ALGEBRA QUALIFIER AUGUST 2021

- (1) Show that no group of order 72 is simple.
- (2) Determine the Galois group of $x^4 + 4$ over \mathbb{Q} .
- (3) Let $\mathbb{C}[x^2,x^5]$ be the smallest subring of the polynomial ring $\mathbb{C}[x]$ that contains \mathbb{C}, x^2 , and x^5 . Show that the ring $\mathbb{C}[x^2,x^5]$ is not a UFD.
- (4) Prove that the polynomial $\sum_{i=0}^{9} t^i$ is reducible in $\mathbb{Q}[t]$. Prove that the polynomial $\sum_{i=0}^{10} t^i$ is irreducible in $\mathbb{Q}[t]$.
- (5) Give an example of a commutative ring R and a non-identity non-zero element $e \in R$ which satisfies $e^2 = e$. Is the R-module R/(e) projective? Justify your answer.
- (6) Classify up to conjugation the 5×5 matrices A with coefficients in the field $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ which satisfy $A^4 = A$.
- (7) Give an example of a finitely generated group G and of a subgroup H of G such that H is not finitely generated.
- (8) Prove that the automorphism group of the algebraic closure of a finite field is abelian.
- (9) Prove that if R is an integral domain and I is a non-zero proper ideal then the exact sequence of R-modules $0 \to I \to R \to R/I \to 0$ is not split.
- (10) Prove that $\mathbb{C} \otimes_{\mathbb{Z}} (\mathbb{Q}/\mathbb{Z}) = 0$. Prove that $\mathbb{C} \otimes_{\mathbb{Z}} \mathbb{Q} \neq 0$