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Instructions

Each of the following 10 problems is worth 10 points. Solve all of these
10 problems. Write your code number on each sheet of paper.
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1) Suppose G is a group with no non-trivial, proper subgroups. Show
that G is isomorphic to Z/pZ for some prime p. (10 points)
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2) Prove that the symmetric group S3 is solvable. (10 points)
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3) Prove that the multiplicative group of all non-zero rational numbers
is not finitely generated. (10 points)
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4) Let R be a commutative ring with multiplicative identity 1. Let I be
the set of all elements x ∈ R for which there exists an integer n, depending
on x, such that xn = 0. Show that I is an ideal in R. (10 points)
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5) Prove that the ring Z[
√

10] = {a + b
√

10; a, b ∈ Z} is not factorial. (10
points)
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6) Consider the polynomial x4 − p ∈ Q[x], where p is a prime natural
number. Find a splitting field F of this polynomial over Q and show that the
Galois group AutQF in non-commutative. (10 points)
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7) Suppose K/Q is a Galois extension of degree 3. Show that K ⊂ R.
(10 points)
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8) Show that any algebraically closed field must be infinite. (10 points)
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9) Let R be the ring of all rational numbers a/b such that b is not divisible
by 17. Prove that R has only one maximal ideal.
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10) Let ζ10 be a primitive tenth root of unity in C. Show that Q(ζ10) is
a Galois extension of Q with Galois group Z/4Z. (10 points)
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