## ALGEBRA QUALIFYING EXAMINATION: AUGUST 2014

There are 10 problems. Each problem is worth 10 points. Please write your banner ID on the top of each page.

- (1) A finite group G acts on itself by conjugation. Determine all possible G if this action yields precisely three distinct orbits.
- (2) Let G be the group of matrices of the form

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$$

where  $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$  and  $b \in \mathbb{Z}/p\mathbb{Z}$ . Find all normal subgroups of G.

- (3) Let R be a commutative ring and  $r \in R$  a non-nilpotent element. (i.e. There exists no natural number n with  $r^n = 0$ .)
  - (a) Show that there is a prime ideal P such that  $r \notin P$ .
  - (b) Give an example of a ring R and a non-nilpotent element r which is contained in all maximal ideals  $\mathfrak{m}$  of R.
- (4) Let  $\eta$  be a primitive 16th root of unity over a field F. What can you say about the degree  $[F(\eta):F]$  if:
  - (a) F has 17 elements.
  - (b) F has 9 elements.
  - (c) The characteristic of F is 2.
- (5) Let k be a field. Show that  $\{x^i \otimes y^j \mid i, j \geq 0\}$  is a basis for  $k[x] \otimes_k k[y]$  as a k-vector space. Then show that  $k[x] \otimes_k k[y] \cong k[x, y]$  as k-vector spaces.
- (6) Let p be a prime integer and let f(x) be the polynomial  $x^p p 1$ .
  - (a) Prove that f(x) irreducible in  $\mathbb{Q}[x]$ .
  - (b) Find the Galois group of f(x) over  $\mathbb{Q}$ .
- (7) Prove that the field  $\mathbb{R}$ , the real numbers, has no automorphisms besides the identity.
- (8) Let R be the ring of all continuous real valued functions defined on the closed interval [0,1] and let M be a maximal ideal in R. Prove that there exists  $\alpha \in [0,1]$  such that  $M = \{ f \in R; \ f(\alpha) = 0 \}$ .
- (9) Let  $0 \to \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \xrightarrow{\beta} \mathbb{Z}/2\mathbb{Z} \to 0$  be the sequence defined by  $\alpha(n) = 2n$ ,  $\beta(m) = m + 2\mathbb{Z}$ .
  - (a) Prove that the sequence is exact.
  - (b) Prove that the sequence is not split.
- (10) Prove that  $\mathbb{Q}$  is not a projective  $\mathbb{Z}$ -module. Is this module injective?