ALGEBRA QUALIFIER EXAM

There are 10 problems. Each problem is worth 10 points.

1. Show that the group of 2×2 invertible matrices with real coefficients is not solvable.
2. Let p be a prime. Show that there is an isomorphism of groups

$$
\mathbf{Z} / p^{2} \mathbf{Z} \simeq(\mathbf{Z} / p \mathbf{Z}) \oplus(\mathbf{Z} /(p-1) \mathbf{Z})
$$

3. Let

$$
M_{1}=\frac{\mathbf{Q}[x]}{(x-2)^{2}}, \quad M_{2}=\frac{\mathbf{Q}[x]}{(x-2)} \times \frac{\mathbf{Q}[x]}{(x-2)} .
$$

1) Are M_{1} and M_{2} isomorphic as \mathbf{Q}-vector spaces ? Why ?
2) Are M_{1} and M_{2} isomorphic as rings ? Why ?
3) Are M_{1} and M_{2} isomorphic as $\mathbf{Q}[x]$-modules ? Why ?
4. Compute the center of the group of all isometries of the plane that send a regular pentagon into itself.
5. Prove that if A is an integral domain with quotient field K then K is not a free A-module unless A itself is a field.
6. Let

$$
\begin{gathered}
R=\{\text { continuous functions } f:[0,1] \rightarrow \mathbf{R}\}, \\
I=\{f \in R: f(1 / 2)=0\} .
\end{gathered}
$$

Show that I is a maximal ideal in R.
7. Show that any element in a finite field is a sum of two squares.
8. Prove that the polynomial $t^{5}-7$ is irreducible in $\mathbf{Q}[t]$. Show that its Galois is solvable, non-commutative, of order 20.
9. Suppose M_{1}, M_{2} are $n \times n$ matrices with complex coefficients such that $M_{1} M_{2}=$ $M_{2} M_{1}$. Show that M_{1} and M_{2} share a common eigenvector.
10. Show that there exists real (i.e. contained in \mathbf{R}) Galois extensions of \mathbf{Q} of arbitrarily large degree.

