ALGEBRA QUALIFYING EXAMINATION

There are 10 problems. Each problem is worth 10 points. Please write your banner ID on the top of each page.

- (1) Prove that if H and K are finite subgroups of G whose orders are relatively prime then $H \cap K = \{e\}$.
- (2) Let G be a group and H be a subgroup contained in the center of G. Show that if G/H is cyclic then G is abelian.
- (3) Show no group of order 132 is simple.
- (4) Suppose $I \subset \mathbb{Z}$ is a proper ideal. Define the localization \mathbb{Z}_I of \mathbb{Z} at I. If I and J are both ideals in \mathbb{Z} when is $\mathbb{Z}_I \simeq \mathbb{Z}_J$?
- (5) Suppose $R = \mathbb{C}[X_1, \dots, X_n]$ and suppose $M \subset R$ is a maximal ideal. Show that there are complex numbers a_1, \dots, a_n so that M is the ideal generated by

$$X_1-a_1,\ldots,X_n-a_n$$
.

- (6) Show that \mathbb{Q}/\mathbb{Z} is an injective \mathbb{Z} -module, but is not a flat \mathbb{Z} -module.
- (7) Let V be an n-dimensional vector space over F. Show that the dual vector space $V^* = \operatorname{Hom}_F(V, F)$ is also n-dimensional.
- (8) Let \mathbb{F}_p denote the field with p elements. Suppose \mathbb{F} is a finite field of characteristic p. Show that \mathbb{F} is a cyclic extension of \mathbb{F}_p .
- (9) Let $K = \mathbb{Q}[\sqrt{2}, \sqrt{3}, \sqrt{5}]$. Prove that K is a Galois extension of \mathbb{Q} . Find all intermediate field extensions and prove that your list is complete.
- (10) Construct a Galois extension L of \mathbb{Q} whose Galois group is isomorphic to $\mathbb{Z}/4\mathbb{Z}$.

Date: August 2013.