then s takes (y2 + z3)2 + 2% to a.
Now assume m = 2. Then a = (y?+ 2°)2 + ayz" + Bz"*2. Weset y; =y + 82
and expand (y? + z3)? such that B;, 11, 6; and €; are the transformed coefficients

of y7z2, y#=>, y12° and z° respectively. Then
(¥ +2°) +ayz” + Bz =y} + Biyd? + P + b 2 + 25

Let sy : k[[z.y, z]] = k[[z,y, z]] be the automorphism defined by s,(z) = z. s,(y) =

?

y+ 2z% and s,(z) = =.

1
Let z; = € z and suppose that B;, 92 and 6, are the transformed coefficients of
y3z2, y?z} and y;z? respectively. Then

¥+ 8unz + iyl o’ + a2 = yf + Byl + maylad + bz + .

Let s : k[[z,y, z]] — k[[z,y, z]] be the automorphism defined by s,(z) = z. sa(y) =

—

y and sy(z) = €fz.
Let zp = zl+§61y1 and suppose that 83, v3 and 85 are the transformed coefficients

of y?22, y}z3 and yj respectively. Then

Y1 + Bayi 2t + 1yiz) + bagnzd + 25 = Gayt + Baylz2 + vayPd + 5.
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Let s3 : k[[z.y. z]] — k[[z. y, =]] be the automorphism defined by s3(z) = z.s3(y) =
y and s3(z) ==z + %y.
Let y» = 63y, and suppose that 3,, v+ and é4 are the transformed coefficients

of y3z2. y3=3 and z$ respectively. Then
Ssyi + 33yiz; + 1ayi=s + 25 = y3 + Baydzd + vaydzi + 6455

Let sy : K{[z.y. z]] — k[[z,y. z]] be the automorphism defined by s,(z) = z. sq4(y) =
6§y and s4(z) = z.

Let y3 = y, + i—‘:% and suppose that vs; and &5 are the transformed coefficients
of =3 and =§ respectively after completing the square. Then

Y3 + B4y3z3 + 1yl + 6425 = (2 + v523)% + 6525,

Let ss : k[[z.y. z]] = k[[z.y. z]] be the automorphism defined by s5(z) = z. ss(y) =

y+ ‘i—‘:g and ss(z) = z.

1
Let z3 = v¢ z; and suppose that + is the transformed coefficient of =§. Then

(3 + 7522)" + 6555 = (33 + 23)° + 725

Let s5 : £[[y. z]] — K{[y, =]] be the automorphism defined by ss(y) = y and s5(z) =

1
-3~
/5~

Let s : k[[y. z]] — K[[y, z]] be the automorphism defined by
S = 510820530 540 S50 Sg.

Then s takes (y? + z3)2 +' vz to a. a
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Now we are ready to begin classifying those a € (y,2)"\(y, 2)°.

Theorem 3.38 Suppose the characteristic of k is p > maz(A(R/(A(z? — a)),8)).
Let R = k[[z,y,z]]/(z* — a) where a € (y,2)*\(y,2)°. Then m is the test ideal if

and only if after a change of variables we can write a in one of the follounng forms:

1) a=yz(y+z)(y+ Az), A a unit,

2) a=(y*+az")z(y+2z), @ a unit and n > 3,

3) a=(y*+az")(2® + By™), a, B units and n,m > 3,

4) =z(y*+:%),3<i<9,

3) a==z(y*+y:z'),3<i<6,

6) a=z(y*+yz'+ ), 3<i<6andl <j<i,i=6andl <j<?2
ort=Tandj=1,

7 a=y*+: 5<i<8,

8) a=y'+ys 4<i<6,

9) a=y'4yr+azt 4<i<b6andl <j<i,

10) a=(y*+:*)*+ayz",n>5 and a a unit,

11) a=(y*+:*)2+az", n >6 and a a unit.

Proof. If a € (y,z)*\(y, 2)°, then the initial form of a will either be:
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A) a product of four independent linear terms, yz(y + z)(y + Az),

B) a product of a square and two independent linear terms, viz(y + 2),
C) a product of two independent squares, y2z2,

D) a product of a cube and an independent linear term, y3z,

E) a fourth power of a linear term, y*.

Each initial form will give us at least one and in some cases, more than one
isomorphism class of rings that have test ideal equal to the maximal ideal. To check
each isomorphism class has the test ideal equal to the maximal ideal, by theorem
3.24 we need only check that a*% & (y?,z%) and a%y" ¢ (y*.z%) and a2t ¢
(y*, z%). Theorem 3.25 guarantees that a*F ¢ (y%, 27) since a € (y, z)* N k[[y, ]]-

A) If the initial form is yz(y+z)(y+Az), then by Lemma A.6, yz(y+z)(y+Az)+b
where b € (y, z)° can be rewritten after some change of variables as yz(y+ =)y +
pz) where g is a unit in k[[y, z]]. Assume g is in k for the moment. Note that
z®—a = 2% —yz(y+z)(y + p2) is a quasihomogeneous polynomial with deg(z) =2
and deg(y) = deg(z) = 1I. By Corollary 3.23, + = m if and only if deg(z) =
2 2 1+ 1 = deg(y) + deg(z), deg(zy) = 3 < 2 + 2 = deg(y?) + deg(=?) and
deg(rz) =3 < 2+ 2 = deg(y?) + deg(z?).

For u ¢ k, by Remark 3.24 we need to show

v (yz(y + 2)(y + 12))* and (y=z(y + 2)(y + p2)) 5 ¢ (%, 22).

Hence, we need only show there exists a monomial in the expansion of

¥(yz(y + 2)(y + p2))F and 2 (yz(y + 2)(y + pz)) 5
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that is not contained in (y%?,z%?). Notice we can write
# = Zijropiiy's
where u;; € k. We know from above that there exists monomials with nonzero
coefficient modulo p in the expansion of
¥ (yz(y + 2)(y + pooz)) T and 2%(yz(y + 2)(y + pooz)) F*

that are not contained in (y%9,2%7) and these monomials have degree 3¢ + 2. If
we multiply any monomial by y'z/ this will only give us a monomial of a larger
degree. Thus these monomials will also be in the expansion of
2+l +1
Y (yz(y +2)y +p2))F and 2(yz(y + 2)(y + p2)) %
Hence,
+1 g+l
Y (yz(y +2)(y + p2)T and 2 (yz(y + 2)(y + p2)) T ¢ (y%,27).

This gives us case 1).

B) If the initial form is y?z(y + z), then by Lemma A.7, y?z(y + z) + b where
b € (y,2)° can be rewritten after some change of variables as (y2 + az")z(y + =)
where o is a unit in k{[y, z]] and n > 3. Assume a is in & for the moment. To show
that

¥ ((y? +a2")z(y +2)) T ¢ (v, 2%)
we need only exhibit that there exists a monomial in the expansion of
pred

¥y((W? +az")z(y +2)) %
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that is not contained in (y%?, z2?). The monomials look like

L = S, P - m-{-rr-(—s
y 2 T2 ?

for 0 <r,s < 4%, Taking r =1 and s = %! gives us the monomial

29—-1 _q+1+4r
y pes

which is not in (y%¢,2%) for ¢ > n + 1. Notice if & were not contained in k, then
a = S;,jzoa;,-yi.zj.

Suppose that some y'z’ in the expansion of a multiplied by another monomial in
the expansion of

r a1
¥ (4 + a0z")z(y + 2)) 2

contributes another monomial in the form

2q9-1 LqH14r

y

Then for some r and s we have the following system of equations

5¢+3
2

+(-2r—s=q-1

and

q+1
2

+(n+j)r+s=q+1+n.

Solving this system we see that

n—2
n—2+14+7

n—2

q+35 .
= — =1—" -2
r n_2+i+ja.nds 5 + (2 = 2)(

)s

94



neither of which are integers unless i = j = 0. Thus no terms in the expansion of

a will contribute any more monomials of the form

y2q—-lzq+l+r .

Thus
v ((* +az")z(y + 2))F ¢ (v, 2).

To show

(Y + e )2y +2)F ¢ (40, 2),

we note that

3(g+1) 3g+1
y 2z z 2

is a monomial in the expansion of

g+l

((y + 0z )ly +2))

and

__1_l_q:¢>_
y ¢ (v™,2%).

Hence, by Remark 3.24 we have case 2).

C) If the initial form is y?2%, then by Lemma A.8, y%22 + b where b € (y, z)°
can be rewritten after some change of variables as (y? + az")(z2 + By™) where o
and @ are units in k[[y, z]] and n,m > 3. Assume « and 8 are in k for the moment.

To show that

y (1% + a2 )(22 + By™))F ¢ (y™, %)
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we need only show there exists 2 monomial in the expansion of

1

(v + o) (2 + By™)
that is not contained in (y%?, z%?). The monomials look like

y(2q+l )=2r+ms_(q+1)—2s+rr
< s

for0<r,s< 9*2'—1 Taking r =1 and s = 0 gives us the monomial

2g-1 _g+1+4r
Y z

which is not in (y%?,z%) for ¢ > n + 1. Notice if a or 8 were not contained in k
a =X j>0qi;y'z) and B = E; j50f:y .

Suppose that some y‘z/ in the expansion of @ and y*z! in the expansion of 8

multiplied by another monomial in the expansion of
1
Y (4 + a00z")(% + fooy™))

contributes another monomial in the form

2g~1 _qg+1+4r
y pos .

Then for some r and s we have the following system of equations
(t=2)r+(m+k)s=-2and (n+j)r+({—2)s =n.

Since n,m > 3 then (n(k+m)+2(!-2)) > 0 and by assumption t,7,7,8 > 0, thus

s = 0. Plugging s = 0 into the above two equations yields i = j = 0 and r = 1.
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Thus no terms in the expression of « or 3 will contribute any more monomials of
the form

2q—1 _q+1i4r
y .:.q .

Thus

y((y* + 2" )22 + By™)F ¢ (y%9,2%).

By symmetry we show
Ay + a2 )22+ By™) T ¢ (v, 7).

Hence by Remark 3.24 we have case 3).

D) If the initial form is y3z, then by Lemma A.9 y3z +b where b € (y,2)® can be
rewritten after some change of variables as z(3y° + az*) where a € (y, z) N k[[y, z]].
By the Weierstrass Preparation theorem y* + az® can be replaced by u(y, z)(y> +
a(z)y + b(z)) where u(y,z) is a unit and a(z),b(z) € k[[z]]. To determine the
distinct isomorphism classes which stem from this form we break this situation
down into the three cases: I) a(z) =0, II) &(z) = 0 and III) a(z) # 0 and b(z) #0.
Or in otherwords,

I)  z(y®+ az’), where a is a unit in k[[z]],
I1) z(y®+ ayz'), where « is a unit in &[[z]],

III) 2(y®+ ayz’ + Bz7), where @ and B are units in k[[z]].

D.I) Aslong as @ € k, 22 —a = 22 — z2(y° + az') is a quasthomogeneous
polynomial with deg(z) = 3i + 3, deg(y) = 2i and deg(z) = 6. By Corollary 3.23

7 =m if and only if deg(z) = 3i +3 > 2 +6 = deg(y) +deg(z), deg(zy) =5 +3 <
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4i +12 = deg(y?) +deg(z?) and deg(zz) = 3i +9 < 4i + 12 = deg(y?) + deg(z?). In
otherwords, 7 = m if and only if 3 < i < 9. Note that when i = 3, a = z(y3 + az3)
is a product of four independent linear factors. In case A above we have shown
that such a force kf[z,y, z]]/(z?— a) to have test ideal equal to the maximal ideal.

When « ¢ k, by Remark 3.24, we need only check that
y(=(° +az) T and 27(2(s° + az') T ¢ (570, 2¥)

as long as 4 < ¢ < 9 by looking at the monomials in the expansion of both
expressions above.
We can write

a = Eoany*s!
where ay; € k. The monomials will be of the form

y FHE=dr (it g M (k-3)r M)

for some 0 < r < 2. Since r = m for k[[z,y, z]]/(z? — (2(y® + agoz’))) then
we know there must be some monomial with nonzero coefficient modulo p in the

expansion of

y'(2(5° + 200z') " and (2(y” + aoos"))
which is not contained in (y??, 227). Assume these monomials are such:
i‘lﬂ-srzﬂg—‘-;-ir M—Srzy;—l-i-ir‘

2 and y~ 2

Suppose a contributes other monomials with the same exponents for both y
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and z. Then there exists an s # r such that

y 2‘Izﬂ-‘a";" I;'!"‘"‘r =y iqzﬂ‘*'(k—:”’z 1211'4'(“")’
and

1 3q+1 , - 1 .
@—:ﬁz—%—-ﬁr @+(k—3)323¢+(1+l)3

y

From both equalities we see that
—3r =(k—3)s and ir = (i + {)s.

[n both cases s = r and

¥ (2(y® + @z')) % and 29(2(5° + az')) F* ¢ (v, 229).

Now by Lemma 3.31 there exists an automorphism from z(y+az‘) to z(y3+z).

Thus k[[z,y, z]]/(z? — z(y® + %)) has test ideal equal to the maximal ideal for

4 <1< 9. This gives us 4).

D.II) As long as a € k, 22 —a = 2% - z(y® + ay?) is a quasihomogeneous

polynomial with deg(z) = 3 + 2, deg(y) = 2i and deg(z) = 4. By Corollary 3.23

7 =m if and only if deg(z) = 3i +2 > 2i +4 = deg(y) +deg(z), deg(zy) = 5i +2 <

4i + 8 = deg(y?) + deg(2?) and deg(zz) = 3i + 6 < 4i + 8 = deg(y?) + deg(z?). In

otherwords, 7 = m if and only if 2 < i < 6. Note that when i =2, a = 2(y3+ayz?)

is a product of four independent linear factors. In case A above we have shown

that such a force k[[z,y, z]]/(z* — a) to have test ideal equal to the maximal ideal.

For o ¢ k, by Remark 3.24 we need to check that

¥ (2(4° + ayz"))*F and 29(2(y° + ayz’)) T ¢ (v, %)
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as long as 3 < ¢ < 6. To do this we look at the monomials in the expansion of

both expressions above. Since we can write
a = T poany*s,
the monomials in the expansion of
¥'(:(s° + ayz)T and (2(y° + ay2’)) F*

are of the form

y-L-S S Hk—2)r Ty (itl)r and y——-"qj"+(k-2)r,3-‘1—;‘+(.'+1)r

for some 0 < r < #fL. Since = m for k[[z.y, z]]/(2? — (2(4°® + agoyz‘))) then
we know there must be some monomial with nonzero coefficient modulo p in the
expansion of

1

iy 2EL iy 2L
¥(=(4° + aooy=")) T and 2%(z(y> + cooyz’))
which is not contained in (y%,2%?). Assume these monomials are such:

5q+3 1, - 3(q+1) 3941, -
y—%——-2r22%-+1r T-—2r3—‘1§"—+zr.

and y

Suppose a contributes other monomials with the same exponents for both y

and z. Then there exists an s # r such that

yaq;i_arzs;i+er - yﬁ;—’+(k-z)az!n;i+(f+l)a

or

yJ_?-—‘ ) _gr_3ablyir A2 4 (k-2)s 3L 4 (i+0)s
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From both equalities we see that
—2r = (k—2)s and ir = (¢ + [)s.
In both cases s = r and
y'(2(y° +ay=") " and 2(=(s° + ay))F ¢ (7, %),

Now by Lemma 3.31 there exists an automorphism from z(y* + ayz‘) to z(y3 +
yz'). Thus k[[z,y, z]]/(z® — 2(y® + y=*)) have test ideal equal to the maximal ideal
for 3 < i < 6. This gives us 5).

D.III) We need only consider the case when i < j since Lemma 3.31 implies that
if 2 > j then there exists an automorphism of k[[z, y, z]] taking z?—z(y3+ayz' +82/)
to (z? — z(y® + z7)) which was case 1) for 4 < j < 9.

For simplicity replace j by i+ j where j > 1. If j > i, Lemma 3.33 implies that
kllz.y, 2]/ (2® — 2(y° + ay=' + ")) = k([z, y, 2]}/ (2? — 2(y° + y='))
which is case 5) for 3 < i < 6. Thus we need only consider when
a = z(y® + ayz' + Bz

for3<i<6and1<j<i,i=6,1<j<20ri=7,j=1.
By Remark 3.24 we show that the test ideal must be the maximal ideal by

looking at the monomials in the expansion of

y(2(y° + ay2' + B2+))F
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and

. - . ﬂ
=2y + oyt + B27H)) T
Taking into account that
= Lespoary™z' and B = Tn,50Bmry™z",

these monomials are in the form

yi!;i+(m—3)r+(k-2)szﬁ;—‘+(i+j+r)r+(i+l)s

and

yi‘l}ll+(m-3)r+(k-2)szi“—‘l;—‘l+(i+j+r)r+(i+1)s_
Setting 7 = 0 in the first equality gives us monomials in the expansion of

. 1 .
yi(z(y® + ayz‘))g%' and z9(z(y> + C!yz'))g:g—l

and we know from D.II, above that zy,zz ¢ (y2,2%)=for 3 < i < 6 and in particular

3943 oy gdl, .o Hgtl) oo 3q4L .0 29 _2
y @ TzTTory: TxzTa ot g (y¥ )

As long as there is no other monomial with the same exponents for both y and =

then
¥ (z(y° + ayz' + ﬂz‘-'*'j))g:g—1 and 2%(z(y® + ayz' + Bz:'.*'j))g:2ti ¢ (v, z%9).
Suppose not, then for some pair (¢, u),

y’,ﬂ-zs Sl tis yﬂ;i+(m-3)z+(k—z)u,9-*5'-‘+(i+j+r)z+(i+l)u
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or

@-hzﬁ;—‘ﬁs et 4 (3 e+ (k—2)u ST b e (i D

y

Both of the above equalities imply
—2s=(m—-3)t+(k—2)uand is= (i +j +n)t + (¢ + {)u.

Aslongasj> 4, 2(j+n)+(m—1)i>0. Thusfor 3<i<6and2j >i, ¢ =0
and u = s.

Setting s = 0 in the first equality gives us monomials in the expansion of
i+ 2L Py ZHL
y(z(y° + Bz")) T and 22(2(5° + ayz')) %
and we know from D.I, above that zy,zz ¢ (y%,22)" for 5 < i+j < 8 and in

particular

y"ﬁ'_sz 2-3r _thi(iti)r o ya(q:““s"zs'z HH(i+i)r ¢ (y*9, z29).

As above we need only show that there exists no other monomial with the same
exponents for both y and z.

Suppose not, then for some pair (t,u),

T e at U L y T Hm=3) ek (k=2)u L Bt (i br )t (i)

or

A _3r 3eblp(ibi)r _ o AT L (mog)er(k—2)u 2B 4 (04 i yet(ibl)u

=Y
Both of the above equalities imply

=Ir=(m-3)t+(k—2uand C+j)r=(i+j+n)t+(+u
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Aslongasj < £, (k+1)i+(k—2)j+3/>0. Thusfor3<i<6and2j <i t=r
and u = 0.

The only case that we haven’t accounted for is when ¢ = 25 or i = 4 and J=2.
But if o, € k, 2% — 2(y® + ayz* + B25) is a quasihomogeneous polynomial with
the following degrees: deg(z) = 7,deg(y) = 4, and deg(z) = 2. By Corollary 3.23.
T =m if and only if deg(z) = 7 > 4+2 = deg(y) + deg(z2), deg(zy) =11 < 8+4 =
deg(y) + deg(z) and deg(zz) =9 < 8 + 4 = deg(y) + deg(z).

When a, 8 ¢ k, we note that as above there exists some r such that

3943 3, gtl g Hg+l) 3. 3a+l g 2¢ _2q
y Tz orytr T TN ¢ (y¥ %)

and the sum of the coefficients of this monomial in

gt paey
y'(2(y® + eooyz" + Fooz®)) T or 2(2(y® + acoyz* + Booz®)) S

are nonzero modulo p. We have shown above that if & and 8 contributed another

monomial of the above form then the following equalities would arise:

2443 _3r 2ilier 22 H(m=3)t+(k—2)u  TEL 4 (6+r )t4+-(4+1)u

y =Y
or

3(.‘1;_11_3,-2 Jizﬁ+6r =

y 2“‘l;'—ll'*-(m-3)H-(’¢—2)uZi(-f‘-‘#-l+(6-+-'r Je+{4+0)u,
both implying

0= (4m + 3n)t + ((k+ 1)4 + (k — 2)2 + 30)u = (4m + 3n)t + (6k + 30)u = 0.
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Since u,t,k,{,m,n > 0,ift #0then m = n = 0 and if u #0then k=1=0.
Since by assumption k,{,m,n cannot be zero simultaneously then either ¢ = 0 or
u=0. Ifu=0then ¢t =r. Ift =0, then 2u = 3r. We need only choose r to be
odd to get a contradiction. Thus ¢t = r and u = 0.

By Lemma 3.31, there exists an automorphism taking z2 — (3° + ayzf + gz+7)
to 22 — (y* + y2* + 4z™) for a unit v. Thus K[z, y, z]]/(z2 — =(y® + y=' + yz:+7))
has test ideal equal to the maximal ideal for 3 < i < 6 and 2 <j<iandi =6
and j = 2. This gives case 6).

E) If the initial form is y*, then by Lemma A.10 y* + b where b € (y, z)° can
be rewritten after some change of variables as (y? + czf)2 + dz* where ¢ is either
equal to 0 or 1 and d € (y,z). Suppose first that ¢ = 0. Since d € (y, z) it must
be in the form a(y, z)y + b(y,z)z. To analyze the isomorphism classes generated
from this form we must look at the following three cases:

)  y*+az’, where ais a unit in k[[y, z]],
II)  y'+ayz', where a is a unit in k[[y, z]],

III) y*+ ayz* + Bz’, where o and B are units in K[y, =]]-

E.I) As long as & € k, 22—a = z?—(y*+az’) is a quasihomogeneous polynomial
with deg(z) = 2i, deg(y) = ¢ and deg(z) = 4. By Corollary 3.23 7 = m if and only
if deg(z) = 21 > i+4 = deg(y) +deg(z), deg(zy) = 3i < 21 +8 = deg(y?) + deg(=?)
and deg(zz) = 2i+4 < 2i+8 = deg(y?)+deg(z?). In otherwords, + = m if and only
if 4 <i < 8. Note that when i = 4, a = y* + az* is a product of four independent

linear factors. In case A above we have shown that such a force k[[z,y, z]] /(% — a)
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to have test ideal equal to the maximal ideal.

When a ¢ k, by Remark 3.24 we need only check that
V(' +e2)F and 2(y* + az)) F ¢ (47, 2)

as long as 5 < ¢ < 8 by looking at the monomials in the expansion of both
expressions above.
We can write

a = S >eoany:!
where ay; € k. The monomials will be of the form

3q+2+(k—4)rz(i+l)r 2(q+l)+(k—4)rzq+(i+l)r

y and y

for some 0 < r < L. Since 7 = m for k[[z, y, z]]/(z? — (y* + aco=")) then we know
there must be some monomial with nonzero coefficient modulo p in the expansion

of

¥ (=(y® + a0z')) T and 2%(2(3° + agoz’)) T

which is not contained in (y%7,229). Assume these monomials are such:

y3q+2—4rzu' and y2(q+1)-4rzq+tr.

Suppose a contributes other monomials with the same exponents for both y

and z. Then there exists an s # r such that

y3q+2—4rzir — y3q+2+(k—4)sz(t+l)s or y2(¢I+1)—4rzq+ir = y2(Q+1)+(k—4)szq+(i+l)s

106



Both equalities yield the following two equations:
—4 = (k —4)s and ir = ({ + [)s.
In both cases s =r and
y(y* +0z)F and yi(y* + azf) T ¢ (y70,0%).

By Lemma 3.35 there exists an automorphism taking y* + az* to y* + z*. Thus
k([z,y,z]]/(z®>—=(y* + 2*)) have test ideal equal to the maximal ideal for 5 < ¢ < 8.
Thus we have 7).

E.Il) As long as @ € k, 2 —a = z? — (y* + ay=') is a quasihomogeneous
polynomial with deg(z) = 2¢, deg(y) = ¢ and deg(z) = 3. By Corollary 3.23 r = m
if and only if deg(z) = 2: > i + 3 = deg(y) + deg(z), deg(zy) = 3i < 21 + 6 =
deg(y?)+deg(z?) and deg(zz) = 2i+3 < 2i+6 = deg(y?)+deg(z?). In otherwords,
r=mif and only if 3 < i < 6. Note that when ¢ =3, a = y* 4+ ayz% is a product of
four independent linear factors. [n case A above we have shown that such a force
k{[z.y. z]]/(z* — a) to have test ideal equal to the maximal ideal.

When a ¢ k, by Remark 3.24 we need only check that
y'(y* +ayz)F and 2(y* + ayz)F ¢ (7, 22)

as long as 4 < ¢ < 6 by looking at the monomials in the expansion of both
expressions above.

We can write

E_t
a = 2Ic.lzoakly =
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where ay; € k. The monomials will be of the form

y3aH2HE=3)r G+ g yHHHE=3) g+

for some 0 < r < ZX. Since r = m for k[[z, y, z]]/(£?—(y* + ooy z‘)) then we know
there must be some monomial with nonzero coefficient modulo p in the expansion
of

1

fyy kL iy 28
y*(2(y° + c00y=")) T and 2%(z(y* + cooyz’)) ™
which is not contained in (y?7, z%7). Assume these monomials are such:

3q+2-3r _ir 2(q+1)—3r _gq+ir

y and y

Suppose a contributes other monomials with the same exponents for both y

and z. Then there exists an s # r such that

39+2-3r ir __ y3q+2+(k—3)s (i+l)s 2(q+1)-3r _q+ir = p2(a+1)+(k=3)s _q+(i+l)s

) ory y
Both equalities yield the following two equations:

-3 =(k—3)s and ir = (7 + |)s.
In both cases s = r and

- 1 .
vyt + ayz) T and 29(y* + ay2)F ¢ (v, 2%).

By Lemma 3.35 there exists an automorphism taking y* + ayz' to y* + yz'.
Thus k[[z,y, z]]/(z? — z(y* + yz*)) have test ideal equal to the maximal ideal for

4 <12 < 6. Thus we have 8).
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E.III) We need only consider the case when ¢ < j since Lemma 3.31 implies that
if i > j then there exists an automorphism of k{[z, y, z]] taking % — (y*+ayz'+327)
to (z? — (y* + z7)) which was case E.Ifor 5<j <8.

For simplicity replace j by i +j where j > 1. If j > i, Lemma 3.35 implies that
kllz, g, 211/ (" — (v* + ayz' + =) = K[z, y, 2]]/(2® — (y* + y='))
which is case E.II for 4 < i < 6. Thus we need only consider when
a=y*+ays + it

for4<i<6b6and 1 <j<i,i=6,j=1.
By Remark 3.24 we show that the test ideal must be the maximal ideal by

looking at the monomials in the expansion of
v(y' + ayz’ + B2)F

and

Ayt + oyt + B2
Taking into account that

a = S poony*z and B = o 50Bmey™z",
these monomials are in the form

y3q+2+(m—4)r+(k—3)sz(i+j+r)r+(i+l)s and y2(9+1)+(m—4)r+(k—3):zq+(i+j+r)r+(i+l)s

forOSrSY;—la.ndOS.sSg%—r.
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Setting r = 0 in the first equality gives us monomials in the expansion of
¥y +ayz’)F and 29(y* + ay2)F
and we know from E.II, above that zy, zz ¢ (y?, z2)" for4 < i < 6 and in particular
Y2256 g (420 22) op y2atl)=2s,akis & (42 20y

As long as there is no other monomial with the same exponents for both y and =

then
yq(y4 -{-ayzi +,32i+j)ﬁ’i and 3Q(y4 +ayzi +Bzi+j)’§—’- ¢ (y2q’32q).

Suppose not. then for some pair (¢, u).

3q+2-3s_is 3g+2+(m—4)t4(k=3)u _(i+5+r )t+(i-+l)u

y =Yy

or

2(g+1)—-3s _q+is 2(g+1)+{m—4)t+(k—3)u g+ (i+j+r J+{i-+l)u

y =Yy

Both of the above equalities imply
—3s=(m—4)t+(k-3uand ts=(i+j+n)t + (i + u.

Aslongas 3> ¢, 3(j+n)+(m—1)i>0. Thusfor3<i<6and j >2, t=0
and u = s.

Setting s = 0 in the first equality gives us monomials in the expansion of

y'(y* + B2) % and 29(y* + =) F
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and we know from E.I, above that zy,zz ¢ (y2,2%)" for4 < i+ j < 8 and in
particular

y3q+2—4r L+ o y2(q+1)-4rzq+(i+j)f ¢ (y2q’ 324)_
As above we need only show that there exists no other monomial with the same

exponents for both y and :z.

Suppose not, then for some pair (¢, u),

3q+2—dr_(i+j)r 3g4+24+(m—d)t+(k—3)u _(i+j+r)t+(i+)u

y =Yy

or

2(q+1)-4r3q+(i+j)r 2(q+1)+(m—4)t+(k-3)u3q+(i+j+r )i+ (i +l)u .

y =Y

Both of the above equalities imply
—dr=(m—4)t+(k—3)uand (i +j)r = (45 +n)t+ (i + Du.

Aslongas3j <z, (k+1)i+(k—-3)j+4/>0. Thusfor3<i<8andj=1.t=r
and u = 0.

By Lemma 3.35 there exists an automorphism taking y* + ayz’ + Bzt to
y* +yz' + vz for some unit 7. Thus k[[z,y, z]]/(z? — (y* + y=* +7z"*7)) has test
ideal equal to the maximal ideal for 4 < i <6 and j > 1 and for i =6 and j = 1.

Thus we have 9).

Now consider (y? + z*)? + dz* where d € (y, z). Since d € (y, z) it must be in
the form a(z)y + 8(z)z. To analyze the isomorphism classes generated from this

form we must look at the following three cases where n > i:
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IV) (¥*+ z*)* + az", where a is a unit in £[[z]],

V)  (y2+ z*)® 4+ ayz", where « is a unit in K[[=]],

VI) (y*+ ') + ayz” + Bz™, where a and f are units in k[[z]].
E.IV) By Remark 3.24 we need to show that

Y% + 2 + a2”)F and 2((12 + 2°)? + 2" ) F ¢ (v, %)

for 2 = 3. To do this we look at the monomials in the expansion of

y((r* + 7 + a2 )% and 27((4% + ) + az") F

As long as a € k the monomials in the expansion of

fady

Y (v + )2 +az")F and 29((y* + 22 +az")

have the form

y3q+2-4r—2:zzs+r ™ and y2(q+l)—4r—2szq+ts+r r

for0<r<#land0<s<qg+1-2r
Settingr = ! and s = 9% in the first expresion above, the monomial we obtain
is
g ¢ (g, 2%
for : = 3 and as long as ¢ > 2n + 3 but it is always contained in (y%, z29) for ¢ > 4.

Note by Lemma 3.29 the coefficient of ("' ) # 0 mod p. Thus as long as

y2q—32—5—-‘( ;’”-{-r
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is not contained in (y??, 22?) then

(3 + 2 +a2)F

is not contained in (y*,2*?). Settingr =1 and s = 0 in the second expression

above, the monomial we obtain is

y2q—22q+r

which is not contained in (y*,2%9) for ¢ > n.
Note that the monomials are uniquely determined by r and s. Suppose for

some ¢t and u

3q+2—4r—-2s ~Tr+3s 3q+2—4t—2u _rt+3u

y =y

or

2(q+1)—4r—2s_g+rr+3s 2(g+1)—4t—2u _g+rt+3u

Yy =Yy

Both equalities yield the following two equations
—4r — 2s = —4t — 2u and nr + 3s = nt + 3u.

For n # 6, (12 —2n) # 0 and s = u. Plugging back into either of the above two

equations we see r = ¢t. Thus for @ € k and n # 6,
V(57 +2°) +@2") and 2((y° + ) + a2)F g (47, 2%).
For n = 6 we note that z?—((y%+2%)2+az°) is a quasihomogeneous polynomial

with degrees given by deg(z) = 6, deg(y) = 3 and deg(z) = 2 satisfying deg(zy) =
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9 < 6+4 = deg(y?) + deg(z?) and deg(zz) = 8 < 6 +4 = deg(y?) + deg(z?). Thus

by Theorem 3.23 r = m and
(0% + 2% +az%)F and (37 + 2°) + 02%) T
are not contained in (y%, z%9).
Now suppose a ¢ k and « contributes a monomial of the form

_a g+l _
203 Allyr | 20-2_gtr

y y

Since a = Skzoakz" then for some nonzero & and some pair (¢, u)

y2-3; Ut yr _  3q+2—dt—2u_(r+k)t+3u

=Yy

or

y2q—-22q+r — y2(q+1)—4t-2uzq+(r+k)t+3u.
Both equalities imply
—4 —2s = —4t —2u and n + 3s = (n + k)t + 3u,

for s=0or . Aslongasn > 6,

, 2n — 12
T 2An+ k) —12)’

which is only an integer for £ = 0 implies t = 1 and « = s. Thus
y((4° + 2 +a2) and 2((y? + ) + az") T

are not contained in (y?7, z%9).
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For n = 6, as above
(2n —12) = (2(n + k) — 12)t

which implies 0 = 2k¢. Suppose k£ # 0, then t =0 and « = 9;’—5 Note the binomial

coefficient when (¢,u) = (0, 9;'—5) is congruent to 0 mod p since

(q-{-l) =0 mod p

r
for r ¢ 0,1.q,q + 1. Hence the coefficient of the monomial

2q—3,,i(—7¥l+f or 2q—22q+r

y y

remains nonzero modulo p.

For n = 5, Lemma 3.36 implies that there exists an automorphism taking
(y% + 2z*)® + az® to the form y* + yz* + 32° for 3 a unit but this is case E.IIL. This
gives case 11).

E.V) By Remark 3.24 we will show that
(7 +2) +ayz") % and (47 + ) +ay=") T ¢ (570, 2%,
for 2 = 3. To do this we look at the monomials in the expansion of
y(8° + 2 +az") "% and (57 + ) +ayz")

As long as o € k the monomials in the expansion of

. - 1
Yy + ) + ayz") T and 29((y? + 2)? + ayz") 5
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have the form

y3q+2-3r-2s:rr+ts and y2( q+1 )—-3r—232q+‘r r+is

for0 <r<#land 0<s<qg+1-2r Setting r = 1 and s = %L in the first

expression above, the monomial we obtain is

yot g ()

for : = 3 and as long as ¢ > 2n+ 3 but it is always contained in (3%, z29) for i > 4.
Note by Lemma 3.29 the coefficient of (E) # 0 mod p.
2
Setting r = 1 and s = 0 in the second expression above the monomial we obtain

29—-1 __g9+r
y <

which is not contained in (y%?, z2?) for ¢ > n.
Note that the monomials are uniquely determined by r and s. Suppose for

some t and u

2(g+1)—=3r—2s_rr+3s 2(q+1)—-3t—2u_rt+3u

y =Yy

This equality yields the following two equations
—3r —2s = -3t — 2u and nr + 3s = nt + 3u.

For n > 3, (9 — 2n) # 0. Thus s = u which in turn yields r = ¢.

Now suppose a ¢ k and « contributes a monomial of the form

3 1
yzq-zz—(-‘l—l;' +roop y2a-lTHr
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Since a = Zi>oakz* then for some nonzero k and some pair (¢,u),

2q-27£<2LU+r — y3q+2—3t+2uz(r+k)t+3u or y2a—19+7 2(g+1)—3t+2u _g+(r +k)t+3u

y ry =Y

Both of the above equalities imply
—3—-2s=-3t —2uand n+3s = (n+ k)t + 3u,
where s =0 or 4+ Thust =l and u = s implying that
g+l

V(¥ + )2 + ay=")F and 2%((y% + 2°)? + ayz") S

are not contained in (y?9,z%?). This gives case 10).
E.VI) We first reduce to the case that i = 3 by noting that some of the mono-
mials of the expansion of
. +1
(¥ + =) +ayz" +6z")"F
are just monomials of the expansion of
1

T ry2it
(¥ + ') + ayz")5.

Thus : = 3. By Lemma 3.37 this case reduces to E.IV). d
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3.6 Classification — the case when a € (y, z)%\(y, 2)®

When the a a quintic plus higher order terms there will be at least as many
isomorphism classes as there are distinct linear factorizations of quintics. These
factorizations are among the following:

A) g2y +2)(y + Az)(y + p2), p, A units,
B) y%z(y + z)(y + Az), A a unit,
C) ¥’y +2),

D) #’z(y +2),

E) y°:%,
F) gz,
G) 5.

Using the lemmas in the appendix if we have a quintic in one of the above
forms plus higher order terms we can make a change of variables absorbing units
into r to rewrite these quintics as:

A) yz(y + 2 )y + Az)(y + pz), p, A units,

B) (y*+az")z(y + z)(y + Az), a, \ units, n > 3,

C) (¥*+az")(z* + By™)(y + 2), a, 8 units, n,m > 3,
D) (¥*+ez)z(y+2), c€(y,2),i >3,

E) (+czf)2%ce(y,2),i23,

F) ((y®+c2*)® +dz")z, caunit,d € (y,z2) n>72>3,

G) y®+ay®s + By + yy2* + 62
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We can easily check that if R is defined by k{[z, y, z]]/(z® — a) where a is in the
form A, B or C then y%a™F ¢ (y%, z¥) and %% ¢ (y*,2%). In cases D and E,
we can use many of the lemmas in chapter 8 to analyze which ¢ € (y, z) will force
yia ¢ (y2,2%) and %% ¢ (y%7,2%). The analysis of a in the form given by
case F is similar to E in the previous chapter.

I[) (y*+ az')z, where « is a unit in K[y, 2]],

[I) (y*+ ayz')z, where e is a unit in K[y, =[],

II) (y*+ ayz' + Bz7)z, where a and B are units in £[fy, z]],
IV) ((¥* +z')® + az")z, where « is a unit in [[z]],

V) ((¥* + ') + ayz")z, where o is a unit in £[[z]],

VI) ((y*+z)* + ayz" + Bz™)z, where o and B are units in k[[z]].

However [V-VI are isomorphic to powerseries that were already determined by

C. Case G breaks down into the following:
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I) ¥+ oz,

I1) y® + ayzt,

[I)  y°+ayz* + 827,

V) y®+ay?z* + B2,

V) ¥4yt + 8,

VI) ¥’ +ay?s + By,

VII)  o°+ayds' + By,

VIII) y° + ay?st + Byz’ + =,
IX)  y*+ay’s + Byz’ + 735,
X) Pyt + Byt + 3K,

XI) ¥+ oy + By?2d 4 yyzF + 620

We will use the following lemmas to analyze some of the above cases.

Lemma 3.39 Suppose the characteristic of k is greater than i and let
R = Hlz.y,2l/(e* - a) or R = Hz.y,]}/(s" — @) where a = 4° + az' and
a’ = y® + ayz' and a is a unit in k[fy, z]] in both cases. Then there ezists an
automorphism of k[[z,y, z]] taking z* — (y° + 2') to 22 — a and 2% — (y° + yz') to

2 —-d'.

Proof. Since the characteristic of R is greater than ¢ and if oy is the component
of a € k then t' — a4 has a root in k[t]. Since k{[z,y, z]] is complete then Hensel’s

lemma implies that t' — a has a root in {[z,y, z]][t]. Suppose that 6 is a root of
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t' — . Setting z; = 0z, we can rewrite
Frari=ye
and
y* +oayz' =y® 4y
Thus the automorphism s : k[[z,y,2]] — k[[z,y,z]] given by s(z) = z,s(y) =

y and s(z) = 0z maps (z? —(y° + z*)) to (22 —a) and (2% — (y° + yz')) to (22 —a').

O

Lemma 3.40 Suppose the characteristic of k is equal to p > i and let R = k(ly, =]].
Suppose a = y® +yz' + vz where j > i and f = y° + yz'. Then there exists an

automorphism of R sending f to a.

Proof. Set y; =y + vz’ and suppose a and 3 be the transformed coefficients

of yz* and z%. Then
vyt + 92 =y +oyi s + B2

Let s1 : k{[y, 2]] — k[[y, z]] be the automorphism defined by s,(y) = y + vz’ and

sa2(z) = =.

Set z; = arz and suppose that S, is the transformed coefficients of z5/. Then
Ui +amz' + Bz =y} +yiz' + Br Y.

Let s : k[[y, z]] — K[[y, z]] be the automorphism defined by s2(y) = y and sq(z) =

L
Q: 2.
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But 55 > ¢+ j and z* € m(A(f))?. Thus by [3, Theorem B], there exists an

automorphism of R sending f to a. O

Lemma 3.41 Suppose the characteristic of k is equal to p > i and let R = kly. =]]-
Suppose a = y® + ay®z® + By?z* + yz° + v2° where either a, B and v are units
or one of a or B is 0 and f = y® + 6323 + ey®z* + z® where § and € are units
depending on a, B and v. Then there exists an automorphism taking f to a.

Zy = Els'z = & -:i = 1_
Proof. Set z; =45z, a T o . and 7, ¥ Then

v+ ey’ + By + y +92° =y + ey 4 BuyPst + iyt + 25

Define s; : £[[y, z]] — k{[y.z]] by s1(y) = y and s;(z) = 3=
Set z3 = z; + Zy. Let a2, B2, 72 and &, be the transformed unit coefficients of

y3z3, y*z3. y*z2 and y°. Then

¥+ a1y’ + By’ + nyzl + 2§ = 6ay® + 1yt + cny® + Byt + 25

Define s, : £[[y, z]] = K[y, z]] by s2(y) = y and s5(z) =z + Ly.

Set y; = 62% y. Let az, B3 and ;3 be the transformed unit coefficients of Y23,
yiz3 and yiz2. Then

82y + 1242} + 2y + Boy’s) + 25 = ¥ + yayta? + anylad + Bayizd + L.
Define s3 : k[[y, z]] — K[y, z]] by s3(y) = 6§y and s3(z) = =.

Set y, = y; + %z% Let oy, B4 and v, be the transformed unit coefficients of

3.3 2.4 .6
Y323, Y325 and z3. Then

Yt + 13Y17 + asyizy + Bsylzs + 25 =yl + auyded + B2zt + 7428
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Define s, : k{[y, 2I] — klly, 2I] by sa(y) = y + T=* and sy(z) = =.
Set z3 = 7‘% z2. Let as and Bs be the transformed unit coefficients of y32z3 and

y3z;. Then
Y3 + aay3zy + Bayizs + 1azS = y3 + esyd2d + fsy2zt + 25,

Define ss : £[[y, z]] — K[[y, z]] by ss(y) = y and ss(z) = v¢=.
Then s : kf[y, z]] — k{[y,z]] defined by s = s; 0 55 0530 s4 0 55 defines an

automorphism taking f to a. a

We are now ready to classify those a € (y, z)%\(y, =)S.

Theorem 3.42 Suppose the characteristic of k isp > 6 and let R = k{[z,y, z]]/(z?-
a) where a € (y,z)°\(y,z)®, then m is the test ideal if and only if after a change

of variables we can write a in one of the following forms:
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1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)

19)

a =yz(y + z)(y + Az)(y + p2), A a unit,
a=(y*+az")z(y+2)(y + Az), @ a unit and n > 3,
a=(y*+az")(z22+ By™)y + 2), @, B units and n,m > 3,
a=(yP*+:)2(y+z2),4<i<6,

a=(y’+yz)z(y + 2),
a=(PP+yz'+azt)z(y+2),3<i<5 1<j<i,aa unit,
a= (P +2)N?+oy™),4<i<6 and m >3, a a unit,
a=(¥*+yz*)(z2+ay™),i=3 and m > 3, a a unit,

a= (P +yz* +B:) 2 +ay™),3<i<5, 1<j<i a3 units,
a= (' + )z,

@ = (' + %)z,

a=(y'+yz*+az'¥)z,i=4 and 1 <j<i, a a unit,
a=y°+:z°

a=y°+y:°,

a=y*+yz*+a’, 1 <j<i, aa uni,
a=y"+ay’z’ +2% 4<j <5, aa unit,

a=y"+aydz’ +25,3<;j<5, a a unit,

a=y®+oay’z +y:°, a a unit,

a=y" +ayds’ +y2%, 3<j <4, a a unit,
a=y’+ay’s + By’ +253<j<4,4<k<5, and j <k, B units,
a=y"+oy’zF+Byz* + 25, 3< £k <4,2<j<i, ap units,
a=y"+ay?st + Byz® + Y, 2 < j < i, o, B units,

¢=y oS+ Byttt b 2, 2 < <oy units,



Proof. If a € (y,2)°\(y, 2)®, then the initial form of a will either be:
A) a product of five independent linear terms, yz(y + 20y + Az)(y + pz),
B) a product of a square and three independent linear terms, y2z(y + z)(y + Az),
C) a product of two independent squares and a linear term, y223(y + z),
D) a product of a cube and two independent linear terms, y3z(y + 2),
E) a product of a cube and a square, y322,
F) a product of a fourth power and a linear term, ¥z,

G) a fifth power of a linear term, 5.

Each initial form will give us at least one and in some cases, more than one
isomorphism class of rings that have test ideal equal to the maximal ideal. To check
each isomorphism class has the test ideal equal to the maximal ideal. by theorem
3.24 we need only check that a*F € (y7,2%) and a'Tyt ¢ (y%,:%) and a5 27 ¢
(y%.2%7). Theorem 3.25 guarantees that a5 ¢ (y?.27) since a € (y,z)° N k|[y, z]].

A) If the initial form is yz(y + z)(y + Az)(y + pz), then by Lemma A.11 yz=(y +
Ny + Az)(y + pz) + b where b € (y,z)® can be rewritten after some change of
variables as yz(y + z)(y + Az)(y + pz) where A and g are units in K[y, =]]-

Assume A and g are in k for the moment. Note that 22 —a = 22— yz(y+2)(y +
Az)(y + pz) is a quasihomogeneous polynomial with deg(z) = 5 and deg(y) =
deg(z) = 2. By Corollary 3.23 7 = m if and only if deg(z) =5 > 2+2 =
deg(y) + deg(z), deg(zy) = 7 < 4+ 4 = deg(y?) + deg(z?) and deg(zz) = 7 <

4 + 4 = deg(y?) + deg(z?).
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If A and p were not contained in %,
A= 2o+ ZijmAiy's and p = po + S jorpiy' s
Noting that the monomials in the expansion of

¥ (y=(y + 2)(y + A002)(¥ + pt002))F and 2 (yz(y + 2)(y + Aooz)(y + pooz))

all have degree 1“;‘—5, then if we multiply any monomial in the expansion of either
of the two expressions above by y*z7 this will only give us a monomial with a larger
degree. Thus no terms in the expression of A or u will cancel out any monomial in
the expansion of either of the above expressions that is not contained in (y%, =2 ).
Hence by Remark 3.24 we have case 1).

B) If the initial form is y*z(y + z)(y + Az), then by Lemma A.12, y%z(y + z)+b
where b € (y, z)° can be rewritten after some change of variables as (y2+az" )z(y+
z)(y + Az) where o and A are units in k{fy, z]] and n > 3. Assume o, A € k for the

moment. By Remark 3.24 we need to show that
¥ (87 +az")z(y+2)(y +A2))F and (37 +az")z(y+2)(y+A2)) T ¢ (y%, %)

To do this we exhibit that there exists a monomial in the expansion of both

Y5 +az")z(y + 2)(y + A2))F and 29((4? + az")z(y + 2)(y + Az)) E

that is not contained in (y?7,z%7). The monomials are of the form

y3q+2)-2r—s—t = Ly r bt and y2(q+1))—2r—s—t > 341 Ly r st )
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Taking r = 1,s = 9';—1 and t = 9*2'—1 in the first expression above and r = 0,¢ =

0 and s = 9;—3 in the second expression above gives us the monomials

3(q+1) 3947
y? 1z " oand yT7 o2¥L

which are not in (y?7, %) for ¢ > 2n + 3.
Notice if @ and A were not contained in k then write
a = E.-,J-Zoa.-jy"zj and A= Sivjzo/\klykzl.
Suppose that « and A contribute another monomial in the form
2g-1 ~3(q:l)+r

y

Then for some r, s and t we have the following equalities:

y2a-1 JUL y3q+2+(i-2)r-s+(k-1)t,‘—'{l+(r+j)r+s+(z+1)t

or
ya;izz"“ = yHeF (= 2)r—s(k—1) 24 (r j)r ot (1+1)e
The first equality implies
(t=2r—s+(k—-1l)t=gq—land (n+j)r+s+({+1)t=n+q+1
and the second implies
. q—3 . q—3
(t=2)r —s+(k—-1)t =—= and (n+j)r+s+(+ 1)t = —

In each system of equations above, adding the two equations together we see that

n—2=(n—2+i+j)r+(k+l)tand 0= (n—2+i+j)r+(k+It
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We note that for z, j, k, [, t and r > 0 then
n—-2<(n-24+i+j7)r+(k+ Dt

The only possible solution would be when r = 0 and (k4 )t = n — 2 or 0. Sub-
stituting r = 0 and ¢ = ﬁ into the first system of equations yields (k + l)s =
n(k—1)+2(l+1)+(k+1)(g+1) which is a contradiction since 0 < s < 2L Thus
r=1,s=t= 9‘;—1 and ¢, 7, k,{ = 0. Substituting r = 0 and £ = 0 into the second

system yields s = 9;—3 Thus no terms in the expansion of a or A will contribute

any more monomials of the form

Jlg+1! 3¢+7
y2q-lz T or y 2 229-1

Thus
y(y° +az")z(y +2)F and (4% + a2 )z(y + 2))F ¢ (v 2%),

Hence by Remark 3.24 we have case 2).

C) If the initial form is y?z%(y + z), then by Lemma A.13, y2z2(y + z) + b where
b € (y,2)° can be rewritten after some change of variables as (y? + az")(z2 +
By™)(y + z) where @ and S are units in £[[y, z]] and n,m > 3. Assume o, 8 € k

for the moment. By Remark 3.24 we show that

r m ol r m
Y ((y*+az")(22+By™)(y+2)) T and 2((y*+ez" )2 +By™) (y+2))F ¢ (y%,:%)
by exhibiting that there exists a monomial in the expansion of both

g+l

Y ((4* +az")(2* + By™)(y + 2)F and 27((y% + az")(2* + By™)(y + 2)) %
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that is not contained in (y*?,2%7). The monomials are of the form

i‘12"'—:‘—2r+ms—t zq-{-l —~2s4rr4t M-Zr-{-ms-t 22q+1—23+r r4t

y and y*%

Taking r=1,s=0and t = %lintheﬁrst expression and r =0,s =l and t =0
gives us the monomials

2q—1217;'—11+r i(-9;'—11--1-"1zZq-l

y and y

which are not in (y*?,2%?) for ¢ > max(n, m).

Notice if a or 3 were not contained in £ then write
i J k_t
a =Y ;>00ai;y's and § = I j>0Buy =

Suppose that a and § contribute another monomial in the form

3(q+1) 3(q+1)

Then for some r, s and ¢ we have the two following system of equations

1 ) 1
qj*- and (n+])r+(l—‘2)s+t=%+n

4 4

(z=2)r+(m+k)s—t=-2-

and

=2)r+(m+k)s—t=mand (n+j)r+(—-2)s+t=-2.
Note that both
n—2andm—-2<(n—2+4+i+j)r+(m+k+1-2)s

fori,j,k,[,r,s > 0. Hence, the only possible solution besides r = 1 and 7, j, k, [, s =

Ois(m+k+l-2)s=n—-2o0r (n+i+j—2)r =m—2. Substituting r = 0

129



and s = —L=2— into the first system of equations yields (m + k + { — 2t =

(m+Ekn+2(1-2)+ ﬁ“T—z-"—‘”'—ll which is a contradiction since 0 < ¢t < 2

Thus r = 1. t = %% and ¢,j,k,0 = 0. Substituting s = 0 and r = r+’:.‘;.2_2 into the

first system of equations yields (n+i+j —2)t = (n +7)m+2(k—-2)+ ('LH?M
which is a contradiction since 0 < ¢t < 9% Thus s =1, ¢ =0 and 7,5,k,{ = 0.
Thus no terms in the expansion of « or B will contribute any more monomials of

the form

2q—13£9;"—‘l+r 1(—7;—11+mz2q-1 )

y ory

Thus
V(™ +asT)(+8y™)(y+2) " and (v +az")(P+BY™ ) (y+2)) T ¢ (v, 22).

Hence by Remark 3.24, we have case 3).
D) If the initial form is y*z(y + =), then by Lemma A.14, y3z(y + z) + b where

b € (y.2)° can be rewritten after some change of variables as (y3 + az%)z(y + z)
where a € (y, z)Nk{[y, z]]. By the Weierstrass Preparation Theorem, y3+az3 can be
replaced by u(y, z)(y° +a(z)y + b(z)) where u(y, z) is a unit and a(z), b(z) € k[[z]].
To determine the distinct isomorphism classes which stem from this form we break
this situation down into the three cases: I) a(z) = 0, II) b(z) =0 and III) a(z) # 0
and b(z) # 0. Or in otherwords,

)  2(y+z)(y*+ az'), where a is 2 unit in £[[z]],

1) =(y+z)(y* + ayz'), where a is a unit in k[[z]],

III) z(y + z)(y*® + ey’ + B2’), where a and B are units in k[[=]].

130



D.I) We need only check that
¥ ((y + 2)(¥° + az))F and 2(2(y + 2)(® + a2'))F ¢ (v, 2%9)

as long as 4 <7 < 6.

First let us assume that o € £. The monomials in the expansion of
¥y +2)(4° + =) F and 2(2(y + 2)(8° + @) F
are in the form
y3q+2-3r—sz%+ir+s and y2(‘1+1)—3r—szi7211-+ir+37

for 0 < 7.5 < TEL. Suppose s = 2+1 and 222 —3r < 2 in the first expression. By

Lemma 3.28, there exists an r such that

&1
(7).

Then r > 9;—3, which implies ¢ + 1 + ir > w. Suppose ﬁﬂ'%(sﬂ > 2q
for all g. Then (¢ 4+6)q+3:+6 > 12qor 3i+3 > (6 —2)q. For : < 6 we can choose

q> %—'i‘—?— which implies that with such r and s = 9*2‘—1 then

5943 ‘
y 2 3rzq+l+xr ¢ (y2q’z2q).

Taking r =0 and s = 9'2'—3 in the second, the monomial we obtain is
y’zﬂz2q-1

y

which is clearly not in (y%9, z%9) for ¢ > 7.
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Suppose a ¢ k, then a = E¢>0auy*z!. Suppose for k, ! # 0 and some pair

(t,u) there exists some monomial equal to

5¢43 .
y—tzL—Srzq-i-l-Hrh

In other words,

3943 _ 3, ~q+1+ir

y 2 = — y341+2+(k-3)t-u2I-z'i+(i+l)t+u.

This equality yields the following two equations:

—#—-31’-(#: 3)t—ua.nd—1+zr—(i+1)t+u.

4

Hence.: > 4 and u — 9;—1 <0sou= 9*2'—1 and ¢t = r. Thus a contributes no other

monomial of the form

2943 _ 3. atl4ir,
y z T ;

hence,
Y (2(y + 2)(° + o) F ¢ (y%,2%).
Similarly if there exists another monomial equal to

y 3_!21": zgq_l

then there exists some (¢, u) such that

3 +7 2q—

y yz(q+1)+(k-3)z-u,1‘1;‘—‘+(i+1)z+u

This equality yields the following two equations

—q——:i_(k 3)t —uand 15 3 i+t +u
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Adding the two together yields 0 = (k—3+i+{)tand k—3+i+!> 0 sincei > 4

implies that ¢ = 0. Hence, a contributes no such monomial of the form
y ¥ 2 and 22y + 2)(4° + az) T ¢ (v, 22).

Hence by Remark 3.24 we have case 4).

D.II) We need only check that
Yy +2)(5° + ayz) T and 20(=(y + 2)(3° + ayz'))F ¢ (v, 229)

as long as 3 <i < 4.

First let us assume that a € k. The monomials in the expansion of
q 3 FIRg =it q 3 iyy L
¥ (z(y +2)(v° + ayz")) 7 and 2(z(y + z)(y° +y2")) 2

are in the form

—2r—s_ Elys ~2r—g Sqtl_. .
y3q+2 2r 5.5 +ir+s and y2(q+l) 2r s. =5 +:r+s’

for 0 <r,s < &L Suppose s = ZEL and

in the first expression. By Lemma 3.27 there exists an r such that ( ) # 0. Then

r > 23 which implies ¢ + 1 4 ir > NGB g\ n5 000 (HIHEHY) o 90 160 o]
4 q 4 p 4 q

q. Then (: +4)g+3i+4 > 8qor

3 +4> (4 —i)g.
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For i < 4 we can choose ¢ > %+t Thus
iy L
y(2(y + 2)(y* + ay2')) T ¢ (3%, 2%).

Taking r =0 and s = 9;—3 in the second expression, the monomial we obtain is

y:i‘l_‘:'f_"'zgq_l

which is clearly not in (y??, 229) for ¢ > 4.
Suppose o ¢ k, then o = T >0auy*z'. Suppose for k,[ # 0 and some pair

(t,u) there exists some monomial equal to

y 2943 _or q+l+ir

[n other words,

2953 _or gq+i4ir 3q+2+(k-2)t~u B i (i)t 4u

y =Yy

This equality yields the following two equations:

qg+1
9

1
~2r=(k—-2)t —u and %-{-ir:(i-{-l)t-{-u.

Hence, : > 3 and u - 2 < 0sou = 2L and ¢t = r which implies a does not

contribute another monomial of the form

y 5_42L3_2,. zq+l+ir .
Hence,

¥(2(y + 2)(5° + ayz))) T ¢ (y%, 22).
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Similarly if there exists another monomial of the form

7
yi‘riLzzq_l

then there exists some (¢, u) such that

yi"zﬁ -1 y2(4+1)+(k-2)t-u.,‘hzﬂ--f-(i+l)t+u.

This equality yields the following two equations:

_q;3 = (k—2)t —u and £I;—3=(i+1)t-¥-u.

r1

Adding the two together yields 0 = (k—~2+i+/)tand k—2+i+{ > 0 since i > 3

implies that £ = 0. Hence, a contributes no such monomial of the form

T

3947
y 2

~2q—1

and
=y + 2)(v° +ay=) ¢ (57, 2).
Hence by Remark 3.24 we have case 5).
D.IIT) We need only consider the case when i < j since Lemma 3.31 implies

that if > j then

k[[l’, Y. z]]/('t2 —z(y+ 3)(y3 + ayzi + 63j)) = k[[xv Y, :‘:”/(:1:2 —z(y + 3)(:‘/3 + :J))

which was case 4) for 4 < j < 6. For simplicity replace j by i + J where j > 1.
By Remark 3.24 we show that the test ideal must be the maximal ideal by

looking at the monomials in the expansion of

i i+jyy 2L
¥'(2(y + 2)(7° + ayz' + BzH)) %
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and
2(=(y + 2)(y® + ays' + B2) .
Taking into account that
a = Eppoapy*z' and f = So r500mr y™ 2
the monomials in the expansion of
¥y + 2)(° + ayz’ + B2")F and 2U(2(y + 2)(8° + ez’ + B2)
are in the form

y3q+2+(m—3)r+(k—2)s—t o B (i Y (i) st

and

y2(q+l)+(m—3)r+(k—2)s—t LT (g (i) st

Setting s = 0 gives us monomials in the expansion of
v'(=(y + 2)(° + B2))
and we know from above that
y(2(y + 2)(6° + Bz F ¢ (37,59
fora <i+j<5. Sett=9;'—la.ndm=0a.ndsupposerissuchthat

5943 _ s -
y 2 3rzq+1+(|+_7)r

is not contained in (y%?,2%?). Suppose there is another monomial of this form.

Then there exists a triplet (u, v, w) such that

5q:-:j—3'r=3q-{-2+(m—3)u+(ls:—2)v—w

1
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and

+1 . .
qT-{-(z-{-])r:(z-i-J+n)u+(z+l)v+w.

For3<i<4andj=1,(14+k)i+(k—2)j+3[>0and 3—(i+j) <0 which
implies v = 0 and w = 9%1- Plugging v =0 and w = 1*2'—1 into either of the above

equations ylelds u = r and m = n =0. Thus in the case 3 < i < 4 and J=1no

other such monomial exists. Thus
Y=y +2)(4° + oy + =) F ¢ (30, %)
for3<i:<4andj=1.
Setting r = 0 gives us monomials in the expansion of
=y + )" + ay=))
and we know from above that
y'(2(y + )5 + ay=)F ¢ (47,27

fort=3. Set t = T;-i and k =0 and suppose s is such that

y i?.zﬂ_g_, ~q+i+is

is not contained in (y®%,z%). Suppose there is another monomial of this form.

Then there exists a triplet (u,v,w) such that

qg+1
2

qg+1
()

<

—2s=(m—-3)u+(k—2)v —w and

+is=(+5+n)u+(+)v+w.

Fori:=3and j >2,(m—-1)i+2j+2n > 0 and 2—17 < 0 which implies v = 0 and

w = 9';—1 Plugging u = 0 and w = 9';—1 into either of the above equations yields
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v=sand k =!=0. Thus in the case i = 3 and j > 2 no other such monomial
exists. Thus
¥ (2(y + 2)(@° + oy’ + )T ¢ (37, 2%)
for: =3 and j > 2.
The monomials in the expansion of
=y +2)(5° + oy’ + BzH))
are in the form

YO OHm=3)r(k=2)s—t I (ikjbr )t (i+D) s+t

Setting t = 9;—3 and s = r = yields the monomial
i‘lzﬂzgq_l-

y

As in D.I and D.II a and 8 will not contribute another monomial of this form.
Thus

: i+t
S(z(y +2)(° + ayz' + B2"H)) T ¢ (47, 2).

If ; > ¢, Lemma 3.33 implies that

kllz,y, 211/ (2 - 2(y + 2)(4° + ay2’ + B2')) = K[z, y, 2]]/(z* — =(y + 2)(z° + y=Y))
which is case 5) for ¢ = 3. Thus

@ =z(y +2)(y° + ayz' + Bz™)
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is a unique isomorphism class for i =3 and 1 < j <3 ori = 4,7 = 1. This gives
case 6).

E) If the initial form is 322, then by Lemma A.15 y32% + b where b € (y,z)®
can be rewritten after some change of variables as (3% + a23)(z? + cy”) where
a € (y,2) N K[y, 2]] and ¢ is a unit. By the Weierstrass Preparation theorem
y* + az® can be replaced by u(y, z)(y3 + a(z)y + b(z)) where u(y, z) is a unit and
a(z), b(z) € k[[z]]. To determine the distinct isomorphism classes which stem from
this form we break this situation down into the three cases: [Ja(z) =0,II)6(z) =0
and III) a(=) # 0 and b(z) # 0. Or in otherwords,

I)  (¥°+az')(z? + cy"), where a is a unit in k[[z]],
II) (¥°+ayz')(z*+cy"), where a is a unit in k[[=]],

1) (¥ +ayz' + Bz9) (22 + cy” ), where a and 3 are units in k[[=]]-
E.I) By Remark 3.24 we need only check that

V(6 +a2)(" + ) and (6 +a2) = + oy ) F ¢ (47, 2%)
as long as 4 <17 < 6.

For now assume o, ¢ € k. The monomials in the expansion of

L2}

¥((5° + )2 + ")) F and 29((y° + az)(22 + o))

are in the form

5943 _3.4rs SO+L4ir—2s

y 2 M—E}r-{'r‘s ~2q+1+ir—2s
~ b

and y~ 2
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for 0 < r,s < %’i Suppose s = 0 and 57;’—3 — 3r < 2q in the first expression

above. By Lemma 3.28 there exists an r such that (’%) # 0. Then r > 2

r

which implies ¢ + 1 +ir > (“'_GM@' Suppose EL:(M > 2q for all ¢q. Then

(:+6)g+3i+6 > 12q or 3i+3 > (6 —)q. For ¢ < 6 we can choose ¢ > 346 Thus
y((° +a) (P + ) ¢ (17, 2M).

Taking r = 0 and s = 1 in the second expression above, the monomial we obtain

is

y ££'7;1"—11-{-1- ~29—1

which is clearly not in (y%9,2%?) for ¢ > 2n + 3.
Suppose o, c ¢ k. then we can write a = £; x500;:y’z* and ¢ = Sim>0Qimy'z™.

Suppose « or ¢ contributes a monomial of the form

yi":—ll—i"r ~q+14ir

[n otherwords for some pair (¢, u),

y"‘"%lﬂj-s)u-(r+1)u3q+1+(i+k)z+(m-z)u _ yﬂ;—”-srzq-pmr
This equality yields the following two equations

(7 =3)t+(rn+Du=-3rand (i + k)t + (m — 2)u =ir.

Sincen > 3 and ¢ > 4, (n+ [}i + 3m — 6 > 0 implies u = 0. Plugging u = 0 back

into either of the above equations implies j = £ = 0 and ¢ = r. Thus no such
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monomial exists which implies
y((8° +az)(Z + )T ¢ (y7,2%).
Similarly, assume there exists some monomial equal to
Ugtl) S2%-1

y

In other words,

ys(g;—l)-{-r 32q—l - ya(g;»ll+(j—3)r+(r+l)szzq+l+(i+k)r+(m—2).q_
This equality yields the following two equations:

n=(G—=3)r+n+0sand —2=(i+k)r +(m—2)s.

Note that 2(j — 3) + n(¢ + k) > 0 since ¢ > 4 and n > 3 which implies that r = 0.

Hence, a, ¢ contributes no such monomial of the form
3(1;—1) zzq_l

y

and

. +1
2((22 + ey Wy® + ez')) T ¢ (v, 2%).

This gives us T).

E.IT) By Remark 3.24, we need only check that
v (5 + oy )2 + )T and (5 + ay2)(? + ) F ¢ (v%.5%)

as long as 3 <: < 4.
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For now assume a,c € k. The monomials in the expansion of
£ ryy &L i ryy 2EL
V(5 + eyz)(2 + o)) F and 2((° + ay2)(2 + 7)) %

are in the form

21_‘?'3—-21'+1's ~q+1+ir—2s ﬂ%ﬁl—2r+rs z2q+l+£r—2s

y and y

*

for0 < r,s < 9';—1 Suppose s = 0 and 3("2—“) — 2r < ¢ in the first expression

above. By Lemma 3.27 there exists an r such that (%) # 0. Then r > 51’—3

r

which implies ¢ + 1 + ir > lﬂ)%(ﬂ Suppose ﬁ'ﬂ%@l > 2¢q for all q. Then
(t+4)g+3i+4 >8qor3i+2>(4—1)q. For i <4 we can choose ¢ > 37:—‘_% Thus

1

¥ ((y° + ayz) (= + )T ¢ (%9, 2%).

Taking r = 0 and s = 1 in the second expression, the monomial we obtain is

3(q+1)

y 2 +r .9-1

which is clearly not in (y%?,z%) for 2n +3 < q.
Suppose a,c ¢ k, then we can write a = Sj,k?_oakzk and ¢ = El,mzoclmy’z’".

Suppose a or ¢ contribute a monomial of the form

y 1(-‘%1—21' ~q+14r

In otherwords for some pair (¢,u),

y UG 4 (j-2)t+(r +H)u g+ 1+H(i+Hk)t+H(m—2)u ﬂﬂ;—”-2r2q+1+ir

=Yy
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This equality yields the following two equations
(7 —2)t+ (n+l)Ju =—2r and (i + k)t + (m — 2)u = ir.
Thus no such monomial exists and
(5 + a2 + o) ¢ (37, 2%),

Similarly, assume there exists some monomial equal to

g+l
y—(q-‘.i-)-i-r zZq—-l.

In other words,

g T 201 y L= H(r H)s 204+ 144k H(m=2)s

This equality yields the following two equations:
n=(j—=3)r+(n+l)sand —2=(i+k)r + (m —2)s.

Hence, a, c contributes no such monomial of the form

J(q;»l) ,2q—l

y

and
(" + ey )y + ay=) T ¢ (v, ).
This gives us 8).
E.III) We need only consider the case when 7 < j since Lemma 3.31 implies

that if ¢ > j then

Kz, y, 2}/ (2" - (= + oy )y + oy’ +B2%) = K[z, y, 2]]/ (e~ (*+ oy )(5° + )
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which was case 7) for 4 < j < 6. For simplicity replace j by ¢ + j where 7 > 1L

Thus we need only consider when
a = (2" +cy" )(y’ + ayz’ + Bz+)

fori=3and j>lori=4,5=1.
By Remark 3.24, we show that the test ideal must be the maximal ideal by

looking at the monomials in the expansion of
y(( + oy )5 + ay=' + B2+ F

and

(2 + oy )(y® + ay2’ + B="))F
Taking into account that
a = Siiseany* s, B = SeizoBuy®s' and ¢ = Ty socuyts,
the monomials in the expansion of
Y((2* + ey )y + ey’ + B=))
are in the form
yiﬂgﬂ(kl ~3)r(kz=2)s+(r+ka)t Lq+ L+(i+i+l )r+(i+la)s+(l~2)¢

Setting s = 0 gives us monomials in the expansion of

y((2 + ey )(u° + B24)) T
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and we know from above that

¥ (2% + ey )(y° + B2H)) T ¢ (v, 229)

for 4 <24 j <5, thus as long as there is no other monomial of the form

yi‘lg’i—srzq+1+(i+j)r ¢ (y2q. zZq)

then

Y2 + ") + ayt + 3:74)) T ¢ (y, 2%).
Suppose not, then for some triplet (u, v, w),
=3r = (ki —=3)u+(k2—2)v+(n+k3)w and (i+))r = CH+i+h)ut(i+h))v+(l3—2)w.

For3<i<dandj=1,(1+k)i+3bL~2j,(n+ k)i +])+3:—-6>0 implies
v=w = 0. But plugging v = w = 0 into either of the above equations implies
r = u. Thus no such monomial exists for 3 < i < 4 and 7 =1

Setting r = 0 gives us monomials in the expansion of

v + ) + az?))

and we know from above that
Y22 + ")y + az') T ¢ (v, 22

for = 3, thus as long as there is no other monomial of the form

_7__ 13
y 23,,q+1+ ¢ (y2q ,2q)
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then
V(2 + oy )y® + ez’ + BN F ¢ (37, 2%).
Suppose not, then for some triplet (u,v,w),

—2s = (ki —3)u+ (k2 —2)v+(n+ks)w and ir = (e 47+ )u+(i+1))v+ (I3 —2)w.

Fori=3and j > 2, 2(j+ L)+ (ki —1)i,(n+k3)i + 23— 4 > 0 implies u = w = 0.
But plugging u = w = 0 into either of the above equations implies s = v. Thus no
such monomial exists for ¢ =3 and j > 2.

The monomials in the expansion of
r i i+7y
(2 + ey )y + ayz' + B27))

are in the form

yﬂ;—‘l(h =3)r(k2—2)s+(r +k3)t 20+ 1+ (i++ )r+(i+H2)s+(la—2)¢

Setting r =s = k3 = I3 = 0 and ¢ = | the monomial we obtain is

yJ__l‘v;H +r _2¢-1

As in E.I and E.II ¢, @ and 8 will not contribute another monomial of this form.
Thus
(2 + ey ) +ayz' + B2)) ¢y, 2%).
This gives case 9).
F) If the initial form is y*z, then by Lemma A.16, y*z + b where b € (y, z)® can

be rewritten after some change of variables as ((y? + cz?)? + dz*)z where ¢ is either
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equal to 0 or 1 and d € (y,z). Suppose first that ¢ = 0. Since d € (y, z) it must
be in the form a(y, z)y + b(y, z)z. To analyze the isomorphism classes generated
from this form we must look at the following three cases:

[) z(y*+ az'), where a is a unit in £[fy, z]],

1) z(y*+ ayz'), where e is a unit in K[y, z]],

II) (y*+ ayz' + B2’), where @ and J are units in k[[y, z]].

F.I) As long as o € k, 22 —a = % — z(y* + az) is a quasihomogeneous
polynomial with deg(z) = 2/ + 2, deg(y) = ¢ and deg(z) = 4. By Corollary 3.23
7 =m if and only if deg(z) = 2: +2 > i + 4 = deg(y) + deg(z), deg(ry) =3 +2 <
2¢ + 8 = deg(y®) + deg(z?) and deg(zz) = 2i + 6 < 2 + 8 = deg(y?) + deg(z?). In
otherwords. r = m if and only if 2 <: < 6.

By Remark 3.24, we need only show that for ¢ k£ and : = 5 that
iy 2L
Yy + ) and (s(y* + 0z ) F ¢ (570, )
Note
a = Ek'lzoyk.’:l.
Suppose a contributes another monomial of the form

- L5 290 a4, 39+l
y3q+2 4rz T—+ir and y2(q+l) 4rz =i ¢ (y2q’ qu).

Then for some nonzero integer s # r

3q+2—4r312ﬂ+ir 3q+2+(k—4)329%i+(i+l)s or y2(q+1)—4rz§32ﬁ+ir — y2(q+l)+(k—4)szl_‘22ﬂ+(i+l)s.

y =Yy
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Both equalities imply

—4r = (k —4)s and ir = (¢ + {)s.

Thus k = =0 and we have shown there is no other monomial of the form

y3q+2—4rzﬂzi+ir or y2(Q+l)—4rzigg’—l+ir.
Thus
VG +e2) and 2(=(y* +a2)F ¢ (4, 2%)
for z = 5.

By Lemma 3.35, there exist an automorphism taking % — (z(y* + az°)) to z* —
(2(y*+2°)). Hence when a = z(y*+25) then the test ideal of R = k[[z,y,z]]/(z%-a)
is the maximal ideal. Thus we have 10).

F.Il) As long as @ € k, 22 —a = z? — 2(y* + ayz’) is a quasihomogeneous
polynomial with deg(z) = 4i + 3, deg(y) = 2/ and deg(z) = 6. By Corollary 3.23
7 = m if and only if deg(z) = 4 +3 > 2: 4+ 6 = deg(y) +deg(z), deg(zy) =6i+3 <
4i + 12 = deg(y?) + deg(2?) and deg(zz) = 21 +6 < 2 + 12 = deg(y?) + deg(z2).
In otherwords, r = m if and only if 3 < i < 3. When i = 3, a = z(y* + ayz) is
a product of five independent linear factors. In case A above we have shown that
such a force k[[z,y, z]]/(z? — a) to have test ideal equal to the maximal ideal.

By Remark 3.24, we need only show that for ¢ = 4 that

y(2(y* + ayz)F and 2(z(y* + ayz')) S ¢ (379, 2%9).
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Suppose a ¢ k contributes another monomial of the form

— Lo 13 - g4l . -
y3q+2 3rz 5t or yz(q+1) 3rz >—+ir ¢ (y2q, z2q).

Then for some nonzero integer s # r

3q+2—3r,9#+ir 3q+2+(k—3)s73;-i+(i+l)s 2(q+l)—3r71‘£2ﬂ+ir 2(q+1)+(k—3)s,%+(i+l)s

=y ory =y

y
Both equalities imply
=3r = (k—3)s and ir = (z + [)s.

Thus k = { =0 and we have shown there is no other monomial of the form

2(q+1)~-3r 32t 4ir or 2(q+1)-3r 32+l 4ir

y y

Thus
y(2(r" + ay2))T and S(=(y* + ayz) T ¢ (47, 2%)
for : = 4.
By Lemma 3.35, there exist an automorphism taking z2 — (z(y* + ayz?)) to
z? — (2(y* + y2z*)). Hence when a = z(y* + yz*) then the test ideal of R =
k[[z,y.2]]/(z* — a) is the maximal ideal. Thus we have 11).

F.III) By Remark 3.24, we need only show that for ; = 4 and 7 2 1 that
Y=y + ayz' + B2)T and 2(2(y* + ays’ + 827H))F ¢ (v, ).

Write a = Ek,lzoauyk:«:’ B = Emr>0Bmry™z" where ai and B,,, are elements

of k. The monomials in the expansion of

y(2(y* + ¥z + B2))F and U (2(y* + ayzt + B2))%
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are of the form

y3q+2+(m—4)r+(k-3)sz B (i jbr )r4(i+)s

and

y 2@ttt (k=3)s  SEL L (i4j4r ) +(i+)s

for0<r < 9*2'—1and0 <s< 1';—1—r. Note that if we take s = 0 then we are
dealing only with elements in the expansion of

., + ., -
vz + 82" and 2(=(y* + B2+ F

which we know is not contained in (y??,z%) for i + j = 5 by F.L If we take r = 0

then we are dealing only with elements in the expansion of

1

iy 3L ivy IEL
y(z(y* + ayz"))T and 2(z(y* + ayz))

which we know is not contained in (y?,z%) for i = 4 by F.IL

As in F.I, for some r there exists a monomial

3q+2—4r _ L (itj)r 2g+1)—4r 32l 4 (4 f)r 29 .2
y3 P )ory(" )—ar = (t])¢(yq’___q).

Suppose there exists a pair (¢, u) such that

y3q+2—-4rz1'2ﬂ+(i+j)r — y3q+2+(m-4)c+(k-3)u,2%‘-+(i+j+r)t+(f+l)u

or

yz(q+1)—4rziﬂg‘—‘+(i+j)r = yz(q+1)+(m—4)z+(k-3)uzﬂ;—‘+(i+j+r)z+(f+l)u'
Both equalities imply the following system of equations:

—dr = (m —4)t + (k- 3)u and (i + j)r = (i + j + n)t + (i + D).
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Then we see that ¢(k+ 1) —3j+4/ > 0 fori = 4 and j = 1 and this implies

(r,0) = (¢,u) and
¥ (z(y* + ayz’ + B"))% and (z(y* + ey’ + B27H)) T ¢ (v, : %),

As in F.II, for some s there exists a monomial

3q+2-3sz£;—l-+is 2(?+1)—3szy2ﬂ+is ¢ (y2q722q)_

y ory

Suppose there exists a pair (¢, u) such that
—3s=(m—-4)t+(k-3)uand is= (i + 7+ n)t + (i + |)u.
Then we see that ¢(m — 1) +3(j +n) > 0for i = 4 and j > 2 and this implies
(0.s) = (t.u)
Y2y + oy’ + B2)) and (a(y* + ay’ + B24))F ¢ (g0, ),
Thus we have 12).

Now consider z((y? + z*)? + dz*) where d € (y, z). Since d € (y,z) it must be
in the form a(y, z)y + b(y, z)z. To analyze the isomorphism classes generated from
this form we must look at the following three cases where n > i:

V) (¥*+ ') + az”, where c and « are units in [y, z]],
V)  (¥*+2')? + ayz", where c and « are units in k{[y, z|],

VI) (y?+2')® +ayz" 4 Bz™, where ¢, & and 3 are units in k[y, ]].

F.IV) To determine which 7 force

¥(2(y? + )% + ayz")F and 27(2(y? + 2°)? + ay2” ) ¢ (47, 22
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we need to look at the monomials in the expansion of

V(7 + 2+ a2 )F and 21(2(7 + ) 4 o) P

by Remark 3.24. As long as a € k the monomials in the expansion of
(4 + =+ az") % and 29(2(y? + 2)F + @) T
have the form

1 - 3941 .
3q+2—4r—2s35-'!2'—+rr+;s and 2(q+1)—4r—253—72L+rr+:s

y y

for0<r<#land0<s<qg+1-2r Hwesetr:lmdt:";'—lintheﬁrst

expression above, the monomial we obtain is

y2q—37('+”;1+”+r

which has nonzero coefficient modulo p by Lemma 3.29. If i > 2 then

2q-3 (tLatD) o

y

is contained in (y%,227). Setting r = 1 and ¢ = 0 in the second expression, the
monomial we obtain is

y2- Ly

As long as ¢ = 2, each are monomials that are not contained in (y27,:29) for
q > 2n+3. But we were assuming that 7 > 3. When ¢ = 2 this case reduces to C).

Similarly we show that F.V) and F.VI) reduce to case C).
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G) If the initial form is y°, then by Lemma A.17, y° + b where b € (y, z)° can

be rewritten after some change of variables as
y° + a(2)y?2® + b(2)y?2* + o(2)y2® + d(z2)z°

where a(z), b(z), c(z),d(z) € k[[z]]. Classification of the isomorphism classes breaks
down into the following cases for a, 3,v and § units:

I) ¥’ + azl,

) ¥°+ays,

1)  y°+ ayz' + B2,

IV) ¥’ +ay®s + 827,

V) y® + ayd:t + B2,

VD) ¢®+oay?s + By,

VII)  y°+ ayz* + By=?,

VIII) y°+ ay?®z' + Byz? + vz,

IX)  §°+ay®s + Byz + 72k,

X) ¥+ ay’z + By + 47k,

XI) y® + ay’zt + By?2? + yyzF + 62

G.I) Aslong as a € k, z2—a = z?—(y°+az’) is a quasihomogeneous polynomial
with deg(z) = 5¢, deg(y) = 2¢ and deg(z) = 10. By Corollary 3.23 7 = m if and
only if deg(z) = 5 > 2¢ + 10 = deg(y) + deg(z), deg(zy) = 7i < 41 + 20 =
deg(y®) + deg(z?) and deg(zz) = 5 + 10 < 4i + 20 = deg(y?) + deg(z?). In

otherwords, 7 = m if and only if 10/3 <7 < 20/3.
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When o ¢ k by Remark 3.24, we look at the monomials in the expansion of

1

vi(y® + az'-)ﬂz'—l and z%(y° + az")%—.
Write a = Ek,zzoaklykzl- The monomials are of the form

y SRS G4y op o X (k=5)r a+ (i)

Suppose a contributes a monomial of the form

y 1‘1.‘,12—51-2& ory 1";'—ll—Srzq«lv-{r

not contained in (y*?, z??) coming from the expansion of
y'(¥° + e00z) 5 or 2(y® + agoz!) F .

Then there exists an integer s # 0 such that

71:5 —5r ,ir Hﬂ+(k—5)s 7(:‘-{-l)s

y =Yy ?

or

Het) 5 _g+ir _ yﬂ;_‘lﬂk-s)s ~a+(i+l)s

Both of these equalities give the following two equations
—5r = (k —5)s and ir = ( + )s.
Thus « does not contribute a monomial of the form

%ﬂ—Sr 7ir M—Sr qtir
-~ r .

y ory 2
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Thus both
y'(y° +az)F and (40 + a2)) F
are not in y*, z%9),

By Lemma 3.39 there exists an automorphism of k[[z,y, z]] taking y° + a2 to
y® + z*. Thus k[[z,y, z]]/(z? — (¥° + z')) has test ideal equal to the maximal ideal.
Thus we have case 13).

G.II) As long as a € k, 22 — a = z? — (y° + ayz’) is a quasihomogeneous
polynomial with deg(z) = 5i, deg(y) = 2 and deg(z) = 8. By Corollary 3.23
7 = m if and only if deg(z) = 5 > 2/ + 8 = deg(y) + deg(z), deg(zy) = 7 <
42 + 16 = deg(y®) + deg(z?) and deg(zz) = 5i + 8 < 4i + 16 = deg(y?) + deg(=?).
In otherwords, 7 = m if and only if 8/3 <: < 16/3.

When a ¢ k by Remark 3.24, we look at the monomials in the expansion of

1

y(y° + ayz)F and (y° + ay2t)

Write a = Ekvlzoak,y"z'. The monomials have the form

y11;3+(k-4)rz(i+l)r and y“",—+”+(k-4)r,q+(;+l)r

forOSrSg%.

Suppose a contributes a monomial of the form

7945 _ . 5(q+1) .
Yy~ 2 4r3xr ory 2 —4rzq+tr.

Then there exists an integer s # 0 such that

yl‘gﬂ-«ar i yﬁzﬂ+(k-4)s,(i+l)s
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or

5%1—‘& ~q+ir ﬂizll+(k-4)szq+(i+l)s
L -

=Y
Both of these equalities give the following system of equations
—4r = (k —4)s and ir = ( + [)s.

Thus « does not contribute a monomial of the form

Iqts z 5 _4r ir

S(g+1 .
y zTory ‘;’ )—4rzq+tr.

Thus both
¥'(y° +ayz) % and 2(y° + ayz)F
are not in (y%, z%9).

By Lemma 3.39 there exists an automorphism of k[[z,y, z]] taking y® + ayz’
to y° + yz*. Thus k[[z,y,2]]/(z® — (y° + y=*)) has test ideal equal to the maximal
ideal. Thus we have case 14).

G.III) Note if 7 > j then B+ayz*~7 is a unit; therefore, in this case y*+ayzi+82’
is in the same isomorphism class as y® + z7 by case G.I). So we may assume that
t < J, and replace j by i + j where j > 1. By Lemma 3.40, j < i otherwise
y® + ayz’ + Bz** is in the same isomorphism class as y° + yz* which is case G.II).

Suppose
; -y s g+l . e gl
yU(y® + ayz’ + Bz F and 29(y® + ayzi + Bz ¢ (y*, 229),
Then some monomials in the expansion of

y'(y° +y2' + B2) T and 20(y° +y2t + B2
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are not contained in (y%*?,z2?). The monomials have the form

945 _ 4 5 ir+(t+3+k)s _ﬂitl_‘;,—_s, ,q+(t+k)r+(:+]+l)s

y 2 z and y

for 0 <s< ! and 0 <r < %L — 5 and where k and [ are the powers of z which
@ and 3 contribute.

When s =0 and j > 1 then the monomials occuring are just those from the

: 5 Y48 5 fyLEL :

expansion of y?(y° + ayz*)"= and z%(y® + ayz’)"z . By case G.II) we know that i

must be 5. Suppose that a and 8 contribute a monomial either of the form

yz‘l,i,ﬂ’--‘lrer or y—-qz—l—4r~q+5r ¢ (y2q _.2q)

Then there will exist some pair (¢, u) such that

qu-iﬂ—‘lr .57 _ yﬁzﬂ-‘it—Su,(5+k)t+(5+j+l)u

or

Hgtl) 4, ~q+57

y*5 - — yﬂ;—ll-‘u-Suzq+(5+k)t+(5+j+l)u'

Both equalities yield the following system of equations:
—4r = —4t —Suand 5r = (5+ k)t +(5+j + Du.

Forj > 1,(4(5+7+k)—25)>0,thusu=0and ¢t =r.
When r = 0 and j = 1 then the monomials occuring are just those from the
expansion of y¥(y® + Bz+7)%" and 29(y® + Bz+) % . By case G. I) we know that

¢+ must be 6. Suppose that a and 4 contribute a monomial either of the form

Tats i(_?_._
y 2 53263 ory 537q+63 ¢ (qu _,2q)
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Then there will exist some pair (¢, u) such that

1345 s, 68 Ie45 41 50 S(S+R)E+(6+])u

y =y ?

or

ysv—-’;—ll—Ss ,q+6s __ yﬂ-".‘#l—«{t—Su __,q+(5+k)t+(6+l)u.

Both equalities yield the following system of equations:

—3s = —4t —5u and 6s = (5 + k)t + (6 + )u.

Thus for j =1, 5lu + (5(5+ k) —24 > 0, thus ¢ =0 and u = s.

Both arguments above imply that
- . .. 1 - . R 1
V(Y +ayz' + ﬁz'*”)gZL and z%(y° + ayz' + /32“"1)%—' ¢ (y¥,z4).

Hence by Remark 3.24, we have case 15).
G.IV) Note if z > j then 8+ ay®z"~/ is a unit with a jth root; therefore, in this
case y° + ay?z' + B2/ is in the same isomorphism class as y° + 327 and this is case

G.I). So we may assume that i < j, or that we can replace j by ¢ + j. Suppose
Y8 +ay’s + Bz)T and (3% + oyt + B2) ¢ (v, ),
Then some monomials in the expansion of
v'(s° + oys + Bz9) and 21(y + ag?s + fH)F
are not contained in (y%7,z%9). The monomials have the form

1945 _3r—5s, (i i+j LG22 N ; it
y 2 3r 532(1+k)r+(z+1+l)s and y 2 3r 532q+(:+k)r+(t+_1+l)s’
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for 0 <s< 9*2'—1a.nd0 < 9*2'—1—3 and where £ and [ are the powers of = which o
and 3 contribute.

When r = 0 then the monomials occuring are just those from the expansion of
yi(yS + B2) % and 29(y° + Bz)%". By case G.I) we know that 7 + j must be 6.

Suppose that « or B contributes a monomial either of the form

Te+s - S(g+1) _
y 2 33363 ory 2 Sszq-{—ss ¢ (y2q’ z2q)’

Then there will exist some pair (¢, ) such that

95 _55_6s 1945 _3t—5u _(6—j+k)t+(6+)u

=Yy

or

y AetD 55 _q+6s y et _3t_5u _q+(6—j+k)t+(6+)u

Both equalities yield the following system of equations:
—3s = —3t —5u and 6s = (6 — j + k)t + (6 + {)u.
For1 <7<2,(5(6—7+k)—18) >0, thus £ =0 and u = s. Thus
YI(° + oy 4+ B25)F and 2(y° + ayS 4 25 ¢ (37, =)

for 1 <j < 2. Hence by Remark 3.24 we have case 16).
G.V) Note if i > j then 3 + ay3z*~7 is a unit with a Jth root; therefore, in this
case y° + ay®z' + B2’ is in the same isomorphism class as y® + z7 and this is case

G.I). So we may assume that : < j, and we replace j by t+ 7. Suppose

y'(y° + oy’ + 2%)F and 21(y° + oy + )T ¢ (57, 2).

159



Then some monomials in the expansion of
y'(y° + ay’s + A=) and (5 + ay’s + fH) T
are not contained in (y%?,z27). The monomials have the form

yi‘gﬁ—zr-ssz(x’+k)r+(i+j+l)a and y-5!3;—11-2r-532q+(i+k)r+(i+j+l)s’

for0 <s< L;ia.ndo <r< 9;’—1—3 and where £ and [ are the powers of =z which
a and G contribute.

When r = 0 then the monomials occuring are just those from the expansion of
yi(y® +:f)’% and z%(y® +z’)ﬁzi. By case G.I) we know that ¢ must be 6. Suppose

that « and 3 contribute a monomial of the form

T2t _5s_6s Hatl) 5 20 2
yor oyt I ¢ (% L2

Then there will exist some pair (¢, u) such that

y I9$5 s S5 _ y 1245 _2t—5u _(6—j+k)t+(6+)u

or

yi‘g-‘l-sszqwa — yi'!;’—‘l-zt—suzq+(e-j+k)c+(s+l)u.
Both equalities yield the following system of equations:
—5s = =2t — 5u and 6s = (6 — j + k)t + (6 + [)u.

For1 <;5<3,(5(6—j+k)—12) >0, thus t =0 and u = s. Thus

y'(u° + oy’ + 2%) % and 20+ ay’s 4 ) ¢ (y, 2%,
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Hence by Remark 3.24, we have case 17).
G.VI) Note if ¢ > j then 8+ ayz*~7 is a unit with a jth root; therefore, in this
case y° + ay®z* + By2 is in the same isomorphism class as y® + yz7 and this is case

G.II). So we may assume that i < j, and replace j by 7 + j. Suppose
¥ (y° + ey’ + Byz")F and (40 + ay’sf + By ) E ¢y, 2%),
Then some monomials in the expansion of
Y (¥° + oy’ + Byz")E and 2(y° + ay?st + Byz)H

are not contained in (y%,z2?). The monomials have the form

yz"‘;ﬁ-3'-4sz(i+k)r+(i+j+l)s and y1’;—11-3r—433q+(i+k)r+(i+j+l)a’
for0<s< Zland 0<r< 2 _5and where k and [ are the powers of z which

a and 3 contribute.
When r = 0 then the monomials occuring are just those from the expansion of
yi(y® + yz+9) % and 29(y® + y“*”) . By case G.II) we know that i + j must be

5. Suppose that a and 8 contribute a monomial of the form

Tgts _ Stg#l) _
y 2 4sz5: ory 2 4s ~q+53 ¢ (y2q -2q).

Then there will exist some pair (¢,u) such that

Igs —4s _Ss

y 2 = _y o) —32—4u.,(4+k)t+(5+l)u

or

y A 45 _q+5s y ML 3t —du _q+(4+k)t+H(S+H)u
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Both equalities yield the following system of equations:
—4s = -3t —4u and 5s = (4 + k)t + (5 + )u.
Since (4(4 + k) — 15) > 0, then ¢t = 0 and u = s. Thus
yI(y° + e’z + By2")F and 29(y° + ay?t + By H ¢ (v, 2%).

Hence by Remark 3.24, we have case 18).
G.VII) Note if i > j then 8 + ay?z'~7 is a unit with a jth root; therefore, in
this case y* + ay®s* + Byz’ is in the same isomorphism class as y° + y2z’ and this

is case G.II). So we may assume that ¢ < j, and replace j by 7 + ;. Suppose
Y(° + ey’ + By=)F and SU(y° + ay®s + By=) T ¢ (579, ),
Then some monomials in the expansion of
y(y° +ay’s’ + Byz") " and (40 + oy + By=)F
are not contained in (y%9, z29). The monomials have the form

y T9E2 _or—as _(i+k)r+(i+i+)s and yyzill-2r—43 (R +(i+5+)s

for0 <s< gz—la.ndO <r< 9';—1—3Whereka.ndla.rethepowersofzwhicha
and 3 contributes.

When r = 0 then the monomials occuring are just those from the expansion of
y(y® + Byz+) % and 2(y® + ,Byz"*'j)ﬁzi. By case G.II) we know that i + j must
be 5. Suppose that a or B contributes a monomial of the form

Tq+5 _ 5(q+1)
y 2 43253 ory 2 -4.szq+53 ¢ (y2q’ z2q)'
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Then there will exist some pair (¢, «) such that

y-"ﬂzﬂ—‘uzs: - yzggi—2t—4uz(5—j+k)t+(5+l)u

or

S(q+1 Si 1 -
y—%l—‘lszq+53 - y-(-‘zil—zz-«m 2IHE—GHREH(5+H)u

Both equalities yield the following system of equations:
—4s = -2t —4uand 55 = (5 — j + k)t + (5 + Du.
For1 <7 <2 (45—-j+k)—10)>0, thus £ =0 and u = s. Thus
y'(y° + oy’s + By=")T and Sy + oy + By )T ¢y, ).

Hence by Remark 3.24, we have case 19).

G.VIII) Note if ¢ > j > k then 7 + ay®s*~* + Byz'~* is a unit with a kth root;
therefore. in this case y° + ay®z* + Byz7 + v2z* is in the same isomorphism class as
y® + vz* and this is case G.I). If i > j then B + ayz*~/ is a unit with a jth root;
therefore, in this case y° + ay?z' + Byz7 + vz* is in the same isomorphism class as
y® + Byz’ + vz* and this is case G.III). So we may assume that ; < J < k, and we

replace j by ¢ + 5 and k by 7 + j + k. Suppose
y(y° + o’z + Byz + 92 ) and 29(y° + ay?s + Byt 4 itk
are not in (y??,z%%). Then some monomials in the expansion of

yQ(ys + ay2zi + ﬂyzi+j + ,7zi+j+k)2§l and zq(yS + ayzz; + ﬂyzu-j + 7zi+j+k)9¥
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are not contained in (y??,z%). The monomials have the form

y HIEL) _3r—ds—5t _(i+l)r+(i+j+m)s+(i+i+kbr)t

and
y1‘1;’—‘1-3r-4.q-5tz(i+l)r+(i+j+m)s+(i+j+k+r )t
forOStS9%1-,0§s$1*2'—1—tand05r§9;—1—t—sa.ndwhere[,ma.ndna.re
the powers of = which o, 8 and v contribute.
When r = ¢ = 0 then the monomials occuring are just those from the expansion
2(y5 S+ ) 24(y5 ~i+i) L A Py
of y¥(y° + Byz**?)"z and 2%(y® + Byz*?)" 7 . By case G.II) we know that i + j

must be 5. Suppose that «a, 3 or v contribute a monomial of the form

945 _ 44 ss Mt _4e a45s 2 .2
y o T oryT T T £ (g 2,

Then there will exist some triplet (u, v, w) such that

Tatd _4s_5s I _Bu—dv—5w _(4+)ut(5+m)v+(5+k+r)w

y =y 2

or

y“L;“l-‘uzqﬂs _ ys(q—:ll—3u—4u—5wzq+(4+l)u+(5+m)u+(5+k+r yw_
Both equalities yields the following system of equations:
—4s=-Ju—4dv-Swand Ss=(4+Du+(5+mhv+(5+k+n)w.

For k> 2 (4(5+k+n)—25),(4(4+1)—15) >0, thus u = w =0 and v = 5. Thus

i i+j i+j+ky 2L i i+j i+
y(y° + oy’2' + By + )T and 27(y° + ay’st + Byztt 4 4 iR
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are not in (y%?,2%) for k > 2. This gives case 22). By Lemma 3.41, k£ = 1 reduces

to G.X).

G.IX) Note if i > j > k then v + ay®*z*~F + By27~* is a unit with a kth root;
therefore, in this case y® + ay®z* + Byz’ + 7z* is in the same isomorphism class as
y® + 7z* and this is case G.I). [f i > j then B + ay®z* is a unit with a jth root:
therefore, in this case y° + ay®z' + Byz’ + vz* is in the same isomorphism class as
y® + Byz’ + vzF and this is case G.III). So we may assume that i < j < k, and

replace j by : + j and &k by i + j + k. Suppose

yU(y° + ay®s + Byz+ +7zi+j+k)$§—‘- and z%(y® + ay®st + Byzt + ,./3i+j+k)ﬁz:‘-
are not contained in (y%?, z%). Then some monomials in the expansion of

yI(y° + oy + Byzt + 42t E and 29(y° + ayBs + Byt + AL
are not contained in (y%?,z%?). The monomials have the form

y 1245 _or—ds—5t _(i+l)r+(i+j+m)s+(i+i+h+r)t

and

yﬁ;ﬂl-Zr—&s—Stzq+(i+l)r+(i+j+m)s+(i+j+k+r)t
for0<t< 5”2'—1,0§359-*2'—1—-ta.nd0$r$gz—l—t—sandwherel,mandna.re
the powers of z which «, § and 4 contribute.

When r = ¢ = 0 then the monomials occuring are just those from the expansion

of y2(y° + Byz*+) %" and 29(y® + Byz+) . By case G.I) we know that ¢+ j must
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be 5. Suppose that a, 8 or v contribute a monomial of the form

745 5(g+1)
Y2 -4:253 ory 2 -4szq+5.v é (y2q’ ZZQ)-

Then there will exist some triplet (u, v, w) such that

Z—‘gt‘i-{v 53 17215-—-211—40—510 (5= +)u+(54+m)v+(5+k+r)w

y =Y

or

yw—4szq+53 — y3(-5#1-21;-411—510zq+(5-j+l)u+(5+m)v+(5+k+r )w.
Both equalities yield the following system of equations:
—ds=-22u—4dv—-SwandS5s=(5—-j+Du+5v+(5+k+m)w.

For1 <j;<2and k>2(4(5+k+m)—25),(4(5—7+()—10) >0, thusu =w =0

and s = v. Thus
yU(Y° + ay®st + Byzt 4 42 Y and 9(y0 + ayBet + Byt 4 y2ititk)

are not contained in (y%?, z2?). Hence by Remark 3.24, we have case 21). By Lemma
3.41, k =1 reduces to G.X).

G.X) Note if ¢ > j > k then v + ay®z* + By?2'* is a unit with a kth root;
therefore, in this case y° + ay®z* + By?z’ + vzF is in the same isomorphism class
as y® +7zF and this is case G.I). If i > j then 8+ ayz~7 is a unit with a jth root:
therefore, in this case y® + ay3z*~* + By?z7 +vz* is in the same isomorphism class

as y°® + By%z? + vz* and this is case G.VI). So we may assume that i < 7 < k, and
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replace y by ¢ + j and k by 7 + j + k. Suppose
Yy + ay’z’ + Byz ™ 4y Y and 2130 + gt 4 Byt 4 e B
are not contained in (y9, 2%%). Then some monomials in the expansion of

vy + aydzt + By2attH +zi+j+k)% and 2%(y° + ay®st + By?zH +z"+j+'°)%
are not contained in (y??,z%?). The monomials have the form

y T9ES _2r—3s—5t_(i+l)r+(i+j+m)s+{i+itk+r)e

and

y Hatl) _2r—3s—5t _g+(i+l)r+(i+i+m)s+{i+i+k+r )t
for0<t< 9;—1,0$s§gg—l—ta.ndﬂSrgg%-—t—sa.ndwherel,mandna.re
the powers of = which «, # and v contribute.
When r = s = 0 then the monomials occuring are just those from the expansion
of y9(y® + =+i+k) T apd yi(y® + 2+ | By case G.I) we know that i +j + &

must be 6. Suppose that @, 8 or v contributes a monomial of the form

945 _5; 6t Hetl) 5 a6t 2 _2
y @ 2MoryTz IO g (y% %),

Then there will exist some triplet (u, v, w) such that

285 _5¢ 6t 185 Ju—3v—5w_(6—j—k+)ut(6—k+m)u+(6+1)w

y =Yy

or

y §£3;"—11—& ~9+6t _ y i%l--zu.—ISu—SuJ LI+ (6—j—k+l)ut+(6~k+m)v4(64r)w
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Both equalities yield the following system of equations:
-=-2u—-3Jv—-Swand6t=(6~j—k+lu+(6—k+m)v+(6+n)w.

Forl1<k<2and1<j<2wherej+k<3, (56—-k+m)—18),(5(6 —j — k+
[) —12) > 0, thus u = v = 0 and w = ¢. Hence by Remark 3.24, we have case 20).

G.XI) Noteif i > j > k > [ then §+ay®z""'+8y?27 ' +yyz*—! is a unit with a Ith
root; therefore, in this case y°+ay®z*+By2z7 +yyzF + 62! is in the same isomorphism
class as y°+z' and this is case G.I). If i > j > k then v+ay3z"%+ By%/* is a unit
with a kth root; therefore, in this case y°® + ay?z' + Byz? +yyz*¥ + 62! is in the same
isomorphism class as y® +vyz*+ 6z and this is case G.III). If ; > j then B+ ayzi~!
is a unit with a kth root; therefore, in this case y° + ay3z* + By2z/ + yyz* + 62
is in the same isomorphism class as y° + By?z7 + vyzF + 62/ and this is case G.X).
So we may assume that i < j < k <[, and replace j by i+ j, kbyi+j +k and [

by i+ j + k + (. Suppose
yq(ys +ay3zi+ﬂy2zi+j +7yzi+j+k +6Z£+j+k+l)1-‘5i

and

zq(ys + ayszi + ﬂy2zi+j + 7yzi+j+k + 6zi+j+k+l)liz'—’-

are not contained in (y?¢, 22%). Then some monomials in the expansion of
y(y° + oyt + Byt 4y IR 4 6zi+j+k+l)9§

and

z"(y5 + ayszi + 5y2 Si+i +y Sititk + 5zi+j+k+l)2:;i
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are not contained in (y*?, z2?). The monomials have the form

y I243 2y —3r—ds—5t Z(iHm)r H(i+itma )+ (i+i+kdma s+ (i +k+H4mg )t

and
y Aatl) _op =3r—ds=5¢ q+(i+mi1)r +(i+j+ma)r+(i+itk+ma )s+(i+ithk+H+m, )
forostgﬂg—l,ogsgfg—‘—t,osrg%—t—sandosnsﬂg—‘—t—s—r
and where m,, m;, m3 and my are the powers of z which a, 3, v and § contribute.
When n = r = ¢ = 0 then the monomials occuring are just those from the
expansion of y¥(y® + yz++5) ¥ and 29(y® + y2ititk) S By case G.II) we know

that ¢ + j + k£ must be 5. Suppose that a, 3, ¥ or é contributes a monomial of the

form

945 445 _5s 5(q+l)—43 g+3s 2 _.2q
T ¥ ory 2 070 ¢ (y™9,25).

y

Then there will exist some pair (u,v,w, z) such that

-“Sﬂ—‘ls 38

y 2 %ﬂ—2u—30—4w-5: ~(3+m Jut(4+ma Ju+(5+m3 )w+(5+I+my )z

=y
or

__5(q;— D _gs ~q+5s

y z = yML;'H—Zu—Su—«lw—szq-{-(S-{—m;)u+(4+mg Yv+(54+ms ) w(5+14+my )z:.
Both equalities yield the following system of equations:
—4s = —2u — v — 4w — 5w and 55 = (3+ m)u+ (4 + m2)v + 5w + (5 + [ + m3)z.

For I > 2 (4(5 + [ 4+ m3) — 25),(4(4 + m3) — 15),(4(3 + m;) — 10) > 0, thus

u=v=z=0and w=¢ Thus

Y47 + oy’ + By gy R g g (20 220
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and
i i+j i+ i+j o+t
Y+ ay’s + Byt gy GRS ¢ (% ;2%

for [ > 2. Hence by Remark 3.24, we have case 23). By Lemma 3.41, £ = 1 reduces

to G.X). O
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APPENDIX A

Factorization Lemmas

Any two dimensional complete normal Gorenstein domain R over an alge-
braically closed field k of characteristic p with test ideal contained in the maximal
ideal and m? C (y, z) where (y, z) is a minimal reduction of the maximal ideal is
isomorphic to k[[z.y, z]]/(z? — a) where a € k[[y,z]]. To analyze which a force
R to have test ideal equal to the maximal ideal we would like to find the nicest

expression of a after a change of variables over k[[y, z]]. For example, take
a = a quadratic + higher terms.

Since the base field is algebraically closed, we can either factor the quadratic as a
product of two distinct linear terms or as a product of two like linear terms, i.e.
after some change of variables as yz or y2. Thus in the case where the leading
term is quadratic we want to find the friendliest expression in which to represent
a = f+ b where f is either yz or y? and b is of degree higher than 2. Similarly we
want to do the same for a with leading terms which are either a cubic, quartic or
quintic. In otherwords we want to find a friendly expression for a when a is among

the following lists:
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CUBICS QUARTICS QUINTICS

yz(y+2)+b yz(y+2)(y+Az)+b yz(y+2)(y+ Az)(y + pz) + b

y2z+b yiz(y+2)+b yiz(y + 2)(y + Az) + b
yv>+0b y2z2+ b vy +z)+ b
yiz+b yy+z)+b
yt+b v’ +b
yiz+b
v +b

The following lemmas inspired by Exercise [.5.14 in [12] will do just that.

Lemma A.1 Let R = k[[y,z]]. We can rewrite yz + b where b € (y, =)' where
i > 2 as (y + c)(z + a) where a,c € (y,z)"". In otherwords after a change of

variables, we see yz +b=y'z’ € k[fy’, ']] = ¥[[y, z]]

Proof. Rewrite
yz+b=yz+ai1y+c1z
where a;_y, b;_; € (y,z)""'. Adding zero in the form Q;_1Ci—1 — @;_1Ci—; We see that
yz+b=(y+c)(z+ Gi—1) — @i—1Ci1-

Relabel (y 4 ci_y) as y1, (z + @i-1) as z; and —a;_;c;_; as b; where by = a;_1ci_; €
(y,z)"+l. We see that

yz+b=y1z1 4 by.
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Suppose by induction we can write
yz+b=y, 2z +6b,

where b, € (y,z)"*. Rewrite b, = a, i1y + ¢, 4i_12. Again adding zero in the

form a, 416 4ie1 — @y 4i-16r4io1 We see that
yz+b=(yr +crpi-1)(zr + @ryic1) — Ar 4i-1Cr4im1 = Yr412r41 + br 41

where y, 41 = yr + Cryic1, Zr41 = 2 + @y 4i_g and b 41 = —a,4i-1Cr4i-1. Since R
is complete, ((y,z)” = (0). Note y, 2, — yr 412,41 € m"* for all n. Thus Yr
converges to (y + c)(z + a) where a = X, 5;_3a, and ¢ = Y >i-13¢-- Thus
yz+b=(y +c)(z + a).
a
Lemma A.2 Let R = k{[y, z]] with char(R) > 2. We can rewrite y? + b where

b € (y.2)'\(y,2)*+" where i > 2 as (y + a)? + cz* where ¢ is @ unit or zero and

a € (y,z)""'. In otherwords, after a change of variables, we see V+b=y?+c e

k{[y1, 2]] = K{[y, =]}

Proof. Rewrite b = a;_1y + co12* where cg; is a unit, zero or is divisible by z.

Adding zero in the form “‘T“z - 9‘2;‘2 we see that
a;._ a;—12 ;
b=+ )~ 5 +ensh

Relabel (y + ) as y1 and —%:1% as by. Note by = —%=1% € (y, z)*+!. Thus

y2+ b=yl + b +co 2.
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Suppose by induction that
Y +b=y +b +cp 2
where b, € (y,z)"*. Rewrite b, = @ryi1y + & 2" where ¢, is 2 unit, zero or

divisible by z. Adding zero in the form “"%2 - “—"fz‘;ﬂ we see that

Qr4i-1 )2 Ar i1
2 2

1 o~

2 .
+ (cor + ¢ 27)2"

yv+b=(y+

Relabel (y + =2£=L) as g, 44, —521;;‘2 as byy1 and cor + ¢ 2" as cor41 and noting

that &, = —a—"";‘;‘z € (y,z)"***L. Thus
2,4 _ .2 S
Y +b=y;  + by + corpr 2.
Since R is complete, (y,z)” = (0). Since y? + cor2* — y2,, + cor412* € (y,2)"+
for all n then y? + co,z* converge to (y + a)? + cz* where a = Eir>ic1p2? and
¢ = X4 sicper. Thus
v’ +b=(y+a)*+cz'.
O
Lemma A.3 Let R = k[[y, z]]. We can rewrite yz(y + z) + b where b € (y, z)* as

p(y + a)la(z + o)][(y + a) + a(z + )] where a,c € (y,2)? and o and p are units.

Thus after a change of variables, we can rewrite yz(y+2)+ b as py1z(y1 + 21) €

kllye. z1]] = K[y, 2]}

Proof. First set u = z(y + z). Note that any element in (y,z)* can be written

c3y +azu where c3 € (y,z)° and a, € (y,2)%. Now by the same methods of Lemma
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A.l we can show that yu + b = (y + a)(u + &) where a € (y,2)? and ¥ € (y,z)3.

Applying Lemma A.1, we see that u+ ¥ = z(y + z) + ¥ = (z+c¢)(y+ z+d). Thus
yz(y+2)+b=(y +a)(z +c)(y +z + d).

But d — a — ¢ can be written as a kf[y, z]}-linear combination of y + ¢ and z + c;
d—a—c=e(y+a)+ez+c). Setting §1 =1 + €; and > = | + e, which are

both units in £[[y, z]] we see that
yz2(y +2) +b=(y +a)(z + ¢)[Bu(y + a) + Ba(z + )]
Setting o = B,87" and pu = 8265 we see that
y2(y+2) + b= p(y +a)lalz + o)][(y + a) + a(z + ¢)].
O

Lemma A.4 Let R = k[[y, z]] with char(R) > 2. We can rewrite y®z + b where
b€ (y.2)'\(y,2)*" wherei >3 as (y +a)2(z+c) +d(= +c)* where d is a unit and
a,c € (y,z)""2. In otherwords, after a change of variables we can replace y2z + b

with yiz) + dzj € k{[y1, 21]] = k([y, 2]].
Proof. By Lemma A.l techniques we can rewrite
¥z +b= (4" +¥)(z+c)
where &' € (y,2)'""! and ¢ € (y,2)""2. Since y and z + ¢ span (y, z) by Lemma A.2

we can rewrite (y° + b') = (y + a)? + d(z + ¢)* where d is a unit, zero or divisible
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by z + ¢. Thus
Yz+b=(y+a)(z+c)+d(z + c).

a

Lemma A.5 Let R = k[y, z]] with char(R) > 3. We can rewrite y® + b where
b€ (y,z)" wherei >3 as (y+a)® +cz'! wherea € (y,2)" ' end c € (y,z). In

otherwords, after a change of variables we can replace y* + b with y3 + cz'~! €

K. 2]l = Klly, =]]-

Proof. Note that any element in (y, z)* can be written as a linear combination

of y? and z*~'. Thus if we rewrite b = a;_,y? + c;12'"! where a;_, € (y,z)""? and

¢y € (y,z) we see that

a;_ P (@i—s)? _ (ai—z

3 3 7773

yC+bo=(y+ ¥+ ezl

Relabel above as y3 + b; + ¢11z~!. Suppose by induction that y3 + b = y2+b, +
cir2*"!. Then rewrite b = a,4igy? + ¢, 2"+! where a, 4, € (y,2)"+2 and

¢ € (y.z) we see that

2
Greiz2yz (ar4i-z) e I S

3 —

Relabel above as y2,; + b, 41 + 14121 Again since R is complete Y2+ cnztl

converge to (y + a)® + cz*~! where a = E{rz,-_l}%"- and c = Yir>icyerr. Thus

y3 +b=(y+ a)3 + ez L,
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Lemma A.6 Let R = k[[y, z]]. After a change of variables, we can rewrite yz(y+
2Ny + Az) + b where b € (y, 2)° as ayizi(y1 + 21)(y1 + pz1) where o« and i are both

units.

Proof. Note that any element of (y, z)® can be written as a linear combination
of y and z(y + z)(y + Az). Thus by techniques similar to those used in proving

Lemma A.l, we see that we can rewrite
yz(y+ )y + Az) + b= (y + a)(z(y + 2z)(y + Az) + &)

where a € (y,z)? and ¢ € (y,z)*. From the proof of Lemma A.3, we see that

(z(y + z)(y + Az) + ¥') can be rewritten (z + )l(y + z) + dl[(y + Az) + ¢)]. Thus
(y2(y +2)(y+A2) +b=(y+a)(z + o)[(y + z) + d][(y + Az) +¢)]

=@ +az+o)ly+a)+(z+e)+d—a—dy+a)+ Mz+c) +e—a— ).

Again since d — a — ¢ and € — a — Ac are both a linear combination of (y + a) and
(:+c)thend—a—c=di(y+a)+dy(z+c) and e—a— Ac= e;(y +a) +ex(z+¢).
Setting 6; =1 +d; for i =1,2, ¢, = 1 + e; and €; = A + ey, all of which are units

we see that
yz(y+2)(y+Az) + b= (y +a)(z + c)(61(y + @) + 82(z + ¢))(e1(y + a) + e2(z + ¢)).
Setting y1 =y +a,21 = 6,67 (2 + ¢),a = 626187 L, it = €2676,6; ! then

yz(y + 2)(y + Az) + b= ayrz1(y1 + 21)(1 + pz1).
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Lemma A.7 Let R = k[[y, z]] with char(R) > 2. After a change of variables,
we can rewrite y*z(y + z) + b where b € (y,z)\(y, z)*! where i > 4 as a(y? +

czi7%)zi(y1 + z1) where @ is a unit and c is either a unit or zero.

Proof. Note that any element of (y, z)* can be represented as a K[y, z]]-linear
equation of y? and z(y + z). By techniques similar to those in Lemma A.1 we can

rewrite

yiz(y +2) + b= (y" + b1)(2(y + 2) + by)
where 6,5, € (y,2)"2. By Lemma A.l we can rewrite
(2(y +2) + b)) = (z + a1 )(y + z + a2)
where ay.a; € (y,z)""3. Since y, z + a; span (¥, z), by Lemma A.2 we can rewrite
(¥" +b1) = (y + d)* + ez + a1)"”
where d € (y,z)"™ and ¢ is a unit or zero. Thus
vy +2)+ b=y +d)’ +c(z + @) *|(z + a1)(y + = + az).

But a; — a; — d is a k[[y, z]}-linear combination of y + d and z + a;; in other words

a; —a; —d =e(y+d) +exz+a;). Setting e; =1 +¢; for i = 1,2 we see that
y'2(y +2) +b=[(y +d)* + e(z + a1) *|(z + a1)(er(y + d) + &2(= + a1)).
Now setting y1 = (y +d), 21 = e2¢7 (2 + a1), @ = €2€; ! we see that

y22(y + 2) + b = a(y? + c2i72)z1 (31 + 21).
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Lemma A.8 Let R = k[[y, z]] with char(R) > 2. After a change of variables, we
can rewrite y*z? + b where b € (y, z)\(y, z)+! wherei > 4 as a(y? + cz;7%)(22 +

dyi™?) where « is a unit and c and d are either units or zero.

Proof. Note that any element of (y, z)* can be represented as a klly, z]]-linear

equation of y? and z2. By techniques similar to those in Lemma A.1 we can rewrite
¥t b= (" +b)(2 + &)

where 6.5, € (y,z)""2. By Lemma A.2 we can rewrite
(¥* +b1) = (y + a1)® + =2

where a, € (y,2)""3 and c is a unit or zero. Since y +ai,z span (y, z), by Lemma

A.2 we can rewrite
(2 +b2) = (= + a2)* + d(y + a;)"
where a, € (y,z)*"> and d is a unit or zero. Thus

v +b=[(y + ) + == + a2)? + dly + 1)

=y +a1)" +e(z+a2) 7 — €][(z + a2)* + d(y + a1)?]
where e = (XI5 (i;z) za7¥7). We see that e € (y,2)¥7% in which every
element is a k[[y, z]]-linear combination of (y + a;)? and (z + a2)"~?; in otherwords,

—e=e(y +a1)? + ex(z + az) 2. Setting 8 =1+ ¢; and v = ¢ + e, we see

Y2 +b=[By+a)’ +7(z + a2) (2 + a2)* + d(y + ar)7].

179



Now setting y1 = (y + a1),21 = (2 + a2), a = B and ¢ = 78~ we get
Yz +b=aly] + =77 +dy ).
a

Lemma A.9 Let R = k[[y, z]] with char(R) > 3. After a change of variables, we
can rewrite y>z + b where b € (y,z)*\(y, z)*+! where i > 4 as z,(y3 + czi~2) where

c € (y,z).

Proof. Note that any element of (y, =)' can be represented as a k[[y, z]]-linear

equation of y* and =. By techniques similar to those in Lemma A.1 we can rewrite
3 _ (a3 -
yr+b=(y" +b)(z+b)

where b; € (y,2)*"! and b, € (y,z)""3. Since y,z + b, span (y, z) by Lemma A.3
we can rewrite y° +b; = (y+a)3 +c(z + b2)*~? where c is a unit. Settingy; = y+a

and z; = z + b, we see that
¥z +b=z(y] +cz7?).
a

Lemma A.10 Let R = k{[y, z]] with char(R) > i —2. After a change of variables,
we can rewrite y* +b where b € (y, z)'\(y, z)™*" where i > 4 as (y2 +c2i7?)? + =i

where c is 1 or 0 and d € (y, ).
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Proof. Note that any element of (y,z)* can be represented as a k[[y, z]]-linear
equation of y* and z*~'. By techniques similar to those in Lemma. A.2 we can
rewrite

y4 + b= (y2 + a)2 +dzi—l

where d € (y,z) and a € (y,2)"~2. By Lemma A.2 we can rewrite

where c is a unit and o’ € (y, z)*=3. Setting y; = y+a’ and
z ife=0
c=1: ife is a unit
we see that
v+ b= (4] +cz{?) +dz!

where c is either zero or one. O

Lemma A.11 Let R = k(fy,z]]. After a change of variables, we can rewrite
y2(y+2)(y+A2)(y +p2)+b where b € (y,2)° as ayizi(y1+21) (g1 + Az ) (yo+ ez

where a, Ay, uy are all units.

Proof. Note that any element of (y, z)® can be represented as a k{[y, z|]-linear
equation of y and z(y + z)(y + Az)(y + pz). Thus by techniques similar to Lemma

A.l we can rewrite

yz(y +2)y+ A2)(y + pz) + b= (y + by)(2(y + 2)(y + A2)(y + pz) + by)
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where & € (y,z)° and b; € (y, z)%. From the proof of Lemma A.6 we can rewrite
2y + 2)(y + A2)(y + pz) + b = (2t ar)(y + z+ a2)(y + Az + a3)(y + pz + a4).

Since y + b; and z + a, span (y, z) we can rewrite a; — a; — b;,a3 — \a; — by, aq —
pa; — by as a k[[y, z]]-linear combination of y + &; and z + a;. In other words
az —ay — by =c1(y+ b1) + c2(z + a1), az — Aay — by = dy(y + b)) + do(z + a;) and
ay—pa; — by = ey(y+b1) +ex(z+a1). Setting L +¢; =71, L+c2 =72, L +d; = 6y,

Ad+dy=6;,14 € =€, and g+ e; = €, we see that
yz(y+ )y + Az)(y +pz) + b=
(y+b6)(z+a1)(n(y+b) +72(2 +a1))(61(y +61) +62(z +a1))(e1(y +b1) + e2(z +ar))-

Now setting y1 = (y + b1), 21 = % (= + a1), @ = v3v; 611, A1 = 8267" and

py = €267 we see that

yz(y + 2)(y + A2)(y + p2) + b= ayizi(yn + 1) (1 + Miz)(y2 + pr21)-

O

Lemma A.12 Let R = k[[y, z]] with char(R) > 2. After a change of variables,
we can rewrite y2z(y + z)(y + Az) + b where b € (y,z)"\(y, z)'*' where i > 5 as
ao(y? + cz{"3)zl(y1 + z1)(y1 + A1z1) where a, A\, are units and c is either zero or a

unit.

Proof. Note that any element of (y, z)* can be represented as a k[[y, z]]-linear

equation of y? and z(y + z)(y + Az). Thus by techniques similar to Lemma A.1 we
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can rewrite
¥'2(y + 2)(y + Az) +b = (37 + b.)(2(y + 2)(y + Az) + by)
where & € (y,2)"2 and b; € (y, z)*~2. From the proof of Lemma A.3, we see that
(z(y + 2)(y + A2) + b2) = (z + o)[(y + 2) + d][(y + Az) +&)].
By Lemma A.2 we can rewrite
V¥ +b=@w+a)l+(z+0)°
where ¢ is a unit or zero. Thus
vy + )y +A2) +b=((y +a)* +(z + ) )z +o)(y + =) + dll(y + Az) +e)]

= ((y+a)*+¢(z4+e) )z +0)[(y+a) +(z+0)+d—a—d][(y+a)+A(z+c)+e—a—Ac)].

Again since d — a — c and e — @ — Ac are both a linear combination of (y + a) and
(:+c)thend—a—c=di(y+a)+dy(z+c)and e—a—Ac= e;(y +a) + ez z +¢).
Setting 6; = 1 +d; for 7 = 1,2 and ¢ = | + €; and €, = X + e,, all of which are

units we see that
yiz(y+z)(y+A2)+ b=

((y +a) +c(z+c)2)(z +c)(b1(y + a) + &(z + &)y + a) + &(z +¢)).
Setting y1 =y + a,z1 = 8267 (z + ¢), @ = 621671, A\ = €267 6,65 ! then

v:z(y + 2)(y + Az) + b= a(y? + 27y + 21) (v + Ar1z1).
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Lemma A.13 Let R = k[[y, z]] with char(R) > 2. After a change of variables,
we can rewrite y*z*(y + z) + b where b € (y,z)'\(y, 2)*" where i > 5 as o(y? +

czi73)(22 + dz3)(yy + 21) where « is a unit and ¢ and d are units or zero.

Proof. Note that any element of (y, z)’ can be represented as a k{[y, z]-linear
equation of y? and z2(y + z). Thus by techniques similar to Lemma A.l we can
rewrite

Ry +z2)+o=(+b)(Py+2)+b)

where b, € (y,z)"" and &, € (y,z)"2. As in the proof of Lemma A.4 we can
rewrite

Py+z)+b=(+a)y+:z+as)

where a; € (y,2)""2 and a; € (y, z)**. Thus
2.2 - _ 2 2 -
Y (y+2)+b=(y" +0)(z" + a1)(y + z + a3).

As in the proof of Lemma A.8 there exist a change of variables y;, z; and unit «

and with ¢ and d either units or zero such that
(¥% + b1)(2® + a1) = a(y? + c2i72)(22 + dyi~?).
Under this change of variables we can rewrite

(¥ + z+az) = Bupn + Pazs

with §; units for i = 1,2. Setting 2, = B87", o = BPaf;?, ¢ = 3852 and

d' = dB3B? we see that y?2%(y + z) + b = o/ (y? + ¢23)(22 + d'y3) (1 + z2). a
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Lemma A.14 Let R = k[[y,z]] with char(R) > 3. After a change of vari-
ables, we can rewrite y*z(y + z) + b where b € (y,z)\(y, z)"*! where i > 5 as

a(y} + czi7*)z1(y1 + z1) where a is a unit and c € (y,2).

Proof. Note that any element of (y, z)* can be represented as a {[y, z]]-linear
equation of y* and z(y + z). Thus by techniques similar to Lemma A.l we can
rewrite

Yy +2)+ b= (4 + b)(2(y + ) + bo)

where b; € (y,z)""? and b, € (y, z)*3. By Lemma A.l we can rewrite
(zy+z)+b2) = (z+ a1)(y + 2z +a2)

where a; € (y,z)"* for j = 1,2. Since y, = + a; spans (y,z) by Lemma A.5 we can
rewrite

(¥° +b1) = (y + a3)® + ¢(z + a;)"3

where ¢ € (y,z). We can write a; — a; — a3 as a k[[y, z]]-linear combination of
Yy +as.z + a;. In otherwords, @ — a; — a3 = di(y + a3) + da(z + ap). Setting
6; = 1+d; for j = 1,2 we see that (y + z + az) = 61(y + a3) + 62(z + a;). Now

setting y1 = y + aa, 21 = &67 (2 + a1), ¢ = ¢636;° and o = 6265 we see that

y3z(y + Z) + b= a(y% + C'Z{_s)zl(yl + 31).
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Lemma A.15 Let R = k[[y, z]] with char(R) > 3. After a change of variables, we

can rewrite y°2> + b where b € (y,2))\(y,z)*' where i > 5 as

a(y? + c:—";"a)(::l2 + dyi™®) where « a unit, d either zero or a unit and c € (y,z2).

Proof. Note that any element of (y, z)* can be represented as a K[y, z]]-linear

equation of y® and z2. Thus by techniques similar to Lemma A.1 we can rewrite
¥ +b= (3 + b)(z" + by)

where b; € (y,2)""% and b, € (y,z)"3. By Lemma A.2 we can rewrite
(22 +8) = (z + a1)* + dyiy*3

where a; € (y,z)"™ and d; is a unit or zero. Since Y,z +a; spans (y, z) by Lemma

A.> we can rewrite
(¥° + b)) = (y + a2)* + 1z + a1) 2
where ¢; € (y,z). As in the proof of Lemma A.8 we can now rewrite
(z+ @) +diy'™ = Bi(z + a1)* + Bo(y + a2) >

for units B;, j = 1,2. Settinga = 1, 0 = y+az, z; = =z + a,, ¢ = ¢; and

d = 3,67 we see that

¥’z + b=y} + czi3)(22 + dyi%).
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Lemma A.16 Let R = k{[y, z]] with char(R) > i —2. After a change of variables,
we can rewrite y*z +b where b € (y, 2)\(y, 2" where i > 5 as z[(y? + cxi2)? +

dzi'] where ¢ is one or zero and d € (y,z).

Proof. Note that any element of (y, z)’ can be represented as a [y, z]]-linear

equation of y* and z. Thus by techniques similar to Lemma A.l we can rewrite
y'z+b=(y" 4 b1)(z + bo)

where b, € (y,2)"""! and b, € (y,2)"™™. Since y, z + by span (y,z) by Lemma A.10

we can rewrite

v b= (5 + @)’ + oz + 62) ) + d(= + by)

-2

where a; € (y,z)""2, cis a one or zero and d € (y,z). Setting y; = y + a; and

z1 = z + b, we see that
vz b=z [(y?+ cz:{"z)2 + d=i71.
O

Lemma A.17 Let R = k[[y, z]] with char(R) > 5. After a change of variables,
we can rewrite y° + b where b € (y, z)'\(y, 2)"*! where i > 5 as y° + ay?zi~! 4

By*z'"% + yyz*~' + 6z* where at least one of the a, B,7 or & is a unit.

Proof. Note that any element of (y,z) can be represented as a k[[y, z]]-linear

equation of y°, y*z*™%, 323, 4222 yz~! and z'. Thus

y5 + b= asyS +a4y4zi-4 + a3y32i-3 +a2y2zi-2 +a1yzi-l + aozi.



Note that as must be a unit. Dividing by a5 we get
y5 + b= y5 + b4y4zi—4 + 63y3zi—3 + bgyzzi'z + blyzi-l + bgzi

where b; = Ei- for 0 < j < 4. Now set y; = y + %2* and suppose c; are the

transformed coefficients of y/z*~7. Then

And one of the ¢; must be a unit. O
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