QUALIFYING EXAM - ALGEBRA 2007

Make sure to show all work and please solve each problem on a separate page. Please remember to put your social security number, rather than your name, on all pages of the exam.

- **1.** Let G be a group and H a subgroup of finite index n.
 - a. Prove that there is a homomorphism from G into the symmetric group on n letters S_n whose kernel is contained in H. Hint: think of the proof that a group of order n is isomorphic to a subgroup of S_n .
 - **b.** Prove that there exists a normal subgroup N of G contained in H and of finite index in G.
- **2.** Let G be a group whose group of automorphisms Aut(G) is cyclic. Prove that G is abelian
- **3.** Let K and L be fields with L = K(x), where x is transcendental over K. Let F be a subfield of L containing K. Assume that K is different from F.
 - **a.** Prove that x is algebraic over F.
 - **b.** Prove that L is a finite extension of F.
- **4.** Let $f: A \to B$ be a surjective homomorphism of commutative rings with 1 (in particular, we assume f(1) = 1). Prove that if A has a unique maximal ideal, then so does B.
- **5.** Let $\mathcal{C}([0,1])$ be the ring of continuous real valued functions on the closed interval [0,1].
 - **a.** Suppose $S \subset [0,1]$ is a subset and let $I(S) \subset \mathcal{C}(S)$ be the set of continuous functions which vanish at each point of S. Show that I(S) is an ideal.
 - **b.** When is I(S) maximal?
 - **c.** (Extra Credit!) Are all maximal ideals in C(S) of the type listed in part **b**?
- **6.** Show that there are infinitely many distinct subfields $F \subset \mathbf{C}$ of the complex numbers with $[\mathbf{C}:F]=2$.
- **7.** Give an example of a vector space V and a linear map $L:V\to V$ which is injective but not surjective. Give an example of a vector space V and a linear map $M:V\to V$ which is surjective but not injective.
- **8.** Show that $\sqrt[4]{2}$ is not contained in $\mathbf{Q}(\zeta_n)$ for any positive n: here ζ_n is a primitive n^{th} root of unity.
- **9.** Characterize the maximal ideals of the ring $\mathbf{Z}[X]$.