QUALIFYING - ALGEBRA January 1998

Choose 8 out of the following 10 problems. Write your code number and problem number on each sheet of paper.

1. Let G be a group and H a subgroup of finite index. Prove that H contains a subgroup K which is normal in G and of finite index in G.
2. Prove that the free group on 2 generators is not solvable. (Hint: One may use the fact that S_{5} is generated by 2 elements.)
3. Give an example of an infinite group all of whose elements have finite order.
4. Let $\mathbf{Z}[\sqrt{10}]$ be the ring of all complex numbers of the form $a+b \sqrt{10}$ with $a, b \in \mathbf{Z}$. Prove that this ring is not a unique factorization domain.
5. Prove that if $f: A \rightarrow B$ and $g: B \rightarrow A$ are homomorphisms of R-modules (where R is a ring) such that $g \circ f=i d_{A}$ then $B \simeq(\operatorname{Im} f) \oplus($ Ker $g)$.
6. Prove that $(\mathbf{Z} / 5 \mathbf{Z}) \otimes_{\mathbf{Z}} \mathbf{Q}=0$. (Here \mathbf{Z} is the ring of integers, \mathbf{Q} is the field of rationals.)
7. Prove that the \mathbf{Z}-module \mathbf{Q} of rationals is not projective.
8. Let A and B be two square matrices with complex coefficients such that $A B=B A$. Prove that A and B have a common eivenvector.
9. What is the Jordan normal form of the matrix

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

10. For each integer $n \geq 2$ let ζ_{n} is a primitive n-th root of unity in the field of complex numbers. Prove that the union

$$
K=\bigcup_{n=2}^{\infty} \mathbf{Q}\left(\zeta_{n}\right)
$$

is a field which is not algebraically closed.

