ALGEBRA QUALIFIER EXAMINATION

JANUARY 2013

There are 10 problems. Each problem is worth 10 points. Please write your banner ID on the top of this page.
(1) Let p be a prime. Show that any group with p^{2} elements is abelian. Give an example of a non-abelian group with p^{3} elements.
(2) Suppose that N is a normal subgroup of a group G, with $|N|<\infty$. Suppose also that H is a subgroup of G with $[G: H]<\infty$ and $|N|$ and $[G: H]$ relatively prime. Show that $N \subseteq H$.
(3) Show there are no simple groups of order 196.
(4) Let F be the free group on two generators and $[F, F]$ its commutator. Prove that $F /[F, F]$ is isomorphic to $\mathbb{Z} \times \mathbb{Z}$.
(5) Let R be a commutative ring and let I and J be ideals such that $I+J=R$. Prove that there is an isomorphism of R-modules $I \oplus J \simeq R \oplus I J$. Conclude that if I and J are projective R-modules, so is $I J$.
(6) Let $I=\left(x^{5}, y^{4} z^{6}\right)$ be an ideal of the polynomial ring $k[x, y, z]$. Determine the nilradical of $k[x, y, z] / I$.
(7) (a) Show that $\mathbb{Z} / a \mathbb{Z} \otimes \mathbb{Z} / b \mathbb{Z} \simeq \mathbb{Z} / d \mathbb{Z}$ where $d=(a, b)$.
(b) Then use part (a) to show for any finite abelian group A of order n with p^{k} the largest power of the prime p dividing n that $\mathbb{Z} / p^{k} \mathbb{Z} \otimes_{\mathbb{Z}} A$ is isomorphic to the Sylow p-subgroup of A.
(8) Determine the minimal polynomial for $\alpha=1+\sqrt[4]{2}$ over \mathbb{Q}. Then find the splitting field of $\mathbb{Q}(\alpha)$.
(9) Let p and q be primes. Find the Galois group of the polynomial $x^{p}-q$ over \mathbb{Q}.
(10) Let $k(x)$ be the field of rational functions in one variable over a field k. Prove that the degree of the extension $k\left(\frac{x^{5}}{x^{2}+1}\right) \subset k(x)$ is 5 .

$\therefore 12+A M$

层

 h1.

2

ALGEBRA QUALIFIER EXAMINATION

JANUARY 2012

There are 10 problems. Each problem is worth 10 points. Please write your name on the top of this page.
(1) How many elements of order 7 must be in a simple group of order 168 ?
(2) Prove that any group with $p q$ elements (p and q unequal primes) is solvable.
(3) Prove that the group with generators a, b and relations $a^{3}=b^{2}=e, a b=b a^{2}$ is isomorphic to the symmetric group S_{3}.
(4) Prove that $\mathbb{Z}[\sqrt{10}]$ is not a unique factorization domain.
(5) Let F be a field and $R=F\left[x, x^{2} y, x^{3} y^{2}, x^{4} y^{3}, \ldots\right]$ be a subring of the polynomial ring $F[x, y]$. Prove that the field of fractions of R is the same as $F(x, y)$, the field of fractions of $F[x, y]$.
(6) Prove that \mathbb{Q} is not a projective \mathbb{Z}-module.
(7) Let $I=(2, x)$ be the ideal generated by 2 and x in $\mathbb{Z}[x]$.
(a) Show that $2 \otimes x-x \otimes 2$ is a torsion element of $I \otimes_{R} I$.
(b) Show that the submodule of $I \otimes_{R} I$ generated by $2 \otimes x-x \otimes 2$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$.
(8) Let y and z be indeterminates and $\mathbb{Z}_{5}=\mathbb{Z} / 5 \mathbb{Z}$. Suppose $u=y^{20}$ and $v=z^{50}$. Determine the separable closure of $\mathbb{Z}_{5}(u, v)$ in $\mathbb{Z}_{5}(y, z)$
(9) Find the Galois group of $f(x)=x^{4}-2 x^{2}-4$ over \mathbb{Q}.
(10) Prove that if an irreducible polynomial $f \in \mathbb{Q}[x]$ has prime degree p and has exactly $p-2$ real roots in \mathbb{C} then the Galois group of f over \mathbb{Q} is isomorphic to the symmetric group S_{p}.

A\&

c) ?

 $+\pi=\frac{7}{7}$

Cl

ALGEBRA QUALIFIER EXAMINATION

AUGUST 2012

There are 10 problems. Each problem is worth 10 points. Please write your banner ID on the top of this page.
(1) Let p, q and r be primes. Show that no group of order $p q r$ is simple.
(2) Prove that the group defined by generators a, b, c, d and relations $a d b=b^{2} a, a^{3}=c$, $b^{2}=c, d^{2}=c$ is infinite and non-commutative.
(3) Let σ and τ be distinct 3-cycles in S_{5}. Show that $\langle\sigma, \tau\rangle$ is either isomorphic to A_{4} or is A_{5}.
(4) Let R be a domain. Prove that if R contains a non-principal proper ideal then there is an ideal J maximal with this property. Prove that any such J is a prime ideal. Conclude that if all prime ideals of R are principal then R is a principal ideal domain.
(5) Prove that a finite abelian group is neither projective nor injective.
(6) Let $L=\mathbb{Q}(\sqrt[8]{2}, i)$ and $E_{1}=\mathbb{Q}(i), E_{2}=\mathbb{Q}(\sqrt{2})$ and $E_{3}=\mathbb{Q}(i \sqrt{2})$ Find the Galois groups: $G\left(L / E_{1}\right), G\left(L / E_{2}\right)$ and $G\left(L / E_{3}\right)$.
(7) Prove that if a rational function $f(x) \in \mathbb{Q}(x)$ in one variable x has the property that $f(x)=f\left(-\frac{1}{x}\right)$ then there exists a rational function $g \in \mathbb{Q}(x)$ such that $f(x)=$ $g\left(\frac{x^{2}-1}{x}\right)$.
(8) Prove that the exact sequence $0 \rightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \xrightarrow{\beta} \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0$ with $\alpha(x)=2 x, \beta(x)=$ $x+2 \mathbb{Z}$ is exact and non-split.
(9) Prove that if R is an integral domain, I is a non-zero ideal, and F is the quotient field of R then $F \otimes_{R}(R / I)=0$.
(10) Prove that if M is a free \mathbb{Z}-module of infinite rank then the \mathbb{Z}-module $H_{o}(M, \mathbb{Z})$ is not isomorphic to M.

4

 （8）

 －

解

University of New Mexico
 Department of Mathematics and Statistics
 Algebra Qualifying Exam
 January 2011

Instructions: Complete all problems to get full credit. Start each problem on a new page, number the pages, and put only your Banner identification number on each page. Clear and concise answers with good justification will improve your score. When solving a problem with multiple parts you can assume the validity of all previous parts even if you have not solved them.
(1) Let $f(x)=x^{3}-2 x-2 \in \mathbb{Q}[x]$.
(a) Show that $f(x)$ is irreducible.
(b) If θ is a complex root of $f(x)$, express θ^{-1} as a polynomial in θ with rational coefficients.
(2) Prove that $f(x)^{p}=f\left(x^{p}\right)$ for any polynomial in $\mathbb{Z}_{p}[x]$, where \mathbb{Z}_{p} is the finite field with p elements.
(3) Let $\alpha: F(X) \rightarrow F(X)$ be a field homomorphism satisfying $\alpha(X)=f(X)$. Let L be the image of α. Show that $F(X) / L$ is a finite extension and find the minimal polynomial of X over L.
(4) Let G be the subgroup of $G L_{2}(\mathbb{R})$ generated by $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. Find all automorphisms of G.
(5) If P is a Sylow p-subgroup of G and N is a subgroup of G, show that $P \cap N$ is a Sylow p-subgroup of N.
(6) Let A_{n} denote the alternating group on n elements. Show that any group of finite order is isomorphic to a subgroup of A_{n} for some n.
(7) Let G be the subgroup of $G L_{2}(\mathbb{R})$ of all matrices of the form

$$
\left[\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right]
$$

where $a \neq 0$.
(a) Find the commutator subgroup of G.
(b) Is G solvable?
(8) Give an example of a projective module over \mathbb{Z}_{20} which is not free. Justify your answer.
(9) Suppose $C_{0}(0,1]$ is the ring of continuous real-valued functions on the closed interval $[0,1]$ that vanish at zero. Show that the set of maximal ideals of $C_{0}(0,1]$ is uncountable.
(10) Suppose R is a commutative ring with unity.
(a) Show that if a is nilpotent, then $1+a$ is invertible.
(b) Show that if a and b are nilpotent and r is any element of $R, r a$ is nilpotent and $a+b$ are nilpotent.
(c) Show that if a_{0} is a unit and a_{i} are nilpotent for $1 \leq i \leq n$ then $f(x)=$ $a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x]$ is invertible.

Algglera (4)

ALGEBRA
 Qualifying exam August 2010

1. Let $f(X) \in \mathbf{Q}[X]$ be a polynomial of degree n. Let E be a splitting field of f over \mathbf{Q}. Show that $[E: \mathbf{Q}] \leq n$!.
2. Suppose K is a field of characteristic zero and G a finite group of automorphisms of K. Let K^{G} be the subfield of K fixed by G. Show that K / K^{G} is a Galois extention with Galois group G.
3. Suppose A, B are n by n matrix with complex coefficients. Show that $A B-B A$ cannot be equal to the identity matrix.
4. Consider the derivative map $D: C^{\infty}(\mathbf{R}) \rightarrow C^{\infty}(\mathbf{R})$ given by $D(f(t))=f^{\prime}(t)$ and the multiplication by $t \operatorname{map} M: C^{\infty}(\mathbf{R}) \rightarrow C^{\infty}(\mathbf{R})$ given by $M(f(t))=t f(t)$. (Here $C^{\infty}(\mathbf{R})$ denotes the vector space of C^{∞} functions $\mathbf{R} \rightarrow \mathbf{R}$.) Compute the eigenvalues (and the corresponding eigenvectors) of the maps D, M, and $D \circ M-M \circ D$.
5. Let $M=\mathbf{C}(z)$ be the field of rational functions of z with \mathbf{C} coefficients. Show that the map $S L_{2}(\mathbf{C}) \rightarrow A u t_{\mathbf{C}}(M)$ given by

$$
\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \mapsto \sigma, \quad \sigma(f(z))=f\left(\frac{a z+b}{c z+d}\right)
$$

is a group homomorphism. Compute the kernel and the image of this homomorphism.
6. Compute the center of the symmetric group $S_{n}, n \geq 3$.
7. Prove that the group defined by generators a, b and one relation $a^{2} b^{3}=e$ is infinite.
8. Prove that if p is an odd prime number then the group of invertible elements in the ring $\mathbf{Z} / p^{n} \mathbf{Z}$ is cyclic.
9. Prove that the ring $\mathbf{Z}[\sqrt{-5}]$ is not principal.
10. Prove that the ring $\left\{\frac{n}{m} ; n, m \in \mathbf{Z}, m \notin 5 \mathbf{Z}\right\}$ is local.

