ALGEBRA QUALIFIER EXAM

There are 10 problems. Each problem is worth 10 points.

1. Let G be a subgroup of the additive group \mathbf{R} of all real numbers and let ϵ be a positive real number. Assume G contains no positive element less than ϵ. Show that G is cyclic.
2. Give an example of a Galois extensions K / \mathbf{Q} whose Galois group is $\mathbf{Z} / 5 \mathbf{Z}$.
3. Prove that the symmetric group S_{4} is solvable.
4. Give an example of a ring with exactly two prime ideals.
5. Show that the free group on a set of 2 elements is not solvable.
6. Show that it is possible to embed \mathbf{C} in \mathbf{R} as an abelian group but not as a field.
7. Prove that the ideal $(2,1+\sqrt{-5})$ in $\mathbf{Z}[\sqrt{-5}]$ is not principal.
8. Prove that the polynomial $t^{3}+2 t+1$ is irreducible in $\mathbf{Q}[t]$. Compute its Galois group.
9. Prove that if $\mathbf{Q}(t)$ is the field of rational functions in the variable t then the field extension $\mathbf{Q}\left(t^{3}+1\right) \subset \mathbf{Q}(t)$ is finite. Compute its degree.
10. Prove that there exist infinitely many field automorphisms $\phi: \mathbf{C} \rightarrow \mathbf{C}$ of order two.
