Algebra Qualifying Exam

The total exam time is three hours. Each question is worth 20 points. Please put your answers to the questions on *separate* sheets of paper with your social security number (*not* your name) at the top of each page.

- 1. Viewing \mathbf{Z} and \mathbf{Q} as additive groups, show that \mathbf{Q}/\mathbf{Z} is a torsion group. Moreover, for each integer $n \geq 1$ show that \mathbf{Q}/\mathbf{Z} has one and only one subgroup of order n and that this subgroup is cyclic.
- **2.** Let G be a cyclic group of order m and H a cyclic group of order n. If m and n are relatively prime show that $G \times H$ is cyclic of order mn.
- **3.** A commutative ring A with identity is said to be Boolean if $x^2 = x$ for all $x \in A$.
 - **a.** Show that 2x = 0 for all $x \in A$.
 - **b.** Show that every prime ideal $P \subset A$ is maximal and that A/P is a field with 2 elements.
- **4.** Suppose A is a commutative ring with identity and let M and N be unitary A-modules. Suppose $f: M \to N$ and $g: N \to M$ are A-module homomorphisms satisfying g(f(x)) = x for all $x \in M$. Show that there is an isomorphism

$$N = \operatorname{Im}(f) \oplus \operatorname{Ker}(g)$$
.

- 5. For each abelian group A of order 8, give an example of a Galois extension K/\mathbf{Q} with $G_{K/\mathbf{Q}} \simeq A$.
- **6.** Show that $\mathbf{Q}(\sqrt{-2})$ is not contained in any cyclic extension K/\mathbf{Q} of degree 4.
- 7. Suppose R is an integral domain and k a field with $k \subset R$. If $\dim_k(R)$ is finite show that R is a field.