QUALIFYING ALGEBRA - AUGUST 1997

Each problem is worth 10 points.

1. Prove that any finitely generated subgroup of the additive group \mathbf{Q} is generated by one element.
2. Let G be a finite group and let $C(G)$ be its center. Assume $G / C(G)$ is cyclic. Prove that G is commutative.
3. Let G be a finite group of order $p^{n} q$ with p, q primes, $p>q$. Prove that G is not simple.
4. Let G be an additive subgroup of \mathbf{R}. ($\mathbf{R}=$ the field of real numbers.) Assume there exists an interval $I=(a, b) \subset \mathbf{R}$ such that such that $G \cap I=$ $\{0\}$. Prove that G is generated by one element.
5. Let A be a commutative ring with unit element. Assume $a \in A$ is contained in all prime ideals of A. Prove that a is nilpotent (i.e. that there exists an integer $n \geq 1$ such that $a^{n}=0$.)
6. Prove that the ring of Gauss integers $\mathbf{Z}[i]:=\{a+b i \mid a, b \in \mathbf{Z}\}$ is principal.
7. Let a_{1}, \ldots, a_{n} be integers with greatest common divisor 1. Prove that there exists a matrix A with integer coefficients, whose first row is $\left[a_{1}, \ldots, a_{n}\right]$, such that $\operatorname{det}(A)=1$. (Hint: consider the \mathbf{Z}-module \mathbf{Z}^{n} and the submodule generated by the vector $\left[a_{1}, \ldots, a_{n}\right]$.)
8. Determine the Galois group over \mathbf{Q} of the polynomial $x^{6}-5$.
9. Prove the fundamental theorem of algebra (that is show that the field of complex numbers \mathbf{C} is algebraically closed.)
10. Let A be a $n \times n$ matrix with complex coefficients. Prove that $A^{n}=0$ if and only if $\operatorname{tr}(A)=\operatorname{tr}\left(A^{2}\right)=\ldots=\operatorname{tr}\left(A^{n}\right)=0$.
