QUALIFYING - ALGEBRA January 1997

There are 10 problems. Each problem counts 10 points. Write your code number and problem number on each sheet of paper.

1. If H is cyclic normal subgroup of a group G, show that every subgroup of H is normal in G.
2. a) Suppose $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} \mathbf{Z} \rightarrow 0$ is an exact sequence of abelian groups. Show that there is a homomorphism $h: \mathbf{Z} \rightarrow B$ such that $g(h(n))=n$ for all $n \in \mathbf{Z}(\mathbf{Z}=$ integers $)$.
b) Give an example of an exact sequence of abelian groups $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ such that there does not exist a homomorphism $h: C \rightarrow B$ with $g(h(x))=x$ for all $x \in C$.
3. a) Let $A_{n}=$ subgroup of all even permutations in S_{n} (=group of all permutations of n letters.) Show that A_{4} is generated by $3-$ cycles.
b) Show that A_{4} contains no subgroup of order 6 .
4. Let A be an $n \times n$ matrix with n distinct nonzero eigenvalues. Let B be the $2 n \times 2 n$ matrix given by

$$
B=\left(\begin{array}{ll}
0 & I \\
A & 0
\end{array}\right)
$$

where I is the $n \times n$ identity matrix. Show that the eigenvalues of B are the square roots of the eigenvalues of A.
5. Find the eigenvalues of $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ and evaluate A^{301}.
6. Let R be a commutative ring with identity and let S be a subset of R which is closed under multiplication. Let I be an ideal of R such that $I \cap S=\emptyset$ and assume I is maximal with respect to this property (i.e. if J is an ideal with $I \subset J$ and $J \cap S=\emptyset$ then $J=I$.) Show I is a prime ideal.
7. Show that every group of order 56 has a non-trivial normal subgroup.
8. Let $f \in \mathbf{C}(X)$ be a rational function with complex coefficients such that

$$
f(X)=f\left(\frac{1}{X}\right)
$$

Prove that there exists a rational function $g \in \mathbf{C}(X)$ such that

$$
f(X)=g\left(X+\frac{1}{X}\right)
$$

9. Let $\alpha \in \mathbf{C}$ be a complex number, $\alpha \notin \mathbf{Q}$ ($\mathbf{Q}=$ rationals). Let S be the set of all subfields K of \mathbf{C} that are algebraic over \mathbf{Q} and do not contain α.
1) Prove that S has a maximal element.
2) Let M be a maximal element of S; prove that any finite Galois extension of M is cyclic.
10. Let $\overline{\mathbf{Q}}$ be the algebraic closure of \mathbf{Q}. Prove that the group of all automorphisms of $\overline{\mathbf{Q}}$ is infinite.
