
PHYSICAL REVIEW A 88, 013845 (2013)

Beyond leading-order logarithmic scaling in the catastrophic self-focusing
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We study the catastrophic stationary self-focusing (collapse) of a laser beam in nonlinear Kerr media.
The width of self-similar solutions near the collapse distance z = zc obeys the (zc − z)1/2 scaling law with the
well-known leading-order modification of loglog type ∝ (ln | ln(zc − z)|)−1/2. We show that the validity of the
loglog modification requires double-exponentially large amplitudes of the solution ∼1010100, which is unrealistic
to achieve in either physical experiments or numerical simulations. We derive an equation for the adiabatically
slow parameter which determines the system self-focusing across a large range of solution amplitudes. Based
on this equation we develop a perturbation theory for scaling modifications beyond the leading loglog. We show
that, for the initial pulse with the optical power moderately above (�1.2) the critical power of self-focusing, the
scaling agrees with numerical simulations beginning with amplitudes around only three times above the initial
pulse.
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I. INTRODUCTION AND THE MAIN RESULT

The catastrophic collapse (self-focusing) of a high-power
laser beam has been routinely observed in nonlinear Kerr
media since the advent of lasers [1–4]. The propagation
of a laser beam through the Kerr media is described by
the nonlinear Schrödinger equation (NLSE) in dimensionless
form,

i∂zψ + ∇2ψ + |ψ |2ψ = 0, (1)

where the beam is directed along the z axis, r ≡ (x,y) are
the transverse coordinates, ψ(r,z) is the envelope of the
electric field, and ∇ ≡ ( ∂

∂x
, ∂
∂y

). NLSE (1) also describes the
dynamics of attractive Bose-Einstein condensate (BEC) [5]
(z is replaced by the time variable in that case). In addition,
the NLSE emerges in numerous optical, hydrodynamic, and
plasma problems and describes the propagation of nonlinear
waves in general nonlinear systems with cubic nonlinearity.

If only one transverse coordinate is taken into account, then
the NLSE is integrable by the inverse scattering transform [6]
leading to global existence of all solutions (solutions exist
for all z). A solution of the NLSE which depends on
both transverse coordinates (x,y) can develop a singularity
(“blowup”) such that the amplitude of the solution reaches
infinity in a finite distance zc. Since the blowup is accompanied
by dramatic contraction of the spatial extent of function
ψ , it is called “wave collapse” or simply “collapse” [7,8].
Near the singularity z = zc, the NLSE loses applicability, and
either dissipative or nondissipative effects must be taken into
account. Such effects can include the optical damage and
formation of plasma in the Kerr media, inelastic scattering
in the BEC, or plasma density depletion in high-temperature
laser-plasma interactions [9,10].

Equation (1) can be rewritten in the Hamiltonian form

iψt = δH

δψ∗ , (2)
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with the Hamiltonian

H =
∫ (

|∇ψ |2 − 1

2
|ψ |4

)
dr. (3)

Another conserved quantity, N ≡ ∫ |ψ |2dr, has the meaning
of the optical power (or the number of particles in the BEC).
The sufficient condition for the collapse is H < 0, while the
necessary condition is N > Nc, where Nc is the critical power
defined below.

While the large power N � Nc typically produces multiple
collapses (multiple filamentation of the laser beam [11]) with
strong turbulence behavior [12,13], the dynamics of each
collapsing filament is universal and can be considered inde-
pendently. Each collapsing filament carries the power N only
moderately above Nc. We consider a single collapsing filament
(laser beam) centered at r = 0. For z → zc the collapsing
solution of the NLSE quickly approaches the cylindrically
symmetric solution, which is convenient to represent through
the following change of variables [4]:

ψ(r,z) = 1

L
V (ρ,τ )eiτ+iLLzρ

2/4, |r| ≡ r, Lz ≡ dL

dz
. (4)

Here, L(z) is the z-dependent beam width,

ρ = r

L
and τ =

∫ z

0

dz′

L2(z′)
(5)

are blowup variables such that τ → ∞ as z → zc. Transfor-
mation (4) was inspired by the discovery of the additional
conformal symmetry of the NLSE which is called the “lens
transform” [14–16].

It follows from Eqs (1), (4), and (5) that V (ρ,τ ) satisfies

i∂τV + ∇2
ρV − V + |V |2V + β

4
ρ2V = 0, (6)

where

β = −L3Lzz, Lzz ≡ d2L

dz2
, and ∇2

ρ ≡ ∂2
ρ + ρ−1∂ρ. (7)

As z → zc, β approaches zero adiabatically slowly and V (ρ)
approaches the ground-state soliton R(ρ) [16]. The ground-
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state soliton is the radially symmetric, z-independent solution
of the NLSE, −R + ∇2

ρR + R3 = 0. It is positive definite, i.e.,
R > 0, with asymptotic R(ρ) = e−ρ[ARρ−1/2 + O(ρ−3/2)],
with ρ → ∞ and AR ≡ 3.518 062 . . . [16]. Also R defines
the critical power

Nc ≡ 2π

∫
R2ρdρ = 11.700 896 5 . . . . (8)

The limiting behavior in V → R as z → zc implies that the
∂τV term in Eq. (6) is a small correction compared to the other
terms. Also β can be interpreted as a quantity proportional to
the excess of particles above critical, N − Nc, in the collapsing
region [16,17].

References [18,19] found that the leading-order depen-
dence of L(z) has the following square-root-loglog form:

L �
(

2π
zc − z

ln | ln(zc − z)|
)1/2

. (9)

(Reference [18] has a “slip of pen” in a final expression,
see, e.g., Ref. [20] for a discussion.) The validity of the
scaling (9) at z → zc was rigorously proven in Ref. [21].
However, numerous attempts to verify the modification of L ∝
(zc − z)1/2 scaling have failed to give convincing evidence
of the loglog dependence (see, e.g., Refs. [22,23]). The
lack of validity of the loglog law was also discussed in

Ref. [16]. Note that without logarithmic modification, the
scaling (zc − z)1/2 implies β = const, N = ∞, and infinitely
fast rotation of the phase for r → ∞ with β �= 0. Thus, the
logarithmic modification is necessary and is responsible for
the adiabatically slow approach of β to 0.

A qualitatively similar problem of logarithmic modification
of square-root scaling also occurs in the Keller-Segel equa-
tion, which describes either the collapse of self-gravitating
Brownian particles or the chemotactic aggregation of mi-
croorganisms [24–28]. It was shown in Refs. [28,29] that the
leading logarithmic modification in the Keller-Segel equation
is valid only for very large amplitudes (�1010000). Also in
Refs. [28,29], the perturbation theory was developed beyond
the leading-order logarithmic correction. That theory was
shown to be accurate starting from moderate amplitudes (�3)
of the collapsing solution.

Following qualitatively some ideas of Refs. [28,29], in this
paper we develop the perturbation theory about the self-similar
solution of Eq. (6) with V � R(ρ) and show that the scaling (9)
dominates only for very large amplitudes,

|ψ | � 1010100
. (10)

Instead of pursuing this unrealistic limit, we suggest the
following expression (derived below) as a practical choice
for the experimental and theoretical study of self-focusing:

L = [2π (zc − z)]1/2

(
ln A − 4 ln 3 + 4 ln ln A + 4(−1 − 4 ln 3 + 4 ln ln A)

ln A

+−28 − 80 ln 3 − 32(ln 3)2 − π2c1 + 80 ln ln A + 64(ln 3) ln ln A − 32[ln ln A]2

(ln A)2

)−1/2

,

A = −34 M̃

2π3
ln

[
[2π (zc − z)]1/2 e−b0

L(z0)

]
, M̃ = 44.773 . . . , β0 = β(z0), c1 = 4.743 . . . , c2 = 52.37 . . . ,

b0 = e
π√
β0

M̃

(
2β2

0

π
+ 8β

5/2
0

π2
+ 2β3

0 (20 + π2c1)

π3
+ 12β

7/2
0 (20π3 + π5c1)

π7
+ 2β4

0 (840π3 + 42π5c1 + π7c2)

π8

)
. (11)

This expression depends on an additional parameter, z0,

defined below. Also A and b0 are introduced to provide a more
compact form of the expression (11). L(z) is only weakly
sensitive to the choice of z0 < zc provided z0 is larger than
the smallest distance at which the collapsing solution has
approximately reached the self-similar form.

To illustrate the poor agreement with the loglog law at
moderate amplitudes, Fig. 1 shows the dynamics of L(z)
obtained from numerical simulations. The simulations were
started with different initial conditions in the form of Gaussian
beams ψ(r,0) = pe−r2

with the power N = πp2/2. Figure 1
shows that L(z) neither agrees with the loglog law (9) nor is it
universal. In contrast, the dependence of βτ on β appears to be
universal as demonstrated in Fig. 2. The curves corresponding
to different initial conditions converge to a single βτ (β)
curve after the initial transient evolution. The resulting single
curve is universal and independent of initial conditions. This
universality is the key for the analytical theory developed

below. Note that the dependence of β on z − zc is also not
universal as seen in Fig. 3, so it cannot be used effectively for
the development of the analytical theory.

Figure 1 also demonstrates the excellent agreement between
the analytical expression (11) and numerical simulations of
the NLSE (1). Figure 4 shows the relative error between L(z)
obtained from the numerical simulations of the NLSE (1) and
L(z) from Eq. (11). The relative errors decreases with the
decrease of (N − Nc)/Nc. The only exception is the curve for
a significantly larger power, N/Nc = 1.208, which is formally
beyond the applicability of Eq. (11). Equation (11) is derived
in the limit (N − Nc)/Nc → 0, as explained below. However,
even in the case of N/Nc = 1.208 the relative error �6%.
In evaluating Eq. (11) we used the parameters L0 = L(z0)
and β0 = β(z0) taken from numerical simulations at locations
z = z0. These locations are shown by the thick dots in Fig. 1.
Similarly, the thick dots show the corresponding points β(z0)
and βτ (z0) in Figs. 2 and 3. We choose z0 as the propagation
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FIG. 1. (Color online) A dependence of the beam width L on
z − zc obtained from numerical simulations of the NLSE (1) (solid
lines) and from Eq. (11) (dashed lines) for different initial conditions.
Each pair of closely spaced solid and dashed lines corresponds to
the same Gaussian initial condition ψ(r,0) = pe−r2

. The curves
are labeled by the power N = πp2/2 (scaled by the critical power
Nc). The dash-dotted line shows L from the loglog law (9). The
dashed lines are obtained from Eq. (11) using the parameters
L0 = L(z0) and β0 = β(z0) taken from numerical simulations at
locations z = z0. These locations are marked by the thick dots on
each solid line. These values of z0 are chosen by the criterion
[maxr |ψ(r,z0)|]/[maxr |ψ(r,0)|] = 5. The inset shows L(z) for
N/Nc = 1.052 starting from the beginning of the simulation, z = 0. It
is seen in the inset that about a twofold decrease of L compared with
the initial value L(0) already produces a good agreement between
the simulation of the NLSE (1) and Eq. (11). All units here and in
subsequent figures are dimensionless.

distance where the amplitude of the collapse exceeds the
initial amplitude of the Gaussian pulse by a factor of 5,
i.e., [maxr |ψ(r,z0)|]/[maxr |ψ(r,0)|] = 5. Choosing z0 larger
than defined above (e.g., by a tenfold increase of the collapse
amplitude) results only in very small variations (�0.2%) of
dashed lines in Fig. 1 for N/Nc � 1.1. It means that the
prediction of analytical expression is only weakly dependent
on z0.

The paper is organized as follows. In Sec- II we approximate
the collapsing solution by the expansion about the soliton
solution in blowup variables. The perturbations of this solution
determines the rate of collapse which allows us to derive the
reduced ordinary differential equation (ODE) system for the
unknowns L(z) and β(z). In Sec. III we find the asymptotic
solution of this reduced system in the limit z → zc and
derive the scaling (11). In Sec. IV we estimate the range of
applicability of a NLSE collapsing solution in experiment.
In Sec. V we briefly describe the method used in the NLSE
simulation, and we discuss the procedure for the extraction of
the parameters of the collapsing solutions β(z) and L(z) from
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FIG. 2. (Color online) Lines show βτ (β) from numerical simula-
tions of the NLSE (1) with the same initial conditions as in Fig. 1.
The curves are labeled by the values of N/Nc. It is seen that the
solid curves converge to a single universal βτ (β) curve after the
initial transient evolution. The universal curve is independent of the
initial conditions. Similar to Fig. 1, the thick dots mark the locations
of z = z0 at each solid line; i.e., they indicate the pairs of points
[β(z0),βτ (z0)]. The dashed line corresponds to βτ (β) from Eq. (16).
See also the text for the description of the dash-dotted and dotted
lines.

the simulations. In Sec. VI the main results of the paper are
discussed.

II. REDUCTION OF NLSE COLLAPSING SOLUTION TO
ODE SYSTEM FOR L(z) AND β(z)

To determine βτ (β) analytically, we consider the ground-
state soliton solution V0(β,ρ) of Eq. (6) given by

∇2
ρV0 − V0 + V 3

0 + β

4
ρ2V0 = 0. (12)

The function V0(β,ρ) has an oscillating tail, V0(β,ρ) =
cρ−1 cos [ β1/2

4 ρ2 − β−1/2 ln ρ + φ0] + O(ρ−3), with c,φ0 =
const and ρ � 2/β1/2. Here, by ground-state soliton V0, we
mean the real function such that it minimizes |c| in the tail.
It implies that V0 has only small amplitude oscillations with
|c| � 1 for 0 < β � 1.

The full solution V (β,ρ) of Eq. (6) is well approximated
by V0(β,ρ) for ρ � 1. However, the small but nonzero
value of ∂τV0 = βτ

dV0
dβ

provides an imaginary contribution
to V . To account for the imaginary contribution at the
leading order, we allow V0 to be complex (replacing it by
Ṽ0), similar to the approach of Refs. [12,16]. We formally
add an exponentially small term iν(β)Ṽ0 to Eq. (12) as
follows, ∇2Ṽ0 − Ṽ0 + |Ṽ0|2Ṽ0 + β

4 ρ2Ṽ0 − iν(β)Ṽ0 = 0. The
yet unknown ν(β) accounts for the loss of power of Ṽ0

by emission into the tail. One can reinterpret the resulting
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FIG. 3. (Color online) Dependence of β on z − zc for the same
set of simulations as in Fig. 1. The initial fast evolution is responsible
for the formation of the quadratic phase [see Eq. (4)] and is specific to
our Gaussian initial conditions with zero phase. The evolution slows
down after β passes through the local maximum; the following change
in β is especially slow for smaller values of N/Nc. The transitions
from dashed to solid lines indicate the collapse of the corresponding
βτ (β) curves onto the single universal curve shown in Fig. 2. The
relative difference of 10−3 between a particular simulation curve and
the universal curve is used as a transition criterium. Similar to Fig. 1,
the thick dots mark the locations of z = z0.

equation as a linear Schrödinger equation with a self-consistent
potential U ≡ −|Ṽ0|2 − β

4 ρ2 and a complex eigenvalue E ≡
−1 − iν(β). (This type of non-self-adjoint boundary value
problem was introduced by Gamov in 1928 in the theory of
α decay [30].) Assuming β � 1, we identify two turning
points, ρa ∼ 1 and ρb � 2/β1/2, at which ReE + U = 0.
Using the WKB (Wentzel-Kramers-Brillouin) approximation
we consider the tunneling from the collapsing region ρ � 1
through the classically forbidden region ρa < ρ < ρb and
obtain, similar to Ref. [12], that

Ṽ0 = e
− π

2β1/2 exp

[
i
β1/2

4
ρ2 − iβ−1/2 ln ρ − iφ̃0

]

× 21/2AR

β1/4
[ρ−1 + O(ρ−3)], φ̃0 = const, ρ � ρb,

(13)

where AR results from the matching of the asymptotic of R

with the WKB solution. We also note that the tail (13) is
derived in the adiabatic approximation which is valid for large
but finite values of the radius, 2/β1/2 � r/L � A (2/β1/2),
where A(z) � 1 is a slowly changing factor in comparison
with L(z). Even though for r/L � A (2/β1/2) the solution is
not self-similar [20,31,32], its large-radius asymptotic has no
influence on L(z) and is not considered here.
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FIG. 4. (Color online) The relative error, δL/L, between L(z)
obtained from the numerical simulations of the NLSE (1) and L(z)
from Eq. (11) for the same set of simulations as in Fig. 1. It is seen that
the relative errors decreases as (N − Nc)/Nc approaches zero. The
exception is the curve for the much larger value N/Nc = 1.208, where
Eq. (11) is formally on the boundary of its range of applicability.

We define the power (the number of particles) Nb in the
collapsing region ρ < ρb as

Nb =
∫

r<ρbL

|ψ |2dr = 2π

∫
ρ<ρb

|V |2ρdρ (14)

and a flux P beyond the second turning point ρb = 2/
√

β as
P = 2πρ[iV V ∗

ρ + c.c.]|ρ=ρb
, where c.c. stands for complex

conjugate terms. From conservation of N , the flux P deter-
mines the change of Nb as

dNb

dτ
= −2πρ[iV V ∗

ρ + c.c.], ρ � ρb, (15)

where we approximated P at ρ = ρb through its value at ρ �
ρb, taking advantage of almost constant flux to the right of
the second turning point. Using the adiabatic assumption that
dNb

dτ
= βτ

dNb

dβ
, and approximating V in Eq. (15) by Eq. (13),

we obtain that

βτ = −4πA2
R

(
dNb

dβ

)−1

e
− π

β1/2 . (16)

Recalling the definition of ν(β), one can also find ν(β) �
(2πA2

R/Nb)e
− π

β1/2 from Eq. (16).
The next step is to find dNb

dβ
in Eq. (16). We base our deriva-

tion on a crucial observation that the absolute value |V (β,ρ)|
of the numerical solution of Eq. (6) coincides with V0(β,ρ) for
0 � ρ � ρb, as shown in Fig. 5. The approximation V0(β,ρ) �
R(ρ) + dV (β,ρ)/dβ|β=0 used previously (see, e.g., Ref. [16])
is limited to ρ � ρb because the amplitude c of the tail of
V0 has the essential complex singularity c ∝ e−π/(2β1/2) for
β → 0. Approximating Nb through replacing V in Eq. (14) by
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FIG. 5. (Color online) Asymptotic ρ � 1 for V0 (solid line), full
numerical solution |V | (dotted line), and R (dashed line) for β =
0.073. It is seen that V0 and |V | almost coincide for ρ < ρb.

V0(β,ρ) we obtain the following series:

dNb

dβ
=2πM[1 + c1β + c2β

2 + c3β
3 + c4β

4 + c5β
5], (17)

where M ≡ (2π )−1dNb/dβ|β=0 = (1/4)
∫ ∞

0 ρ3R2(ρ)dρ =
0.552 858 97 . . . and coefficients c1 = 4.742 80, c2 =
52.3697, c3 = 297.436, c4 = −4668.01, and c5 = 10566.2
are estimated from the numerical solution of Eq. (12).
Here the value of c1 is obtained from the numerical
differentiation: c1 = (2πM)−1d2Nb/dβ2|β=0. One can in
principle find coefficients c2,c3, . . . from higher-order
numerical differentiation at β = 0. However, the radius of
convergence of the corresponding Taylor series is β ∼ 0.04.
Yet the range of β resolved in our NLSE simulations is
β � 0.05 as seen in Fig. 2. Thus it would be inefficient to
use the Taylor series (centered at β = 0) to approximate dNb

dβ

in Eq. (17) for β � 0.05. Instead we approximate c2, . . . ,c5

from the polynomial fit in the range 0.0 < β < 0.23. This
procedure gives the numerical values given above. The relative
error between the exact value of dNb

dβ
and the polynomial

interpolation (17) is <1.6% in the range 0 � β < 0.23. If
only c1 and c2 are taken into account in Eq. (17), then the
relative error is < 1.0% in the range 0 � β < 0.09. Figure 2
shows that Eqs. (16) and (17) approximate well the full
numerical solution for β � 0.18. Indeed, βτ (β) from Eq. (16)
with dNb/dβ, obtained either numerically via V0(β,ρ) or by
using Eq. (17), are indistinguishable on the plot (they are both
shown by the dashed line). The dotted line corresponds to
Eq. (17) with only c1 and c2 taken into account.

For comparison, the dash-dotted line in Fig. 2 shows the
standard approximation for βτ (β) [16], which corresponds
to Eq. (17) with the expression in square brackets replaced
by 1. As we see, the standard approximation fails all way
down to β ≈ 0.05. Further decrease of β is unresolvable in
our simulations (which typically reach max |ψ | ∼ 1015).

From Eqs. (5), (7), (16), and (17) we obtain a closed system:

dβ

dτ
= − 2A2

R

M(1 + c1β + c2β2 + c3β3 + c4β4 + c5β5)

×e
− π

β1/2 , (18a)

d2L

dz2
= −L−3β, (18b)

dτ

dz
= L−2, (18c)

from which the unknowns β(z) and L(z) can be determined.
This system is the ODE system for independent variable z

because τ can be easily excluded from the system using
Eq. (18c).

III. ASYMPTOTIC SOLUTION OF THE REDUCED
SYSTEM

In this section we look for the asymptotic solution of the
reduced system (18), in the limit z → zc, τ → ∞, β → 0,
and L → 0 to derive our main result, Eq. (11). We introduce
the adiabatically slow variable

a = −L
dL

dz
, (19)

which is also expressed through τ as a = −L−1 dL
dτ

according
to Eq. (18c). Here and below, we use the same notations for
all functions with the same physical meaning, independently
of their arguments: L = L(z) = L(τ ) = L(β), etc.

Using Eqs. (18c) and (19) we obtain that

β = a2 + aτ . (20)

However, the adiabatic slowness of a requires aτ � a2

because, by the chain rule of differentiation, aτ = aββτ while
βτ is exponentially small for β � 1, as follows from Eq. (18a).
Then at the leading order we obtain from Eq. (20) that

a = β1/2. (21)

Using Eq. (19) we obtain that dz = −β−1/2LdL, which allows
us to explicitly integrate Eq. (18a) in terms of variables
L and β and their initial values L0 = L(z0), β0(z0) (z0

is defined above). The explicit expression is cumbersome
and includes the exponential integral function Ei(π/β1/2),
Ei(x) = − ∫ ∞

−x
e−yy−1dy. We asymptotically expand this

expression for π/β1/2 � 1 to obtain the following expression:

− ln
L

L0
= 2π3ex

M̃

[
1

x4
+ 4

x5
+ 20 + π2c1

x6
+ 120 + 6π2c1

x7

+840 + 42π2c1 + π4c2

x8
+ O

(
1

x9

)]∣∣∣∣
x

x=π/β
1/2
0

,

x ≡ π

β1/2
, M̃ = 2A2

R

M
. (22)

The addition of the correction term aτ in Eq. (20) can be
easily done as a small perturbation. For the range of parameters
considered in our simulations, such a correction would result
in the change of all the solutions by <1%. Therefore the
correction is omitted in this paper. Deriving Eq. (11), we used
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leading-order terms with only c1 and c2 taken into account in
Eq. (17). [The corresponding βτ (β) is shown by a dotted line
in Fig. 2.] Thus c1 and c2 in Eq. (17) are sufficient to produce
very good agreement with the simulations shown in Fig. 1.

When Eq. (22) is interpreted as an implicit expression for
x as a function of ln L

L0
, it becomes a remote relative of the

Lambert W function. Such an implicit expression can be solved
for x assuming x � 1 by iterations as follows:

x = L1 + 4L2 − 4 ln 3 + 4(4L2 − 1 − 4 ln 3)

L1

+ 16
[ − 2L2

2 + L2(5 + 4 ln 3) − 2(ln 3)2 − 5 ln 3
]

L2
1

+ −28 − π2c1

L2
1

+ O

(
L3

2

L3
1

)
, (23)

where

L1 = ln

[
34M̃

2π3

(
ln

L0

L
+ b0

)]
, L2 = ln L1, (24)

with b0 defined in Eq. (11) [b0 is proportional to the right-
hand side of Eq. (22) with x = π/β

1/2
0 ]. The factor 34 in the

definition of L1 is somewhat arbitrary: we can multiply both
sides of Eq. (22) by the arbitrary constant before starting the
interation procedure to derive Eq. (23). This factor shows up
in Eq. (23) through terms with powers of ln 3. The particular
choice of 34 allows us to speed up the convergence of the series
expansion (23) for not very large values of L1.

We now introduce the collapse distance zc into the system
(18) as follows

zc − z =
∫ zc

z

dz′ = −
∫ 0

L

L′dL′

a(L′)
=

∫ ln L

−∞

(L′)2d ln L′

[β(L′)]1/2
,

(25)

where we used Eqs. (19) and (21). Using Eq. (23) we express
β in Eq. (25) through L. Then we evaluate the integral in
Eq. (25) asymptotically for ln L → −∞ using the Laplace
method (see, e.g., Refs. [33,34]) which gives

zc − z = L2

2π

[
L1 − 4 ln 3 + 4L2 + 4(−1 − 4 ln 3 + 4L2)

L1
+ −28 − 80 ln 3 − 32(ln 3)2 − π2c1 + 80L2 + 64(ln 3)L2 − 32L2

2

L2
1

+O

(
L3

2

L3
1

)]
. (26)

We solve Eq. (26) for L by iterations and obtain Eq. (11)
at the leading order. In that leading-order derivation we
neglected the error term O(· · · ) and used Eq. (24). The
asymptotic expansion (22) is well convergent for β � 0.1 only.
It formally limits the applicability of Eq. (11) to β � 0.1. For
the simulation with the largest shown value, N/Nc = 1.208,
we have the condition β � 0.1 as seen in Fig. 3, i.e., on
the border of Eq. (11) applicability at best. This explains a
relatively poor convergence of the numerical simulation value
of L(z) to Eq. (11) for N/Nc = 1.208 as shown in Fig. 4.
We note, however, that even in this case the relative error
for L(z) is moderately small: �6%. This means that while
N/Nc = 1.208 is formally beyond the applicability limits of
Eq. (11), the numerical error remains moderate and Eq. (11)
can be used (with caution) even beyond its formal applicability
condition, β � 0.1.

IV. EXPERIMENTAL ESTIMATES

In this section we show that the dynamic range of laser
intensities for NLSE applicability can be made quite large
in experiment to allow the experimental verification of the
collapse scaling (11). We identify the required ranges of laser
intensity, laser pulse duration, and laser propagation distance
in Kerr media for the robust NLSE applicability in the collapse
regime. We found above that Eq. (11) is applicable after the
initial growth of the pulse amplitude by a factor ∼2–3. This
implies that the laser intensity increases by a factor ∼4–9.
For instance, the experimental increase of the laser intensity

by 2–3 orders of magnitude would be more than sufficient
for the robust identification and verification of the collapse
scaling (11). We focus our estimates on the self-focusing of a
laser beam in fused silica although our estimates are easy to
modify for other Kerr media. We choose for the estimate that
N/Nc = 1.052 as in the inset of Fig. 1. This determines the
collapse distance zc � 1.047 499 in dimensionless units.

We first consider a stationary self-focusing of the laser beam
in Kerr medium. (We assume for now that the pulse duration
is long enough to neglect time-dependent effects. We estimate
the range of allowed pulse durations below.) The NLSE (1) in
dimensional units with added multiphoton absorbtion (MPA)
takes the following form (see, e.g., Ref. [35]):

i∂zψ̃ + 1

2k
∇2ψ̃ + kn2

n0
|ψ̃ |2ψ̃ + i

β(K)

2
|ψ̃ |2K−2ψ̃ = 0, (27)

where k = 2πn0/λ0 is the wave number in media, λ0 is the
vacuum wavelength, n0 is the linear index of refraction, and
n2 is the nonlinear Kerr index. The index of refraction is
n = n0 + n2I , where I = |ψ̃ |2 is the light intensity. Also
K is the number of photons absorbed by the electron in
each elementary process (K-photon absorbtion) and β(K) is
the MPA coefficient. For fused silica with λ0 = 790 nm,
n0 = 1.4535 and n2 = 3.2 × 10−16 cm2/W. A dominated
nonlinear absorbtion process for this wavelength is K = 5
with β(5) = 1.80 × 10−51 cm7 W−4 [35]. The nonlinear Kerr
term in Eq. (27) dominates over the MPA term provided the
light intensity I < ( 2kn2

β(5)n0
)1/3 ≡ IMPA � 3 × 1013 W/cm2. The

critical power (8) in dimensional units Pc = Ncλ
2
0

8π2n2n0
� 2 MW.
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Assume that we propagate through the fused silica the
collimated Gaussian laser beam with the initial intensity
distribution I (r,z = 0) = Iinie

−2r2/w2
0 , where the initial beam

waist w0 = 0.5 cm. The beam power Iiniπw2
0/2 is just above

Pc. Then the initial beam intensity Iini � 6 × 106 W/cm2. This
means that the dynamic range of the intensities IMPA/Iini �
5 × 106 of the NLSE applicability is quite large. This estimate
for IMPA can be considered as the upper limit of the allowed
laser intensity. This limit is valid for ultrashort optical pulse
duration (tens of femtoseconds). For longer pulses the MPA
eventually results in optical damage. Typical experimental
measurements of the optical damage threshold give the
threshold intensity Ithresh ∼ 5 × 1011 W/cm2 for 8-ns pulses
and Ithresh ∼ 1.5 × 1012 W/cm2 for 14-ps pulses [36]. Even
these lower estimates give more than 5 orders of the dynamic
range of the NLSE applicability. However, for such short pulse
durations, t0, we generally might need to take into account a
group velocity dispersion (GVD). Its contribution is described
by the addition of the term − β2

2
∂2

∂t2 ψ̃ to the left-hand side
of Eq. (27). Here β2 = 370 fs2/cm is the GVD coefficient
for λ0 = 790 nm and t is the retarded time t ≡ T − z/c,
where T is the physical time and c is the speed of light.
The collapse distance, z̃c, in dimensional units is given by

z̃c = 4πn0w
2
0

λ0
zc � 600 m, where we set zc � 1.047 499 as in

the simulation shown in the inset of Fig. 1. At this distance the
linear absorbtion of optical grade fused silica is still negligible.
The GVD distance z̃GVD ≡ 2t2

0 /β2 must exceed z̃c for NLSE
applicability, which gives t0 � 3 ps.

Other possible effects beyond the NLSE include a stim-
ulated Brillouin scattering (can be neglected for the pulse
duration �10 ns [37]) and a stimulated Raman scattering
(SRS). The threshold of SRS for a long pulse in fused silica
was estimated from the gain exponent gI0l � 16, where the
peak intensity of the pulse, I0, was assumed to be constant
along the propagation distance, l, and g � 10−11 cm/W was
the Raman gain constant [37]. This estimate was obtained
assuming that the spontaneous emission was amplified by a
SRS (with the amplification factor egI0l = e16) up to the level
of the laser pump intensity I0 [37]. In this paper we modified
this SRS threshold estimate to account for the variable pulse
intensity along z [the intensity evolves according to Eq. (4)].

The maximum of intensity at r = 0 evolves as I (z) �
L(z0)2

L(z)2 Iini � zc−z0
zc−z

Iini for z > z0, where z0 is defined above
(z0 � 1.0007 for the simulation of the inset of Fig. 1). Here we
assumed for the estimate that the logarithmic contributions to
L are slow in z and we replaced them by a constant (compared
to the exact expression it gives a �20% difference which is not
essential for the rough estimate of the NLSE validity). Also
we neglected a small contribution to the total SRS amplifi-
cation from the range z < z0. The SRS wave intensity Is is
amplified according to dIs (z)

dz
= gIs(z)Iini

zc−z0
zc−z

which results in

Is(z0 + l) = Is(z0) exp (gIini(zc − z0) ln zc−z0
zc−z0−l

). This means
that the collapse replaces the gain exponent gIinil (of the
constant intensity case I0 = Iini) by the modified gain exponent
gIinil ln zc−z0

zc−z0−l
, where l � zc − z0. At the SRS threshold that

gain exponent has to be �16 as explained above. We now
assume that the collapsing filament intensity increases by
6 orders: zc−z0

zc−z0−l
= 106. Then we obtain the gain exponent

gIinil ln zc−z0
zc−z0−l

� 2 � 16; i.e., we still operate well below the
SRS threshold and can neglect the SRS. This SRS threshold
estimate is true for relatively long pulses, �10 ps [37]. For
pulses of shorter duration, the SRS is additionally suppressed
because the laser beam and the SRS wave move with different
group velocities.

We conclude that the optimal pulse duration for the
experimental verification of this paper is 3 ps � t0 � 10 ns.
Note that one can easily reduce the required media length
z̃c by several orders of magnitude by prefocusing the pulse
before it enters the Kerr media. However, the cost of such
prefocusing would be a reduction in the dynamic range of the
NLSE applicable intensities.

V. NUMERICAL SIMULATIONS OF NLSE

The results presented in this paper are obtained using an
adaptive mesh refinement technique [4,38], complemented
with the sixth-order Runge-Kutta time advancement method.
Some details of that type of technique are provided in Ref. [29].
The spatial derivatives are calculated using an eighth-order
finite difference scheme on the nonuniform grid. Our spatial
domain, r ∈ [0,rmax], is divided into several subdomains
(subgrids) with different spatial resolutions. The spacing
between computational points is constant for each subgrid
and differs by a factor of 2 between adjacent subgrids. The
rightmost subgrid, farthest from the collapse, has the coarsest
resolution; the spatial step decreases in the inward direction.
The grid structure adapts during the evolution of the collapse to
keep the solution well resolved. When a refinement condition
is met, the leftmost subgrid is divided in two equal subgrids
with the interpolation of up to the tenth order used to initialize
the data on the new subgrid. The solution on all subgrids is
evolved with the same time step, 
t = CCFLh2, where h is the
spatial step of the finest grid and CCFL is a constant. Typically
we choose CCFL = 0.05, but we also tested the convergence
for smaller values of CCFL.

Finally, we comment on how we determine L and β from
numerical simulations. At each z we use the following two-
step procedure. First, we determine L(z) from the numerical
solution ψ(r,z) as L = 1

|ψ | (1 + 2 |ψ |rr
|ψ |3 )−1/2|r=0, an expression

derived from the Taylor series expansion of V0(β,ρ) for ρ � 1
in Eq. (12). Second, we determine β(z) from the nonlinear
condition |ψ(0,z)| = 1

L(z)V0(β,0) using the precomputed val-
ues of V0(β,0) from the solution of Eq. (12). We found that this
procedure gives much better accuracy in determining L and β

than the alternative procedures reviewed, e.g., in Ref. [16].

VI. CONCLUSION

In conclusion, we found that the collapsing solution is
described by the approximate self-similar solution |ψ(r,z)| =

1
L(z)V0(β(z), r

L(z) ) for 0 � r/L(z) � 2/β1/2(z), with L(z) given

by Eq. (11) and β = −L3Lzz, where V0(β,ρ) is the ground-
state soliton solution of Eq. (12). The slow dependence of β

on z results in adiabatically slow violation of self-similarity.
For r/L(z) � 2/β1/2(z) the collapsing solution has the tail
Ṽ0 from Eq. (13). We found that the dependence of L(z) in
Eq. (11) is in very good agreement with the direct numerical
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simulations, as shown in Fig. 1, starting from quite moderate
increase (∼2–3 times) of the amplitude of the initial Gaussian
beam. By the direct substitution of the values L(z0) and
β(z0) into Eq. (11), with z0 defined in Fig. 1, one can see
that expression (11) matches the classical result, Eq. (9),
with accuracy of ∼10–20% only for the unrealistically large
amplitudes given by Eq. (10). This suggests that the classical
result, Eq. (9), while being asymptotically correct, should be

replaced by the much more accurate new formula, Eq. (11),
for any currently foreseeable physical systems.
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