Algebra Qualifying Exam

August 1999
Do the following 8 problems. Show all your work and explain all steps in a proof or derivation.

1. Let p be a prime and let G be a group with order $|G|=p^{n}$. Prove that the center of G is non-trivial, i.e. prove that there is an element $z \in G$ with $z \neq e$ and such that $g z=z g$ for all $g \in G$.
2. Let R be a commutative ring with multiplicative identity 1 . Show that R satifies the ascending chain condition on ideals (i.e. whenever $I_{1} \subset I_{2} \subset \cdots$ is a nested sequence of ideals in R, there is an n such that $I_{n}=I_{n+1}=\cdots$) if and only if every ideal is finitely generated.
3. Prove that the polynomial ring $\mathbb{Z}[x]$ with integer coefficients is not a principal ideal domain.
4. Show that the matrices

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

are similar over the rationals \mathbb{Q}.
5. Let $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ be an exact sequence of modules over a commutative ring \boldsymbol{R}. Show that for any R-module D, the induced sequence

$$
0 \longrightarrow \operatorname{Hom}(D, A) \xrightarrow{f .} \operatorname{Hom}(D, B) \xrightarrow{g .} \operatorname{Hom}(D, C)
$$

is exact.
6. Show that every group G of order 56 has a nontrivial normal subgroup.
7. Let F_{q} denote the finite field with q elements, and let $f(x) \in F_{q}[x]$ be irreducible. Show that $f(x)$ divides $x^{q^{n}}-x$ if and only if the degree of f divides n.
8. Let ζ be a primitive nth root of unity in the complex number field C. Show that $\mathbb{Q}\left(\zeta+\zeta^{-1}\right)$ is Galois over \mathbb{Q}. Hint: First show by induction that if σ is an automorphism of $\mathbb{Q}(\zeta)$ leaving $\mathbb{Q}\left(\zeta+\zeta^{-1}\right)$ fixed then for any integer k we have $\sigma\left(\zeta^{k}+\zeta^{-k}\right)=\zeta^{k}+\zeta^{-k}$.

