Algebra Qualifying Exam

August 2005
Do the following 8 problems. Show all your work and explain all steps in a proof or derivation.

1. Let p be a prime and let G be a group with order $|G|=p^{n}$. Prove that the center of G is non-trivial, i.e. prove that there is an element $z \in G$ with $z \neq e$ and such that $g z=z g$ for all $g \in G$.
2. Let R be a ring and $I \subset R$ an ideal. Suppose that $a \equiv b \bmod I$ and $c \equiv d \bmod I$.
(i) Show that $a+c \equiv(b+d) \bmod I$.
(ii) Show that $a c \equiv b d \bmod I$.
3. Show that the matrices

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

are similar over the rationals \mathbb{Q}.
4. Let $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ be an exact sequence of modules over a commutative ring R. Show that if C is a free R module, then the exact sequence splits.
5. Let A, B be any two endomorphisms of a vector space V over \mathbb{R}, such that

$$
A \circ B-B \circ A=I d,
$$

where $I d$ is the identity endomorphism. Show that V is infinite dimensional.
6. Show that no group of order 48 is simple.
7. Consider the ring $\mathbb{Z}[\sqrt{-5}]$.
(i) Find all the units in $\mathbb{Z}[\sqrt{-5}]$.
(ii) Show that $\mathbb{Z}[\sqrt{-5}]$ is an integral domain but not a Unique Factorization Domain (UFD).
8. Let \mathbb{Z} be the ring of integers and \mathbb{Q} the field of rational numbers. Prove that

$$
(\mathbb{Z} / 7 \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q}=0
$$

