ALGEBRA QUALIFIER JANUARY 2020

Instructions: Please hand in all of the following 10 problems. Start each problem on a new page, number the pages, and put only your code word (not your banner ID number) on each page. Clear and concise answers with good justification will improve your score.

- (1) Let G be a group of order 402. Prove that G is not simple.
- (2) Suppose H and N are subgroups of a group G with $N \triangleleft G$, $|H| = m < \infty$ and $(G:N) = n < \infty$ with m and n relatively prime. Prove $H \subseteq N$.
- (3) What is the order of a Sylow p-subgroup in the group S_{3p} for p > 3. Are the Sylow p-subgroups of S_{3p} abelian groups? Justify your answers.
- (4) Prove that the ring $\mathbb{Z}[\sqrt{10}]$ is not a unique factorization domain.
- (5) Prove that the ideal (x, y) generated by x and y in the ring of polynomials $\mathbb{C}[x, y, z]$ is prime, is not maximal, and is not principal.
- (6) Prove that there is a ring isomorphism $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \mathbb{Q}$.
- (7) Let $f: \mathbb{Z}^3 \to \mathbb{Z}^3$ be the homomorphism

$$f(x, y, z) = (3x + 5y + 7z, 8y + 9z, 100z).$$

Find the elementary divisors of Coker(f).

- (8) Compute the Galois group of the polynomial $x^7 10$ over \mathbb{Q} .
- (9) Let x be an indeterminate. Consider the field $K = \mathbb{Q}(x)$ and the subfield $F = \mathbb{Q}(\alpha)$ of K generated by

$$\alpha = x^3 + \frac{1}{x} + 1.$$

Find the degree of the extension K/F.

(10) Let A be a complex 10×10 matrix such that $A^{10000} = 0$. Prove that $A^{10} = 0$.

1