QUALIFYING EXAM August 2008

- 1. Prove that the group defined by generators a, b, c and the relation abc = 1 is infinite.
- 2. Give an example of an exact sequence of **Z**-modules which is not split. Explain why your example works.
- 4. Prove that the ring $R := \mathbb{C}[x,y]/(y^2-x^3)$ is an integral domain but not a unique factorization domain.
- 5. Prove that the ring $\mathbf{Q}(\sqrt{5}) \otimes_{\mathbf{Q}} \mathbf{Q}(\sqrt{7})$ is a field. Prove that the ring $\mathbf{Q}(\sqrt{5}) \otimes_{\mathbf{Q}} \mathbf{Q}(\sqrt{5})$ is not a field.
- 6. For each of the following groups, either give an injective homomorphism to $SL_2(\mathbf{C})$ or show that there is no injective homomorphism:
 - (a) **C**
 - (b) C*
 - (c) $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$
 - (d) S_3
- 7. Find the minimal polynomial and the Jordan canonical form of the 3×3 complex matrix A assuming that $A^2 5A + 25I = 0$ and A is not a scalar matrix.
- 8. Suppose the cubic polynomial $P(x) = ax^3 + bx^2 + cx + d$ is irreducible over the rational numbers. Let K be its splitting field. When, in terms of the coefficients a, b, c, d, is the Galois group of K/\mathbb{Q} isomorphic to S_3 ? When the Galois group is isomorphic to S_3 , what is the unique quadratic extension E/\mathbb{Q} contained in K? Justify your answer.
- 9. Suppose K/\mathbf{Q} is a Galois extension with Galois group isomorphic to $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$. Is K isomorphic to $Q(\sqrt{a}, \sqrt{b}, \sqrt{c})$ for three (nonsquare) rational numbers a, b, c? Justify your answer.
- 10. Suppose $K \subset \mathbf{C}$ is a field. Suppose $\sqrt{2}$ is NOT contained in K but $\sqrt{2}$ is contained in every proper extension $\mathbf{C} \supset E \supset K$. Prove that E/K is a cyclic extension.