QUALIFYING ALGEBRA - AUGUST 1997

Each problem is worth 10 points.

- 1. Prove that any finitely generated subgroup of the additive group Q is generated by one element.
- 2. Let G be a finite group and let C(G) be its center. Assume G/C(G) is cyclic. Prove that G is commutative.
- 3. Let G be a finite group of order p^nq with p, q primes, p > q. Prove that G is not simple.
- 4. Let G be an additive subgroup of \mathbf{R} . (\mathbf{R} =the field of real numbers.) Assume there exists an interval $I=(a,b)\subset\mathbf{R}$ such that such that $G\cap I=\{0\}$. Prove that G is generated by one element.
- 5. Let A be a commutative ring with unit element. Assume $a \in A$ is contained in all prime ideals of A. Prove that a is nilpotent (i.e. that there exists an integer $n \ge 1$ such that $a^n = 0$.)
- 6. Prove that the ring of Gauss integers $\mathbf{Z}[i] := \{a + bi | a, b \in \mathbf{Z}\}$ is principal.
- 7. Let $a_1, ..., a_n$ be integers with greatest common divisor 1. Prove that there exists a matrix A with integer coefficients, whose first row is $[a_1, ..., a_n]$, such that det(A) = 1. (Hint: consider the \mathbb{Z} -module \mathbb{Z}^n and the submodule generated by the vector $[a_1, ..., a_n]$.)
 - 8. Determine the Galois group over Q of the polynomial $x^6 5$.
- 9. Prove the fundamental theorem of algebra (that is show that the field of complex numbers C is algebraically closed.)
- 10. Let A be a $n \times n$ matrix with complex coefficients. Prove that $A^n = 0$ if and only if $tr(A) = tr(A^2) = \dots = tr(A^n) = 0$.