RAPID COMMUNICATIONS
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The dynamics of Bose-Einstein condensates of a gas of bosonic particles with long-range dipole-dipole
interactions in a harmonic trap is studied. Sufficient analytical criteria are found both for catastrophic collapse
of Bose-Einstein condensates and for long-time condensate existence. Analytical criteria are compared with
variational analysis.
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Bose-Einstein condensation of dilute trapped atomic gases In this paper sufficient analytical criteria are developed
[1,2] essentially depends on the interparticle interactions. |rb_oth for catastrophic collapse o_f BEC of a trapped_gas of
most experiments so far the dominated interactions havéipolar particles and for long-time condensate existence.
been short-range van der Waals forces which are charactepufficient criteria allow one to predict condensate collapse
ized by theswave scattering length. Spatially homoge- ©" contrarily, its long-time existence for given condensate
neous condensates with positive scattering lerigthulsive energyE, number of particledl, initial mean-square width of
interaction are stable while condensates with negative Scatcondens::lte, and initial kinetic energy of condensate. Analyti-

| h A _ I bl cal criteria are compared with results of the variational ap-
tering length(attractive interactionare always unstable to proach[8], where collapse was predicted based on the ab-

local collapse$3] because the quantum pressure is absent idence of a local minimum of the ground state of the energy
homogeneous condensates. The presence of trapping fiedghctional provided number of condensate particle exceeds a
allows one to achieve a metastable Bose-Einstein condensagertain critical value. It is shown here that variational calcu-
(BEC) [2] for a<O0 if the number of particles is small lation gives a threshold number of particles and condensate
enough to ensure the existence of local minima of the energgnergy which are located between parameter regions where
functional[3]. analytical criteria predict collapse and long-time condensate
Recent progress in creating of ultracold molecular cloudgXistence, respectively. It is proven in this paper that collapse
[4,5] opens a new prospective for achieving BEC in a dilutecertainly occurs provided energy of the condensate is below
gas of polar molecules and stimulates a growing interest it threshold value which is determined by the number of par-

the study of BEC with dipole-dipole interactiof§—12]. ticles and trap parameters. Collapse of the condensate is ac-

Dipole-dipole forces are long range and essentially anisocompanied by a dramatic contraction of the atomic cloud.

tropic. The net contribution of dipole-dipole interactions CanCoIIapse is impossible provided the number of particles and

be either repulsivépositive dipole-dipole interaction eneigy initial kinetic energy of condensate are below the critical

or attractive(negative dipole-dipole interaction enejgye- values.

X ) . ? The time-dependent Gross-Pitaevskii equaliGfE) for
pending on the form of condensate cloud, its orientation rela;, -\ long-range interactions and for a cylindrical har-
tive to dipole polarization axes and trap geometry. Thus staz onic trap is given by6]

bility and collapse of BEC strongly depend on clouds
anisotropy which opens a whole bunch of new phenomenato  J¥ vk

be observed and makes the task of achieving and controlling i ot

+ =mwd(X2+ x5+ y?x3) +g| ¥ |?

S 2m 2
the BEC especially challenging.
Dipole-dipole interactions can dominate provided polar o 1243
molecules are oriented by strong enough electric field. Simi- + | V=)t v, @

lar effects can be achieved for ground-state atoms with elec- ] )

tric dipole moments induced by a strong electric figsg].  Wherer=(x;,x,x3), ¥ is the condensate wave function,
Another possible physical realization is atoms with laser in-Coupling constang corresponds to short-range forces and is
duced electric dipole momenfs]. Dipole-dipole interac- given byg=4mfi?a/m, ais theswave scattering lengtim
tions can be also essential in BEC of atomic gas with largds the atomic massy is a trap frequency in the,x; plane,
magnetic dipole moments,11]. Magnetic interactions are andy is the anisotropy factor of the traf/(r,t) is normal-
usually dominated by van der Waals forces but effects ofzed to the total number of atoms in condensabé:
magnetic interactions can be essentially amplified by reduc=/|¥|*d®. It is assumed that the system is away from
ing scattering lengtha via a Feshbach resonanf#3,10.  shape resonances ¥{r) [6] and that the long-range poten-
Analysis of this paper can be applied for both cases of electial is due to the dipole-dipole interaction, and is given by

tric and magnetic dipole-dipole interactions. , ,
_ [dy(r) - da(r")]=3[dy(r) - u] [dy(r") - u]

[r—r'|3
*Electronic address: lushnikov@lanl.gov (2

V(r—r’)

1050-2947/2002/66)/0516014)/$20.00 66 051601-1 ©2002 The American Physical Society



RAPID COMMUNICATIONS

PAVEL M. LUSHNIKOV PHYSICAL REVIEW A 66, 051601R) (2002

whereu=(r—r’")/[r—r’'|. All the dipoles are assumed to It is essential here that both local nonlinear term and nonlo-
point in the direction of trap axesx{ direction, i.e., d,  cal term are included into the enerBywhich is a conserved

=d2=d3<3- Potential(2) with no dependence af onr is a quantity. Catastrophic collapse of BEC occurs WMfé}

good approximation provided a typical interparticle distance ~0- From a mathematical point of view it means that if,

- according to virial theoren(7), the positive-definite quantity
exceeds a few Bonr radi ; ot (r?) becomes negative in a finite time then singularity in the
GPE (1) can be also obtained from variation of energy 9 gularity

functional, E: i7i(9W/at) = 5E/ SW* , where the condensate Solution of Eq.(1) appears in a finite time befor®) be-
energy comes negative and singularity in the solution of the GPE

occurs together with catastrophic squeezing of the distribu-
E=Ex+Ep+EN +Epp (3)  tion of |¥|. Near singularity formation GPE is not applicable
and other physical mechanisms are important such as inelas-
is an integral of motiord E/d t=0, and tic two- and three-body collisions which can cause a loss of
52 atoms from the condensafg]. In addition, long term inter-
Eq= J — |V 2d3r actions are described by the dipole-dipole poter@alpro-
2m ' vided the typical distance between atoms in condensate ex-
ceeds a few Bohr radii. Note that the regularization of
potential (2) to avoid singularity ar =0 allows to prevent
singularity formation in the GPEL9,20. However, GPE1)
(4)  can still describe the significant contraction of the atomic
g 43 cloud.
ENngj [ [*dr, Thus conditior{r?)—0 provides a sufficient criterion of
collapse of BEC. For example, one immediately obtains
1 from Eq.(7) that 9%(r?)<6E/mN and collapse is inevitable
EDDZEJ W (r)[2V(r—r") [ (r)[?drd . for E<0. One can obtain however a much more strict suffi-
cient condition for collapse using generalized uncertainty re-
Consider time evolution of the mean-square radius of thdations betweerEy ,N,(r?),d,(r?) [16] which follows from
wave function{r2)=[r?|¥|2d®r/N. Using Eq.(1), integrat-  the Cauchy-Schwarz inequality and &f) with use of inte-
ing by parts, and taking into account vanishing boundangration by parts ¢ =Re?, R=|¥|),
conditions at infinity one gets for the first time derivative, 52

Eﬁﬁf [(VR)?+(V$)?R?]d°r,

1
Ep= f 5mw§(x§+x§+ v2x3)| | 2d°r,

h
5t<r2>:m\l 2in(\P(?Xj\If*—\I’* ﬂquf)dar, (5)

2mN
T|(9t(r2)| =4’ f X axj¢R2d3r

where ¢,=4/dt, aszr?/éxj , and repeated indek means (8)
summation over all space coordinatgs,1, . . .,3. 12
In a similar way, after a second differentiation o¥gone s4( N<r2>f (V ¢>)2R2d3r> ,
gets
1 2 2 1/2
— 2 243
&t2<r2>:ZmN[SEK_8EP+12ENL_2 N—_gf XjRanRd3r$§ N<r >f (VR) d r) .
Using Egs.(7) and (8) one can obtain a basic differential
xJ |\P(r)|2|\lf(r’)|2(xj(?xj+xj’axjr) inequality,
1 72 [ ON  m?N(d(r?))?
, 2,2 N (eI S Y
XV(r—r )dgr}. (6) H(r=5mn| 1E Zm((r2)+ 12(r?)
Note that, in the casEp=0,V(r)=0, Eq.(6) coincides with 5 5
the so-called virial theorem for the GPE with local interac- —10mawgNF(y)(ro)|, €)
tions[14—19 and thus it is natural to call E@6) by a virial
theorem for GPEI). whereF(y)=1 for y=1 andF(y)=v? for y<1. Function

Using Ed.(2) one gets X;dx + X[ ax)V(r—r')=—3V(r  F(y) originates from estimate of upper bound of term
—r') and using Eq(3) one can rewrite virial theorett®) as  —(r?)— (y>—1)(x3)<—F(y)(r?) in Eq. (7). Change of

follows: variable,(r2)=B*°/N gives the differential inequality,
1 5 h? 9N?
92(r?)= Sl 12E 4B~ 10mw3N(r?) 92B=< >m| 3E BY5— 8m g EmwSF(y)B , (10
2 2
—10mawgN(¥*—1)(x3)]. (7) " which can be rewritten as
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FIG. 1. Typical behavior of potentidl (B) from Eq. (12) for
E$Ecritical (CUI’VB ]) and E>Ecritica| (Curve 2 U0
=(N%45/m°wg) 2, Bo= (N#i/mwg)

dU(B)
tt— ﬁB - fz(t)i (11)
where
25 _ oo #2225\? s 25, )
U:—4m B +WB +§wOF(y)B, (12)

and f2(t) is some unknown non-negative function of time.
Equation(11) has a simple mechanical analddy6] with the
motion of a “particle” with coordinateB under the influence
of the potential force-gU(B)/dB in addition to the force
—f2(t). Due to the influence of the nonpotential force
—f2(t) the total energyt of the particle is time dependent:
5(t)=Bt2/2+U(B). Collapse certainly occurs if the particle
reaches the origiB=0. It is clear that if the particle were to
reach the origin without the influence of the foreef?(t)
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FIG. 2. Dependence @&, ,,, (curve 1) andEgca (Curve 2
on trap aspect ratigp for N=N; ;. BothE; 5 @andEyjsicq are
given in units ofEy=7%"w%d’m®?

2,2 2 215 2
\PO =N 1/27_[_— 3/4( LiLB) - l/2e— (x3+ X2)/2Lpe_ X3l2Ly (13)

in particular the case withz=L,.

One can compare the sufficient collapse condition with
results of Ref[8] where collapse was predicted from a varia-
tional analysis using the Gaussian angaf to approximate
ground state of the GPE fg=0 (1). It was concluded that
collapse should occur provided energy functiokahas no
local minima. A critical point was determined from the con-
dition that local minimum of energy function& becomes a
saddle  point:  @?E/dL3)(5°ElL2) = (9°EldL il )%,
JEldL3=dE/JL,=0. This allows one to find the critical
number of particlesN, .o, and critical value of energy
functional, E; ,,,, as a function of system parameters
L,.Ls, v, d. Figure 2 shows the dependence Bf .,
(curve 1 and Eg,jiica) (curve 2 on trap aspect ratioy for
N=N. ,ar andg=0. Note that the expression fd; 4,
used in this paper to draw curve 2 in Fig. 2, differs from Eq.

then it would reach the origin even faster under the addi(3) of Ref.[8]. The authors of Ref8] already mentioned in
tional influence of this nonpositive force. Therefore one canhe erratun{21] that Eq.(3) of Ref. [8] is incorrect. How-
consider below the particle dynamics without the influencegyer, a corrected formula was not given in the erraf@dj.

of the nonconservative force f2(t) to prove sufficient col-
lapse conditions.

It follows from Eg. (12) that potentialU(B) is a mono-
tonic function for E<woN[F(y)5]%¥2=E_iiicai (S€€
curve 1 in Fig. 2 while for E>E_,iiical potentialU(B) has a
barrier atB¥°=3(E—[E2—EZical]Yd/[5Mw3F ()] with
particle energy,,= U(B,,) at the top(see curve 2 in Fig.)1

The explicit expression foE. ,,, IS NOt given in this paper
also because it is very bulky and will be given elsewhere.
The Gaussian ansat#3) is not an exact solution of the GPE
(2); thus one can expect that actual critical value of en&rgy
of the ground-state solution is loweE, . iS determined
here from the sufficient collapse condition meaning that the
critical value of energ\e of the ground-state solution is al-

One can separate sufficient collapse condition into three difways above curve 2. One can conclude that the actual critical

ferent cases.

(@) For E<Ej;ca the particle reaches the origin in a
finite time irrespective of the initial value @&|,_,.

(b) For E>E/iticas @and&(0)>&,,, the particle is able to

value of energy is located between curves 1 and 2. The ac-
curacy of the variation approximation can generally be ob-
tained only from comparison with direct simulation of the
GPE(1).

overcome the barrier thus it always falls to the origin in a The Fourier transform of dipole-dipole interaction poten-

finite time irrespective of the initial value @&|_,.
(c) For E>Eitical and&(0)< &, the particle is not able

tial (2) allows one to find a sufficient condition of global
existencgfor arbitrary large timgof the solution of the GPE

to overcome the barrier thus it falls to the origin in a finite (1). The dipole-dipole interaction ener@gp can be rewrit-

time only if B|;—o<Bp,.
Note that it is proven here analytically only sufficient col-

ten ink space a€pp=(1/2)f|Ry|?Vd3k/(27)3, whereRy
is a Fourier transform of¥|? and the Fourier transform of

lapse conditions. It means that even if none of the conditionshe dipole-dipole interaction in the limit of small atomic
(@—(c) are satisfied one cannot exclude collapse formatiorverlap distance is given by Ref7]: V= —(4m/3)d?(1

for some particular values of the initial conditions of Eg).
Generally it is determined by nonpotential foreef?(t).
However, inequality(9) reduces to equality for a Gaussian
initial condition andy=1,

—3 coga). Herea is the angle betweek andd. Using the
inequality V= — (47/3)d? one getsEpp=— (27/3)d?Y,
where Y= [|¥|*d®r. Condition 4rd?<3g results iNE>0

for any particle number, and collapse is impossible. Below it
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is assumed that #d°>3g. Y can be bounded as follows:
Y<(4/3*Ng)NY2x32  where X=[|V¥|?d°r, and N,
=18.94 is determined from a ground state solutigh,
=7\R()\r)e”2t, of nonlinear Schidinger equation,—\?R
+V2R+R®=0, No=/R2d% (see Ref[23]). Using these in-
equalities and Eq$3), (4), and(8) one gets the lower bound
of the energy functional,

h? IMw? 2(4md?—3Q)
E=—X+ E N2— ——— =~ NY2x32
om* T gx PV 352N,
=E(X). (14) FIG. 3. Energy lower bound, (in units of Ep) for N>N,
(curve 1) and N<N; (curve 23 versus X/Xqg. X,
For N>N,, N =2¥234%N, /[55(4md?  =N*ImNow/(4md®—3g)]%".

—30)F(y)Y"m%20*?], the functionE,(X) is a monotonic . _ o N
one(curve 1 in Fig. 3. For N<N, the functionE,(X) has a Eduation(15) gives a sufficient condition of absence of col-

local minimum,E,.;., (curve 2 in Fig. 3. Consider the initial 12PSe and in that case one can expect that energy functonal
condition with has a local minimum and supports stable steady-state solu-

tions. In original quantum-mechanical problem that steady
N<N¢, Emin<E<Emax, X1<X|t=0<X,, (15 state is metastable one because of finite probability of tun-
neling of condensate from local minimum which is outside
where E,y is a local maximum ofg|(X), andX;,X; are  the applicability of GPE and is not considered in this paper.
two of a total of three rootsX;<X,<X3) of the equation In conclusion, sufficient analytical criteria are developed
E=E(X). Any solution of the GPE, corresponding to con- hoth for catastrophic collapse of BEC of gas with nonlocal
ditions (15), will stay in the rangeX;<X<X, at any time  |ong-range dipole-dipole interactions and for long-time col-
because regions below curves 1,2 in Fig. 3 are forbidden foapse existence in the framework of GPB.
solution of GPE. One concludes that collapse is impossible
in that case because collapse and singularity formation in The author thanks I.R. Gabitov and E.A. Kuznetsov for
GPE require singularity in kinetic ener22], X—«. That  helpful discussions. Support was provided by the U.S. De-
could be understood, e.g., from uncertainty relati¢s  partment of Energy, under Contract No. W-7405-ENG-36.
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