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Collapse of Bose-Einstein condensates with dipole-dipole interactions
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The dynamics of Bose-Einstein condensates of a gas of bosonic particles with long-range dipole-dipole
interactions in a harmonic trap is studied. Sufficient analytical criteria are found both for catastrophic collapse
of Bose-Einstein condensates and for long-time condensate existence. Analytical criteria are compared with
variational analysis.
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Bose-Einstein condensation of dilute trapped atomic ga
@1,2# essentially depends on the interparticle interactions
most experiments so far the dominated interactions h
been short-range van der Waals forces which are chara
ized by thes-wave scattering lengtha. Spatially homoge-
neous condensates with positive scattering length~repulsive
interaction! are stable while condensates with negative sc
tering length~attractive interaction! are always unstable to
local collapses@3# because the quantum pressure is absen
homogeneous condensates. The presence of trapping
allows one to achieve a metastable Bose-Einstein conden
~BEC! @2# for a,0 if the number of particles is sma
enough to ensure the existence of local minima of the ene
functional @3#.

Recent progress in creating of ultracold molecular clou
@4,5# opens a new prospective for achieving BEC in a dilu
gas of polar molecules and stimulates a growing interes
the study of BEC with dipole-dipole interactions@6–12#.
Dipole-dipole forces are long range and essentially an
tropic. The net contribution of dipole-dipole interactions c
be either repulsive~positive dipole-dipole interaction energy!
or attractive~negative dipole-dipole interaction energy! de-
pending on the form of condensate cloud, its orientation re
tive to dipole polarization axes and trap geometry. Thus
bility and collapse of BEC strongly depend on clou
anisotropy which opens a whole bunch of new phenomen
be observed and makes the task of achieving and contro
the BEC especially challenging.

Dipole-dipole interactions can dominate provided po
molecules are oriented by strong enough electric field. Si
lar effects can be achieved for ground-state atoms with e
tric dipole moments induced by a strong electric field@6,9#.
Another possible physical realization is atoms with laser
duced electric dipole moments@8#. Dipole-dipole interac-
tions can be also essential in BEC of atomic gas with la
magnetic dipole moments@7,11#. Magnetic interactions are
usually dominated by van der Waals forces but effects
magnetic interactions can be essentially amplified by red
ing scattering lengtha via a Feshbach resonance@13,10#.
Analysis of this paper can be applied for both cases of e
tric and magnetic dipole-dipole interactions.
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In this paper sufficient analytical criteria are develop
both for catastrophic collapse of BEC of a trapped gas
dipolar particles and for long-time condensate existen
Sufficient criteria allow one to predict condensate collap
or, contrarily, its long-time existence for given condens
energyE, number of particlesN, initial mean-square width of
condensate, and initial kinetic energy of condensate. Ana
cal criteria are compared with results of the variational a
proach@8#, where collapse was predicted based on the
sence of a local minimum of the ground state of the ene
functional provided number of condensate particle excee
certain critical value. It is shown here that variational calc
lation gives a threshold number of particles and conden
energy which are located between parameter regions w
analytical criteria predict collapse and long-time condens
existence, respectively. It is proven in this paper that colla
certainly occurs provided energy of the condensate is be
a threshold value which is determined by the number of p
ticles and trap parameters. Collapse of the condensate is
companied by a dramatic contraction of the atomic clo
Collapse is impossible provided the number of particles a
initial kinetic energy of condensate are below the critic
values.

The time-dependent Gross-Pitaevskii equation~GPE! for
atoms with long-range interactions and for a cylindrical h
monic trap is given by@6#

i\
]C

]t
5H 2

\2¹2

2m
1

1

2
mv0

2~x1
21x2

21g2x3
2!1guCu2

1E V~r2r 8!uC~r 8!u2d3r 8J C, ~1!

where r5(x1 ,x2 ,x3), C is the condensate wave function
coupling constantg corresponds to short-range forces and
given byg54p\2a/m, a is thes-wave scattering length,m
is the atomic mass,v0 is a trap frequency in thex1x2 plane,
andg is the anisotropy factor of the trap.C(r ,t) is normal-
ized to the total number of atoms in condensate:N
5* uCu2d3r . It is assumed that the system is away fro
shape resonances ofV(r ) @6# and that the long-range poten
tial is due to the dipole-dipole interaction, and is given by

V~r2r 8!5
@d1~r !•d2~r 8!#23@d1~r !•u# @d2~r 8!•u#

ur2r 8u3
,

~2!
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where u5(r2r 8)/ur2r 8u. All the dipoles are assumed t
point in the direction of trap axes (x̂3 direction!, i.e., d1

5d25dx̂3. Potential~2! with no dependence ofd on r is a
good approximation provided a typical interparticle distan
exceeds a few Bohr radii.

GPE ~1! can be also obtained from variation of ener
functional,E: i\(]C/]t)5dE/dC* , where the condensat
energy

E5EK1EP1ENL1EDD ~3!

is an integral of motiond E/d t50, and

EK5E \2

2m
u¹Cu2d3r ,

EP5E 1

2
mv0

2~x1
21x2

21g2x3
2!uCu2d3r ,

~4!

ENL5
g

2E uCu4d3r ,

EDD5
1

2E uC~r !u2V~r2r 8!uC~r 8!u2d3rd3r 8.

Consider time evolution of the mean-square radius of
wave function,̂ r 2&[*r 2uCu2d3r /N. Using Eq.~1!, integrat-
ing by parts, and taking into account vanishing bound
conditions at infinity one gets for the first time derivative,

] t^r
2&5

\

2mNE 2ix j~C]xj
C* 2C* ]xj

C!d3r , ~5!

where ] t[]/]t, ]xj
[]/]xj , and repeated indexj means

summation over all space coordinates,j 51, . . . ,3.
In a similar way, after a second differentiation overt, one

gets

] t
2^r 2&5

1

2mNF8EK28EP112ENL22

3E uC~r !u2uC~r 8!u2~xj]xj
1xj8]x

j8
!

3V~r2r 8!d3r G . ~6!

Note that, in the caseEP50,V(r )[0, Eq.~6! coincides with
the so-called virial theorem for the GPE with local intera
tions @14–18# and thus it is natural to call Eq.~6! by a virial
theorem for GPE~1!.

Using Eq.~2! one gets (xj]xj
1xj8]x

j8
)V(r2r 8)523V(r

2r 8) and using Eq.~3! one can rewrite virial theorem~6! as
follows:

] t
2^r 2&5

1

2mN
@12E24EK210mv0

2N^r 2&

210mv0
2N~g221!^x3

2&#. ~7!
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It is essential here that both local nonlinear term and non
cal term are included into the energyE which is a conserved
quantity. Catastrophic collapse of BEC occurs while^r 2&
→0. From a mathematical point of view it means that
according to virial theorem~7!, the positive-definite quantity
^r 2& becomes negative in a finite time then singularity in t
solution of Eq.~1! appears in a finite time beforêr 2& be-
comes negative and singularity in the solution of the G
occurs together with catastrophic squeezing of the distri
tion of uCu. Near singularity formation GPE is not applicab
and other physical mechanisms are important such as ine
tic two- and three-body collisions which can cause a loss
atoms from the condensate@3#. In addition, long term inter-
actions are described by the dipole-dipole potential~2! pro-
vided the typical distance between atoms in condensate
ceeds a few Bohr radii. Note that the regularization
potential ~2! to avoid singularity atr 50 allows to prevent
singularity formation in the GPE@19,20#. However, GPE~1!
can still describe the significant contraction of the atom
cloud.

Thus condition̂ r 2&→0 provides a sufficient criterion o
collapse of BEC. For example, one immediately obta
from Eq. ~7! that ] t

2^r 2&,6E/mN and collapse is inevitable
for E,0. One can obtain however a much more strict su
cient condition for collapse using generalized uncertainty
lations betweenEK ,N,^r 2&,] t^r

2& @16# which follows from
the Cauchy-Schwarz inequality and Eq.~5! with use of inte-
gration by parts (C[Reif, R5uCu),

EK5
\2

2mE @~¹R!21~¹f!2R2#d3r ,

2mN

\
u] t^r

2&u54U E xj]xj
fR2d3rU

<4S N^r 2&E ~¹f!2R2d3r D 1/2

,

~8!

N52
2

3E xjR]xj
Rd3r<

2

3 S N^r 2&E ~¹R!2d3r D 1/2

.

Using Eqs.~7! and ~8! one can obtain a basic differentia
inequality,

] t
2^r 2&<

1

2mNF12E2
\2

2m S 9N

^r 2&
1

m2N~] t^r
2&!2

\2^r 2&
D

210mv0
2NF~g!^r 2&G , ~9!

whereF(g)51 for g>1 andF(g)5g2 for g,1. Function
F(g) originates from estimate of upper bound of ter
2^r 2&2(g221)^x3

2&<2F(g)^r 2& in Eq. ~7!. Change of
variable,^r 2&5B4/5/N gives the differential inequality,

] t
2B<

5

2mF3EB1/52
\2

8m

9N2

B3/5
2

5

2
mv0

2F~g!BG , ~10!

which can be rewritten as
1-2
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Btt52
]U~B!

]B
2 f 2~ t !, ~11!

where

U52
25

4m
EB6/51

\2225N2

32m2
B2/51

25

8
v0

2F~g!B2, ~12!

and f 2(t) is some unknown non-negative function of tim
Equation~11! has a simple mechanical analogy@16# with the
motion of a ‘‘particle’’ with coordinateB under the influence
of the potential force2]U(B)/]B in addition to the force
2 f 2(t). Due to the influence of the nonpotential force
2 f 2(t) the total energyE of the particle is time dependen
E(t)5Bt

2/21U(B). Collapse certainly occurs if the particl
reaches the originB50. It is clear that if the particle were to
reach the origin without the influence of the force2 f 2(t)
then it would reach the origin even faster under the ad
tional influence of this nonpositive force. Therefore one c
consider below the particle dynamics without the influen
of the nonconservative force2 f 2(t) to prove sufficient col-
lapse conditions.

It follows from Eq. ~12! that potentialU(B) is a mono-
tonic function for E<\v0N@F(g)5#1/2/2[Ecritical ~see
curve 1 in Fig. 1! while for E.Ecritical potentialU(B) has a
barrier atBm

4/553(E2@E22Ecritical
2 #1/2)/@5mv0

2F(g)# with
particle energyEm5U(Bm) at the top~see curve 2 in Fig. 1!.
One can separate sufficient collapse condition into three
ferent cases.

~a! For E<Ecritical the particle reaches the origin in
finite time irrespective of the initial value ofBu t50.

~b! For E.Ecritical andE(0).Em , the particle is able to
overcome the barrier thus it always falls to the origin in
finite time irrespective of the initial value ofBu t50.

~c! For E.Ecritical andE(0),Em , the particle is not able
to overcome the barrier thus it falls to the origin in a fin
time only if Bu t50,Bm .

Note that it is proven here analytically only sufficient co
lapse conditions. It means that even if none of the conditi
~a!–~c! are satisfied one cannot exclude collapse forma
for some particular values of the initial conditions of Eq.~1!.
Generally it is determined by nonpotential force2 f 2(t).
However, inequality~9! reduces to equality for a Gaussia
initial condition andg51,

FIG. 1. Typical behavior of potentialU(B) from Eq. ~12! for
E<Ecritical ~curve 1! and E.Ecritical ~curve 2!. U0

5(N5\5/m5v0)1/2, B05(N\/mv0)5/4.
05160
i-
n
e

if-

s
n

C05N1/2p23/4~Lr
2L3!21/2e2(x1

2
1x2

2)/2Lr
2
e2x3

2/2L3
2

~13!

in particular the case withL35Lr .
One can compare the sufficient collapse condition w

results of Ref.@8# where collapse was predicted from a vari
tional analysis using the Gaussian ansatz~13! to approximate
ground state of the GPE forg50 ~1!. It was concluded that
collapse should occur provided energy functionalE has no
local minima. A critical point was determined from the co
dition that local minimum of energy functionalE becomes a
saddle point: (]2E/]L3

2)(]2E/]Lr
2)5(]2E/]L3]Lr)2,

]E/]L35]E/]Lr50. This allows one to find the critica
number of particles,Nc,var , and critical value of energy
functional, Ec,var , as a function of system paramete
Lr , L3 , g, d. Figure 2 shows the dependence ofEc, var
~curve 1! and Ecritical ~curve 2! on trap aspect ratiog for
N5Nc, var and g50. Note that the expression forEc, var ,
used in this paper to draw curve 2 in Fig. 2, differs from E
~3! of Ref. @8#. The authors of Ref.@8# already mentioned in
the erratum@21# that Eq.~3! of Ref. @8# is incorrect. How-
ever, a corrected formula was not given in the erratum@21#.
The explicit expression forEc, var is not given in this paper
also because it is very bulky and will be given elsewhe
The Gaussian ansatz~13! is not an exact solution of the GP
~1!; thus one can expect that actual critical value of energE
of the ground-state solution is lower.Ecritical is determined
here from the sufficient collapse condition meaning that
critical value of energyE of the ground-state solution is a
ways above curve 2. One can conclude that the actual cri
value of energy is located between curves 1 and 2. The
curacy of the variation approximation can generally be o
tained only from comparison with direct simulation of th
GPE ~1!.

The Fourier transform of dipole-dipole interaction pote
tial ~2! allows one to find a sufficient condition of globa
existence~for arbitrary large time! of the solution of the GPE
~1!. The dipole-dipole interaction energyEDD can be rewrit-
ten ink space asEDD5(1/2)* uRku2Vkd

3k/(2p)3, whereRk
is a Fourier transform ofuCu2 and the Fourier transform o
the dipole-dipole interaction in the limit of small atom
overlap distance is given by Ref.@7#: Vk52(4p/3)d2(1
23 cos2a). Herea is the angle betweenk andd. Using the
inequality Vk>2(4p/3)d2 one getsEDD>2(2p/3)d2Y,
whereY[* uCu4d3r . Condition 4pd2<3g results inE.0
for any particle number, and collapse is impossible. Below

FIG. 2. Dependence ofEc, var ~curve 1! andEcritical ~curve 2!
on trap aspect ratiog for N5Nc, var . Both Ec, var andEcritical are
given in units ofE05\7/2v0

1/2/d2m3/2.
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is assumed that 4pd2.3g. Y can be bounded as follows
Y<(4/33/2N0)N1/2X3/2, where X[* u¹Cu2d3r , and N0
518.94 is determined from a ground state solution,f0

5lR(lr )eil2t, of nonlinear Schro¨dinger equation,2l2R
1¹2R1R350, N0[*R2d3r ~see Ref.@23#!. Using these in-
equalities and Eqs.~3!, ~4!, and~8! one gets the lower boun
of the energy functional,

E>
\2

2m
X1

9mv2

8X
F~g!N22

2~4pd223g!

35/2N0

N1/2X3/2

[El~X!. ~14!

For N.Nc , Nc[23/23\5/2N0 /@55/4(4pd2

23g)F(g)1/4m3/2v1/2#, the functionEl(X) is a monotonic
one~curve 1 in Fig. 3!. For N,Nc the functionEl(X) has a
local minimum,Emin ~curve 2 in Fig. 3!. Consider the initial
condition with

N,Nc , Emin,E,Emax, X1,Xu t50,X2 , ~15!

whereEmax is a local maximum ofEl(X), and X1 ,X2 are
two of a total of three roots (X1,X2,X3) of the equation
E5El(X). Any solution of the GPE, corresponding to co
ditions ~15!, will stay in the rangeX1,X,X2 at any time
because regions below curves 1,2 in Fig. 3 are forbidden
solution of GPE. One concludes that collapse is imposs
in that case because collapse and singularity formation
GPE require singularity in kinetic energy@22#, X→`. That
could be understood, e.g., from uncertainty relations~8!.
ev

05160
or
le
in

Equation~15! gives a sufficient condition of absence of co
lapse and in that case one can expect that energy functionE
has a local minimum and supports stable steady-state s
tions. In original quantum-mechanical problem that stea
state is metastable one because of finite probability of t
neling of condensate from local minimum which is outsi
the applicability of GPE and is not considered in this pap

In conclusion, sufficient analytical criteria are develop
both for catastrophic collapse of BEC of gas with nonloc
long-range dipole-dipole interactions and for long-time c
lapse existence in the framework of GPE~1!.
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FIG. 3. Energy lower boundEl ~in units of E0) for N.Nc

~curve 1! and N,Nc ~curve 2! versus X/X0 . X0

5N3/5@mN0v0
2/(4pd223g)#2/5.
s.
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