Real Analysis Qualifying Exam August 2011

Instructions: Hand in 7 out of the 9 following problems. Start each problem on a new page, number the pages, and put only your Banner identification number on each page. Clear and concise answers with good justification will improve your score.

1. Let \(f \) be the “ruler function” on \([0, 1]\) given by \(f(x) = 1/2^n \) when \(x = p/2^n \), \(p \) is an odd integer and \(f(x) = 0 \) otherwise.

 (a) For which \(x \) is \(f \) continuous and discontinuous and why?

 (b) For which \(x \) does \(f'(x) \) exist and why?

2. Show that the subset of the complex plane \(S = \{ e^{2\pi i/n} : n = 1, 2, 3, \ldots \} \) is compact using the definition of compactness.

3. Let \(\{f_n\}_{n=1}^\infty \) be a sequence of real valued functions defined on \(\mathbb{R} \). Define what it means for \(f_n \) to converge to \(f \) uniformly. Then prove that if \(f_n \to f \) uniformly then \(f \) must be continuous.

4. Given a 2 dimensional vector \((x_1, x_2)\), define its \(p \)-norm as

 \[
 \|(x_1, x_2)\|_p = \begin{cases}
 \left(\left|x_1\right|^p + \left|x_2\right|^p\right)^{\frac{1}{p}} & 1 \leq p < \infty \\
 \max(|x_1|, |x_2|) & p = \infty
 \end{cases}
 \]

 (a) In the Euclidean plane, geometrically describe the “unit balls” \(\{(x_1, x_2) : \|(x_1, x_2)\|_p \leq 1\} \) in the \(p = 1, 2, \infty \) norms.

 (b) Show that for a vector \((x_1, x_2)\) its \(p \)-norm converges to its \(\infty \)-norm as \(p \to \infty \). In other words, show that

 \[
 \lim_{p \to \infty} \|(x_1, x_2)\|_p = \|(x_1, x_2)\|_\infty.
 \]

5. Let \(f \) be a continuous, real valued function on \([0, 1]\) such that \(\int_0^1 f(x) x^n dx = 0 \) for any \(n = 0, 1, 2, 3, \ldots \) Show that \(f(x) = 0 \) for all \(x \in [0, 1] \).

6. Suppose \(\Omega \) is a region in \(\mathbb{R}^2 \) which can be characterized in the following two ways

 \[
 \Omega = \{(x, y) : u_1(x) \leq y \leq u_2(x), a \leq x \leq b\} = \{(x, y) : v_1(y) \leq x \leq v_2(y), c \leq y \leq d\}
 \]

 for some continuous functions \(u_1, u_2, v_1, v_2 \). Prove Green’s theorem for \(\Omega \). That is, show that if \(P(x, y) \) and \(Q(x, y) \) are \(C^1 \) functions in a neighborhood of \(\Omega \), and \(C \) is the boundary of \(\Omega \) then

 \[
 \oint_C P \, dx + Q \, dy = \iint_{\Omega} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \, dx \, dy.
 \]
7. Suppose S is an orientable surface with a nonempty boundary curve C for which Stokes’ theorem is valid for all C^1 vector fields. Suppose F, F_k are C^1 vector fields such that $F_k \to F$ uniformly on C. Show that

$$\lim_{k \to \infty} \int_S \text{curl } F_k \cdot n \ dS = \int_S \text{curl } F \cdot n \ dS$$

where n is a continuous normal vector field on S.

8. Suppose $F : \mathbb{R}^n \to \mathbb{R}^n$ is a continuously differentiable map such that the Jacobian determinant $\det(DF(x))$ is nonzero for every $x \in \mathbb{R}^n$. Show that

$$\lim_{r \to 0^+} \frac{\text{Vol}(F(B_r(x_0)))}{\text{Vol}(B_r(x_0))} = |\det(DF(x_0))|$$

for every $x_0 \in \mathbb{R}^n$.

9. Suppose $f(x, y) : \mathbb{R}^2 \to \mathbb{R}$ is C^2 and that $f_y(0, 0) \neq 0, f(0, 0) = 0$.

(a) Show that there exists a neighborhood $(-\epsilon, \epsilon)$ and a continuously differentiable, real valued function ϕ defined on this set such that $\phi(0) = 0$ and $f(x, \phi(x)) = 0$.

(b) Show that the vector $\langle 1, \phi'(x) \rangle$ is orthogonal to the vector $\langle f_x(x, \phi(x)), f_y(x, \phi(x)) \rangle$ for all $x \in (-\epsilon, \epsilon)$.

(c) Now define the map $F(x, w) = (x + w f_x(x, \phi(x)), \phi(x) + w f_y(x, \phi(x)))$. Show that F is one-to-one in a neighborhood of the origin.