1. (25 points) For this problem consider general \(x \in \mathbb{R}^n \) and \(A \in \mathbb{R}^{m \times n} \).
(a) Find the best possible constants \(m', M' \) and \(m'', M'' \) such that
\[
m' \|x\|_1 \leq \|x\|_\infty \leq M' \|x\|_1 \quad \text{and} \quad m'' \|x\|_\infty \leq \|x\|_2 \leq M'' \|x\|_\infty.
\]
(b) Show that \(\|A\|_F \leq \sqrt{\text{rank}(A)} \|A\|_2 \), where the bound is sharp.

2. (25 points)
(a) Suppose \(M \in \mathbb{C}^{n \times n} \) has \(n \) distinct eigenvalues. Show that \(M \) has \(n \) linearly independent eigenvectors.
(b) Use the result from (a) to show that for any \(A \in \mathbb{C}^{n \times n} \) and \(\epsilon > 0 \), there exists a diagonalizable matrix \(B \) such that \(\|A - B\|_2 \leq \epsilon \).

3. (25 points) Suppose that \(A \in \mathbb{R}^{n \times n} \) has lower bandwidth \(p < n \) (that is, \(a_{ij} = 0 \) whenever \(i > j + p \)). Show how to reduce \(A \) to upper triangular form by orthogonal transformations based on Givens rotations. Write down the algorithm and specify how many floating-point operations it requires. Relative to large \(n \), for which value of \(p \) does your algorithm become competitive with the standard reduction algorithm based on Householder reflections?

4. (25 points)
(a) For \(A \in \mathbb{R}^{n \times n} \) write down the power iteration algorithm to find an extreme eigenvalue/eigenvector pair.
(b) Suppose that \(A \) is symmetric with eigenvalues \(|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_n| \). Show that the iterates \((\mu^{(k)}, z^{(k)})\) defined by the power iteration obey
\[
\|z^{(k)} - (\pm v_1)\|_2 = O\left(\frac{|\lambda_2|}{|\lambda_1|}^k\right), \quad |\mu^{(k)} - \lambda_1| = O\left(\frac{|\lambda_2|}{|\lambda_1|}^{2k}\right),
\]
where \(Av_1 = \lambda_1 v_1 \).
(c) Now suppose \(A \in \mathbb{R}^{n \times n} \) (not symmetric) has complex conjugate eigenvalues \(\lambda_1 = \bar{\lambda}_2 \) such that \(|\lambda_1| = |\lambda_2| > |\lambda_3| \geq \cdots \geq |\lambda_n| \). Consider power iteration applied to a generic initial vector \(z^{(0)} \) with unit 2-norm. Argue that after a sufficient number of iterations an (approximate) linear dependency \(\gamma_0 z^{(k)} + \gamma_1 z^{(k+1)} + z^{(k+2)} = 0 \) exists between successive iterates. How can this linear dependency be exploited to compute \(\lambda_1 \) and \(\lambda_2 \)?
1. (25 points) $N \in \mathbb{R}^{n \times n}$ is said to be a nilpotent matrix of index k provided $N^k = 0$ with $N^{k-1} \neq 0$.

(a) Suppose $N \in \mathbb{R}^{n \times n}$ is a nilpotent matrix of index n and $N^{n-1}y \neq 0$, where $y \in \mathbb{R}^n$. Show that $B = \{y, Ny, N^2y, \ldots, N^{n-1}y\}$ is a basis for \mathbb{R}^n, and (\sim means “similar to”)

$$N \sim \begin{pmatrix} 0 & 0 & \ldots & 0 & 0 \\ 1 & 0 & \ldots & 0 & 0 \\ 0 & 1 & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & 0 \end{pmatrix}.$$

(b) Suppose that $M, N \in \mathbb{R}^{n \times n}$ are any two nilpotent matrices of index n. Show that $M \sim N$.

(c) Show that any two similar matrices have the same trace and rank. What are the trace and rank of a nilpotent matrix $N \in \mathbb{R}^{n \times n}$ of index n?

(d) What can you say about the case for which $N \in \mathbb{R}^{n \times n}$ is nilpotent of index $k < n$?

2. (25 points) Let $\| \cdot \|$ represent any matrix norm for which $\|AB\| \leq \|A\| \cdot \|B\|$.

(a) If $\|B\| < 1$, show that $I - B$ is invertible, and find a series representation for $(I - B)^{-1}$.

(b) Assume that A is nonsingular, and consider the linear system $Ax = b$. Bound the relative uncertainty in the solution x in terms of the relative uncertainty in b, assuming no uncertainty in A. That is, if $A\tilde{x} = b - e$, then bound $\|x - \tilde{x}\|/\|x\|$ in terms of $\|e\|/\|b\|$. Express your answer in terms of the condition number of A.

(c) Again assume that A is nonsingular, and consider $Ax = b$. Now bound relative uncertainty in the solution x in terms of the relative uncertainty in A, assuming no uncertainty in b. That is, if $(A - E)\tilde{x} = b$, bound $\|x - \tilde{x}\|/\|x\|$ in terms of $\|E\|/\|A\|$. You should assume that $\alpha \equiv \|A^{-1}E\| < 1$. Express your answer in terms of the condition number of A.

3. (25 points) Suppose that $A = LU$ is the LU-factorization of $A \in \mathbb{R}^{n \times n}$ with $|\ell_{ij}| \leq 1$. Let a_i^T and u_i^T denote the ith rows of A and U, respectively.

(a) Verify the equation

$$u_i^T = a_i^T - \sum_{j=1}^{i-1} \ell_{ij}u_j^T.$$

(b) Use the result from (a) to prove $\|U\|_\infty \leq 2^{n-1}\|A\|_\infty$. Hint: use induction.
4. (25 points) Suppose that \(b \in \mathbb{R}^n \), and that \(A \in \mathbb{R}^{n \times n} \) is symmetric positive definite. Denote the associated \(k \)th Krylov subspace by \(\mathcal{K}_k(A, b) = \text{span}\{b, Ab, A^2b, \ldots, A^{k-1}b\} \) for \(k \leq n \), and assume that \(\dim \mathcal{K}_k(A, b) = k \). Let \(Q_k \in \mathbb{R}^{n \times k} \) be the orthogonal matrix whose columns span \(\mathcal{K}_k(A, b) \), recursively defined such that \(Q_k = [Q_{k-1}, q_k], \|q_k\|_2 = 1 \).

(a) Show that \(T_k = Q_k^T A Q_k \in \mathbb{R}^{k \times k} \) is nonsingular.

(b) Give a concrete expression for \(Q_1 \).

(c) Given an approximate solution \(x_k \in \mathcal{K}_k(A, b) \) and its residual \(r_k = b - Ax_k \), the **Galerkin condition** is \(z^T r_k = 0, \forall z \in \mathcal{K}_k(A, b) \). Prove that the Galerkin condition is equivalent to \(x_k = \|b\|_2 Q_k T_k^{-1} e_1 \), where \(e_1 = (1, 0, \ldots, 0)^T \in \mathbb{R}^k \).

(d) Prove that, over the \(k \)th Krylov subspace, \(x_k \) from (c) minimizes the \(A^{-1} \)-norm of the residual, that is, it minimizes \(\|r\|_{A^{-1}} \equiv \sqrt{r^T A^{-1} r} \), where \(r = b - Az \) for \(z \in \mathcal{K}_k(A, b) \).
Write the last four digits of your UNM number (not you name) on each work sheet. Please do each of the following four problems, providing concise answers with justification.

1. (a) Let \(a, b \) be scalars and \(A \) be a square matrix. Prove that if \(\lambda \) is an eigenvalue of \(A \), then \(a\lambda + b \) is an eigenvalue of \(aA + bI \).

(b) Let \(A \in \mathbb{R}^{n \times n} \) be a tridiagonal matrix with diagonal entries equal to zero, and \(a_{i,i+1} = a_{i+1,i} = 1 \), for \(i = 1, 2, \ldots, n - 1 \). For \(j = 1, \ldots, n \), let \(x^j \in \mathbb{R}^n \) have \(i \)th component \(x^j_i = \sin\left(\frac{ij\pi}{n+1}\right) \). Prove that

\[
A x^j = 2 \cos\left(\frac{2\pi j}{n+1}\right) x^j, \quad j = 1, \ldots, n.
\]

(c) Let \(A \) be a tridiagonal matrix with \(a_{ii} = d, a_{i,i+1} = a_{i+1,i} = e \) for all allowable \(i \). Show that the eigenvalues of \(A \) consist of the numbers \(d + 2e \cos\left(\frac{j\pi}{n+1}\right) \), \(j = 1, \ldots, n \).

2. Let \(A, B \in \mathbb{R}^{n \times n} \) with \(A \) non-singular, and suppose that \(\|A^{-1}\|_2 \|B\|_2 \leq q \) for a constant \(q < 1 \). Here, \(\| \cdot \|_2 \) is the matrix norm subordinate to the Euclidean norm on \(\mathbb{R}^n \).

(a) Show that \(C = A + B \) is non-singular.

(b) Show that the iteration process \(A x_{j+1} = b - B x_j, j = 0, 1, \ldots \) converges for any starting vector, \(x_0 \), to the solution of the system \(C x = b \). Give an estimate for the Euclidean norm of error \(x_j - x \) in terms of \(q \).

(c) Let \(A = 2I \), where \(I \) is the \(n \times n \) identity matrix, and let \(B \) be the matrix with the only non-zero entries \(b_{i,i+1} = b_{i+1,i} = -1 \), for \(i = 1, \ldots, n - 1 \). Estimate \(q \) in terms of \(n \).

3. Suppose that \(\{a_1, \ldots, a_k, \ldots, a_n\} \) is a basis for \(\mathbb{R}^n \). Consider \(\{\tilde{a}_1, \ldots, \tilde{a}_k, \ldots, a_n\} \), a second basis which is the same as the first except that \(\tilde{a}_k \neq a_k \) for a single index \(k \), \(1 \leq k \leq n \).

(a) How can one find the coordinates (components) of a prescribed vector \(v \) with respect to the second basis, given both the coordinates of \(v \) and \(\tilde{a}_k \) with respect to the first basis?

(b) Suppose \(A = [a_1, \ldots, a_k, \ldots, a_n] \in \mathbb{R}^{n \times n} \) is nonsingular, and its \(PLU \)-factorization has been computed. Afterward, we learn that the wrong matrix has been factorized; the correct matrix is \(\tilde{A} = [\tilde{a}_1, \ldots, \tilde{a}_k, \ldots, a_n] \). Also nonsingular, \(\tilde{A} \) is the same as \(A \) except for one column. How can we solve \(\tilde{A} x = b \) using the original \(PLU \)-factorization of \(A \)?
(c) To leading order, what is the computational cost (in flops) of the \(PLU \)-factorization of \(A \)? If this factorization is used, then what is the additional cost needed to solve \(Ax = b \)?

4. Consider the (unshifted) \(QR \) algorithm for computing the eigenvalues of an invertible matrix \(A \in \mathbb{R}^{n \times n} \).

 (a) Give the algorithm.

 (b) Show that each of the matrices \(A^{(k)} \) generated by this algorithm are orthogonally similar to \(A \).

 (c) Show that if \(A \) is upper Hessenberg, then so are each of the matrices \(A^{(k)} \) generated by this algorithm.

 (d) For the following \(A \), the sequence \(\{A^{(k)}\} \) has a limit. Find this limit and give your reasoning.

\[
\begin{pmatrix}
3 & 3 \\
1 & 5
\end{pmatrix}
\]
1. (25 points) Let \(A \in \mathbb{R}^{n \times n} \) have entries \(a_{ij} \) which satisfy
\[
 a_{ii} \geq \sum_{j \neq i} |a_{ij}| + 2, \quad 5 \leq a_{ii} \leq 7.
\]
(a) Prove that \(A^{-1} \) exists.
(b) Find a numerical bound for \(\|A\|_{\infty} \).
(c) Now assume \(A = A^T \). Find numerical bounds for \(\|A\|_2 \) and \(\|A^{-1}\|_2 \).

2. (25 points) For both parts suppose that \(A \in \mathbb{C}^{n \times n} \) is fixed and nonsingular.
(a) Prove or disprove the following statement: if \(A + \delta A \) is singular for a perturbation \(\delta A \in \mathbb{C}^{n \times n} \), then \(\|\delta A\|_2 \geq 1/\|A^{-1}\|_2 \).
(b) Use the result from (a) to show that
\[
 1/\kappa_2(A) = \min \left\{ \frac{\|\delta A\|_2}{\|A\|_2} : \det(A + \delta A) = 0 \right\},
\]
where \(\kappa_2(A) \) is the 2-norm matrix condition number. Hint: use the Singular Value Decomposition.

3. (25 points) Consider a matrix \(A \in \mathbb{C}^{n \times n} \) and vector \(x \in \mathbb{C}^n \) with \(x \neq 0 \). The Rayleigh quotient \(R_A(x) \) of \(A \) is
\[
 R_A(x) = \frac{x^* A x}{x^* x}.
\]
(a) State the definition of a Hermitian matrix and characterize its spectrum, eigenvectors, and diagonalizability.
(b) Prove that if \(A \) is Hermitian, then \(R_A(x) \) is real and
\[
 \lambda_1 \leq R_A(x) \leq \lambda_n,
\]
where \(\lambda_1 \) (resp. \(\lambda_n \)) is the least (resp. greatest) eigenvalue of \(A \).
(c) State the definition of a normal matrix and characterize its spectrum, eigenvectors, and diagonalizability.
(d) Assuming that \(A \) is normal, prove that \(R_A(x) \) is in general complex and lies in the convex hull of the eigenvalues \(\lambda_i, i = 1, \ldots, n \) of \(A \). That is, assuming \(z = R_A(x) \) for some \(x \neq 0 \), show that there exists \(n \) numbers \(c_i \) with the following properties: (i) \(0 \leq c_i \leq 1, i = 1, \ldots, n \); (ii) \(\sum_{i=1}^n c_i = 1 \); and (iii) \(z = \sum_{i=1}^n c_i \lambda_i \).

4. (25 points) Let \(B \in \mathbb{R}^{n \times n} \) have entries which satisfy
\[
 b_{ij} = 0, \quad i > 1 \text{ and } |i - j| > 1.
\]
That is, \(B \) is a tridiagonal matrix except for the first row which might be full. Describe an algorithm for solving a system of linear equations with coefficient matrix \(B \) using \(O(n) \) flops and storage. Under what conditions does your algorithm break down?
Write the last four digits of your UNM number (not your name) on each work sheet. Please do each of the following four problems, providing concise answers with justification.

1. (25 points)

(a) Suppose \(S \in \mathbb{C}^{m \times m} \) is nonsingular. Establish the polar decomposition \(S = HW \), where \(H \) is Hermitian positive definite and \(W \) is unitary. Hint: use the singular value decomposition.

(b) Prove or disprove the following statement. A matrix \(A \in \mathbb{C}^{m \times m} \) is diagonalizable if and only if there exists a Hermitian positive definite matrix \(H \) such that \(H^{-1}AH = N \), where \(N \) is a normal matrix.

2. (25 points)

(a) Show that if \(M \in \mathbb{C}^{n \times n} \) with \(\|M\|_p < 1 \), then \(I - M \) is invertible.

(b) For nonsingular \(D = \text{diag}(d_1, \ldots, d_n) \in \mathbb{C}^{n \times n} \), show that \(\|D^{-1}\|_p = \frac{1}{\min_{1 \leq j \leq n}|d_j|} \).

(c) Use the converse of the result in (a) combined with (b) to prove the following. If \(\mu \) is an eigenvalue of \(A + E \in \mathbb{C}^{n \times n} \) and \(X^{-1}AX = \text{diag}(\lambda_1, \ldots, \lambda_n) \), then

\[
\min_{1 \leq j \leq n} |\lambda_j - \mu| \leq \kappa_p(X)\|E\|_p.
\]

3. (25 points) Let \(A \in \mathbb{R}^{n \times n} \) be nonsingular and consider solving \(Ax = b \) by an iterative method. The method is based on splitting \(A = M - N \) and solving

\[
Mx^{(n+1)} = Nx^{(n)} + b,
\]

with \(x^{(0)} \) an arbitrary initial vector. If \(M \) is invertible, then

\[
x^{(n+1)} = Gx^{(n)} + k, \quad \text{where} \quad G \equiv M^{-1}N, \quad k \equiv M^{-1}b.
\]

The iterative method is called symmetrizable if for some nonsingular matrix \(W \), the matrix \(W(I - G)W^{-1} \) is symmetric positive definite. \(W \) is called the symmetrization matrix.

(a) Prove that if the method \(x^{(n+1)} = Gx^{(n)} + k \) is symmetrizable then (i) the eigenvalues of \(G \) are real, (ii) the largest eigenvalue of \(G \) is less than one, and (iii) the eigenvectors of \(G \) form a basis for \(\mathbb{R}^n \).
(b) Assuming that A and M are both symmetric positive definite (SPD), define $A^{1/2}$ and show that it is a symmetrization matrix. Hint: first show that $G = I - M^{-1/2}A$.

(c) State a sufficient condition for the iteration $x^{(n+1)} = Gx^{(n)} + k$ to converge.

(d) If the iteration is symmetrizable, does it necessarily converge? Explain.

(e) Find the iteration matrices G_J and G_{GS} for the Jacobi and Gauss-Seidel iterative methods. Is either of them symmetrizable?

4. (25 points) Suppose $A \in \mathbb{R}^{n \times n}$ is nonsingular and satisfies the decomposition $LU = PA$, with L lower triangular, U upper triangular, and P a permutation. Write $L \equiv D_L + L_0$ and $U \equiv D_U + U_0$, with D_L and D_U respectively the diagonal parts of L and U (assume the standard convention $D_L = I$). Define x as the exact solution of

$$(|D_L| - |L_0|)(|D_U| - |U_0|)x = e, \quad e^T \equiv (1, 1, \ldots, 1),$$

where the entries $|b_{ij}|$ of $|B|$ are the absolute values of the entries b_{ij} of B.

(a) Show that there exists a unique solution x.

(b) Show that $\|x\|_\infty \geq \|A^{-1}\|_\infty$.

(c) Using this estimate, determine the order of operations required to compute an upper bound on $\kappa_\infty(A)$ in the maximum $(p = \infty)$ norm. In this norm $\kappa_\infty(PA) = \kappa_\infty(A)$; is this true in general?
Write the last four digits of your UNM number (not your name) on each work sheet. Please do each of the following four problems, providing concise answers with justification.

1. (10 points) Consider the equations

\[w_0 = w_N; \quad w_1 = w_{N+1}; \quad w_{j+1} + 4w_j + w_{j-1} = f_j, \text{ for } j = 1, \ldots, N. \]

(a) Show that the resulting system \(A\mathbf{w} = \mathbf{f} \) for \(\mathbf{w} = [w_1, \ldots, w_N]^T \) can be written

\[(A' + uv^T)\mathbf{w} = \mathbf{f}, \]

where \(A' \) is a tridiagonal matrix and the column vectors \(\mathbf{u}, \mathbf{v} \in \mathbb{R}^N \).

(b) Describe a method for solving the system which is \(O(N) \) in terms of cost and storage.

2. (10 points) Let \(A \in \mathbb{R}^{n \times n}, \mathbf{b} \in \mathbb{R}^n \), and consider the associated Arnoldi iteration.

Set \(\mathbf{q}_1 = \mathbf{b}/\|\mathbf{b}\|_2 \)

for \(k = 1, 2, \ldots \)

\[\mathbf{v} = A\mathbf{q}_k \]

for \(j = 1 \) to \(k \)

\[h_{jk} = \mathbf{q}_j^T \mathbf{v} \]

\[\mathbf{v} = \mathbf{v} - h_{jk} \mathbf{q}_j \]

end

\[h_{k+1,k} = \|\mathbf{v}\|_2 \]

\[\mathbf{q}_{k+1} = \mathbf{v}/h_{k+1,k} \]

end

This iteration determines the equation

\[AQ_\ell = Q_{\ell+1} \tilde{H}_\ell, \] \(\tag{1} \)

where \(Q_\ell = [\mathbf{q}_1, \ldots, \mathbf{q}_\ell] \in \mathbb{R}^{n \times \ell} \) and \(\tilde{H}_\ell \in \mathbb{R}^{(\ell+1) \times \ell} \) is Hessenberg. For this problem, assume \(\ell < n \) and that \(h_{\ell+1,\ell} = 0 \) is encountered in the iteration.

(a) Show that every eigenvalue of \(\tilde{H}(1: \ell, :) \in \mathbb{R}^{\ell \times \ell} \) is an eigenvalue of \(A \). Hint: What does Eq. (1) imply about the full \(n \times n \) Hessenberg reduction \(A = HQQ^T \) of \(A \)?
(b) Show that if \(A \) is nonsingular, then the solution to \(Ax = b \) is an element of the \(\ell \)th Krylov subspace \(K_{\ell}(A, b) = \text{span}\{b, Ab, \ldots, A^{\ell-1}b\} \).

3. (10 points) Let \(A \in \mathbb{R}^{n \times n} \) be symmetric and positive definite (spd), and consider the following iteration.

\[
\text{Choose } A_0 = A \\
\text{for } k = 0, 1, 2, \ldots \\
\quad \text{Compute the Cholesky factor } L_k \text{ of } A_k \text{ (so } A_k = L_k L_k^T) \\
\quad \text{Set } A_{k+1} = L_k^T L_k \\
\text{end}
\]

Here \(L_k \) is lower triangular with positive diagonal elements.

(a) Show that \(A_k \) is similar to \(A \), and that \(A_k \) is spd (the iteration is therefore well-defined).

Now consider the special case of a \(2 \times 2 \) spd matrix,

\[
A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}, \quad a \geq c,
\]

(b) For this matrix, perform one step of the algorithm and write down \(A_1 \).

(c) Use the result from (b) to argue that \(A_k \) converges to \(\text{diag}(\lambda_1, \lambda_2) \), where the eigenvalues of \(A \) are ordered as \(\lambda_1 \geq \lambda_2 > 0 \).

4. (10 point) Let \(\alpha \) be a real number and consider the linear system

\[
x + \alpha y = a \\
-\alpha x + y = b.
\]

(a) Write out the Jacobi and Gauss-Seidel methods for solving the system iteratively, each in the form \(x_{k+1} = R x_k + c \), where \(x = [x, y]^T \). For which \(\alpha \) will Jacobi and Gauss-Seidel converge?

(b) Write out the SOR(\(\omega \)) method (successive over relaxation) for iteratively solving the system. Under what conditions on \(\alpha \) and the relaxation parameter \(\omega \) will SOR(\(\omega \)) converge?
Write the last four digits of your UNM number (not your name) on each work sheet. Please do each of the following four problems, providing concise answers with justification.

1. (20 points) Let \(A \in \mathbb{R}^{n \times n} \) have rank \(r \), with singular values \(\sigma_1 \geq \cdots \geq \sigma_r > 0 \) and full singular value decomposition \(A_{n \times n} = U_{n \times n} \Sigma_{n \times n} V_{n \times n}^T \).

(a) List bases for range\((A) \), null\((A) \), range\((A^T) \), and null\((A^T) \).

(b) For \(B = \begin{pmatrix} 0 & A \\ A^T & 0 \end{pmatrix} \) find the eigendecomposition \(B = W \Lambda W^T \) and list its \(2n \) eigenvalues.

2. (20 points)

(a) Find a \(QR \)-factorization (\(Q \) rectangular) of

\[
\begin{pmatrix} 1 & 1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{pmatrix}
\]

and use it to find the least squares solution of \(Ax = (1, 1, 1, 1)^T \).

(b) Let \(A \in \mathbb{R}^{n \times n} \), with \(a_j \) the \(j \)th column of \(A \). Prove that

\[
\det A \leq \prod_{j=1}^{n} \| a_j \|_2.
\]

3. (20 points) Let \(A, B \in \mathbb{R}^{n \times n} \). \(B \) is described as an approximate inverse of \(A \), provided that \(\| I - BA \| < 1 \). Assume that the norm \(\| \cdot \| \) obeys the sub-multiplicative property: \(\| CD \| \leq \| C \| \cdot \| D \| \) for all \(C, D \in \mathbb{R}^{n \times n} \).

(a) Given \(M \in \mathbb{R}^{n \times n} \), show that if \(\| M \| < 1 \), then \(I - M \) is invertible. Estimate \(\|(I - M)^{-1}\| \) in terms of \(\| M \| \).

(b) Use the results in (a) to prove the following claims: If \(B \) is an approximate inverse of \(A \), then (i) \(A \) and \(B \) are both nonsingular and (ii)

\[
\| A^{-1} \| \leq \frac{\| B \|}{1 - \| I - BA \|}, \quad \| A^{-1} - B \| \leq \frac{\| B \| \cdot \| I - BA \|}{1 - \| I - BA \|}.
\]

4. (20 points) Let \(A \in \mathbb{R}^{n \times n} \) be symmetric. Consider the shifted \(QR \)-method for finding its eigenvalues.

(a) Briefly describe a pre-processing step necessary for efficient implementation of the method.

(b) Give the algorithm, assuming the Raleigh quotient shift.

(c) Given an unreduced (no subdiagonal entries are zero) tridiagonal matrix \(T \), show that one iteration leads to deflation if the shift is an eigenvalue of \(T \). More precisely, let \(\mu \) be an eigenvalue of \(T \), and show the following. If \(\bar{T} = RQ + \mu I \) where \(QR = T - \mu I \) is a \(QR \)-factorization, then \(t_{n,n-1} = 0 \) and \(\bar{t}_{nn} = \mu \).
5. (20 points) Let H be a nonsingular upper Hessenberg matrix. Describe Gaussian elimination with partial pivoting on this matrix. Describe the structure of the factors computed. Estimate the number of flops required to compute the factorization. (Recall that H is upper Hessenberg if $h_{ij} = 0$ whenever $i > j + 1$.)