520 FINAL

There are 10 problems. Each problem is worth 10 points.

1. Let p and q be distinct primes. Prove that any group of order $p q$ is solvable.
2. Let p be a prime. Prove that any group of order p^{n} has a non-trivial center.
3. Prove that the symmetric group S_{4} is solvable.
4. Show that the group defined by generators a, b and relations $a^{2}=b^{3}=e, a b=b^{2} a$ is isomorphic to the symmetric group S_{3}.
5. Prove that the additive group \mathbf{Q} of rational numbers is not free abelian.
6. Prove that any maximal ideal in the ring R of real continuous functions on $[0,1]$ is of the form $M_{a}=\{f \in R \mid f(a)=0\}$ for some $a \in[0,1]$.
7. Let K and L be fields. Prove that the product $K \times L$ in the category of rings cannot be a field.
8. Prove that if $\zeta \in \mathbf{C}$ is a primitive cubic root of unity then $\mathbf{Z}[\zeta]$ is Euclidean.
9. Prove that $\mathbf{Z}[\sqrt{10}]$ is not principal.
10. Let k be a field. Show that there exists a finitely generated module over the ring of polynomials $k[x, y]$ which is torsion free but not free. (Hint: consider an appropriate ideal.)
11. Give an example of an exact sequence of \mathbf{Z}-modules which is not split.
12. Prove that if $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is an exact sequence of \mathbf{Z}-modules with A and C finite sets of cardinality a and c with a and c coprime then the exact sequence is split.
