1. Let $f(X) \in \mathbb{Q}[X]$ be a polynomial of degree n. Let E be a splitting field of f over \mathbb{Q}. Show that $[E : \mathbb{Q}] \leq n!$.

2. Suppose K is a field of characteristic zero and G a finite group of automorphisms of K. Let K^G be the subfield of K fixed by G. Show that K/K^G is a Galois extension with Galois group G.

3. Suppose A, B are n by n matrix with complex coefficients. Show that $AB - BA$ cannot be equal to the identity matrix.

4. Consider the derivative map $D : C^\infty(\mathbb{R}) \to C^\infty(\mathbb{R})$ given by $D(f(t)) = f'(t)$ and the multiplication by t map $M : C^\infty(\mathbb{R}) \to C^\infty(\mathbb{R})$ given by $M(f(t)) = tf(t)$. (Here $C^\infty(\mathbb{R})$ denotes the vector space of C^∞ functions $\mathbb{R} \to \mathbb{R}$.) Compute the eigenvalues (and the corresponding eigenvectors) of the maps $D, M,$ and $D \circ M - M \circ D$.

5. Let $M = \mathbb{C}(z)$ be the field of rational functions of z with \mathbb{C} coefficients. Show that the map $SL_2(\mathbb{C}) \rightarrow Aut_\mathbb{C}(M)$ given by

$$
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix} \mapsto \sigma, \quad \sigma(f(z)) = f\left(\frac{az + b}{cz + d}\right)
$$

is a group homomorphism. Compute the kernel and the image of this homomorphism.

6. Compute the center of the symmetric group S_n, $n \geq 3$.

7. Prove that the group defined by generators a, b and one relation $a^2 b^3 = e$ is infinite.

8. Prove that if p is an odd prime number then the group of invertible elements in the ring $\mathbb{Z}/p^n\mathbb{Z}$ is cyclic.

9. Prove that the ring $\mathbb{Z}[\sqrt{-5}]$ is not principal.

10. Prove that the ring $\{ \frac{n}{m} ; n, m \in \mathbb{Z}, m \not\in 5\mathbb{Z}\}$ is local.