August 2011

Instructions: There are six (6) problems on this examination. Work all problems.

1. (15 points) Locate the equilibrium points of the following ODE system

\[
\begin{align*}
 x' &= x(x^2 + y^2 - 1) \\
 y' &= y(x^2 + y^2 - 1)
\end{align*}
\]

Sketch the phase plane diagram, and discuss the stability properties of all equilibrium points.

2. (15 points) For the ODE system

\[
\begin{align*}
 x' &= X(x,y) \\
 y' &= Y(x,y)
\end{align*}
\]

show that there are no closed paths in a simply-connected region in which

\[
\frac{\partial(\rho X)}{\partial x} + \frac{\partial(\rho Y)}{\partial y}
\]

is of one sign, where \(\rho(x,y) \) is any function having continuous first partial derivatives.

3. (20 points) The ODE system

\[
\begin{align*}
 x_1' &= (-\sin 2t)x_1 + (\cos 2t - 1)x_2 \\
 x_2' &= (\cos 2t + 1)x_1 + (\sin 2t)x_2
\end{align*}
\]

has a fundamental matrix of normal solutions:

\[
\Phi(t) = \begin{pmatrix} e^{t}(\cos t - \sin t) & e^{-t}(\cos t + \sin t) \\ e^{t}(\cos t + \sin t) & e^{-t}(-\cos t + \sin t) \end{pmatrix}
\]

Obtain a matrix \(E \) such that \(\Phi(t + \pi) = \Phi(t)E \) and find the Floquet exponents.

4. (15 points) Consider the equation

\[yu_x + xu_y = xy^3 \]

with the boundary conditions \(u = x^2 \) on \(y = 0, \ 1 < x < 2 \). In what region of \((x,y) \) space is the solution determined? What is the solution?

5. (15 points) Show that the solution to the quasilinear equation

\[u_x + u_y = u^2 \]

passing through the initial curve

\[x = t, \ y = -t, \ u = t \]

becomes infinite along the hyperbola \(x^2 - y^2 = 4 \).
6. (20 points) Consider a cylindrical waveguide of radius a and infinite length, with absorbing boundary conditions at the walls and a vibrating diaphragm at $z = 0$ oscillating at frequency ω. Find the general solution for waves outgoing at $z = \pm \infty$. That is, solve
\[
 u_{tt} = c^2 \Delta u + \delta(z) e^{i\omega t} , \; 0 \leq r < a , \; 0 \leq \theta < 2\pi , \; -\infty < z < \infty ,
\]
with $u(a, \theta, z, t) = 0$. Show that if $\omega < \omega_0$ there are no propagating wave solutions and find an expression for ω_0.
Hints: (a) Look for solution in the following form (you need to justify why it is possible to drop the dependence on θ):
\[
 u(r, \theta, z, t) = R(r) Z(z) e^{i\omega t}.
\]
Carefully discuss the cases $z < 0$ and $z > 0$ and ensure that in each case the z-dependence leads to either outgoing waves or bounded behavior at infinity. Green’s functions could be helpful here, but you can simply work away from $z = 0$ and impose the necessary conditions on the solution at $z = 0$ implied by the δ-function forcing to connect the expansions in the positive and negative half-line. Note that here we are only interested in the ”particular” solution consistent with the forcing and BC, while the ”outgoing-wave” condition implies that any homogeneous solution part must be set to zero.
(b) The solution of the following ODE
\[
 x^2 f'' + xf' + (x^2 - m^2) f = 0, \; m = 0, 1, 2, \ldots ,
\]
which is nonsingular at $x = 0$, is given by the Bessel function $J_m(x)$. Let the n-th non-trivial zero of the Bessel function $J_m(x)$ be x_{mn}, i.e. $J_m(x_{mn}) = 0$ (assume that $x_{mn} > 0$). The smallest zero x_{01} of the Bessel function J_0 is given by $x_{01} \simeq 2.4048$ and x_{mn} grows with increasing m, n. You can assume that all zeros of $J_m(x)$ are known.
(c) The solution of the following ODE
\[
 x^2 f'' + xf' - (x^2 + n^2) f = 0, \; n = 0, 1, 2, \ldots ,
\]
with no singularity at $x = 0$, has no zeros in $0 \leq x < \infty$.