Analysis Seminar on "Boundedness of certain singular integrals with non-smooth kernel on non-doubling manifold with ends" by Ji Li (Macquarie University, Australia)

Event Type: 
Seminar
Speaker: 
Ji Li (Macquarie University, Sydney, Australia)
Event Date: 
Wednesday, December 12, 2018 -
3:00pm to 4:00pm
Location: 
SMLC 124
Audience: 
Faculty/StaffStudents

Event Description: 

Title: Boundedness of certain singular integrals with non-smooth kernel on non-doubling manifold with ends.

Abstract: Let $\Delta$ be the Laplace--Beltrami operator acting on a non-doubling manifold with two ends $\mathbb R^m \sharp \mathbb R^n$ with $m > n \ge 3$. 

Let $\frak{h}_t(x,y)$ be the kernels of the semigroup $e^{-t\Delta}$ generated by $\Delta$. We say that a non-negative self-adjoint operator $L$ on $L^2(\mathbb R^m \sharp \mathbb R^n)$ has a heat kernel with upper bound of Gaussian type if the kernel $h_t(x,y)$ of the semigroup $e^{-tL}$ satisfies $ h_t(x,y)  \le C \frak{h}_{\alpha t}(x,y)$ for some constants $C$ and $\alpha$. This class of  operators includes the Schr\"odinger operator $L = \Delta + V$ where $V$ is an arbitrary non-negative potential. We then obtain upper bounds 

of the Poisson semigroup kernel of $L$ together with its time derivatives and use them to show 

the weak type $(1,1)$ estimate for the holomorphic functional calculus $\frak{M}(\sqrt{L})$ where $\frak{M}(z)$ is a function of Laplace transform type.

Our result covers the  purely imaginary powers  $L^{is}, s \in \mathbb R$, as a special case and serves as a model case for weak type $(1,1)$ estimates of singular integrals with non-smooth kernels on non-doubling  spaces.

 

 

The results we provide here are based on recent result with The Anh Bui, Xuan Thinh Duong and Brett D. Wick.

 

 

Event Contact

Contact Name: Maria Cristina Pereyra

Contact Phone: (505) 307-9629

Contact Email: crisp@math.unm.edu