ALGEBRA QUALIFIER AUGUST 2021

(1) Show that no group of order 72 is simple.
(2) Determine the Galois group of $x^{4}+4$ over \mathbb{Q}.
(3) Let $\mathbb{C}\left[x^{2}, x^{5}\right]$ be the smallest subring of the polynomial ring $\mathbb{C}[x]$ that contains \mathbb{C}, x^{2}, and x^{5}. Show that the ring $\mathbb{C}\left[x^{2}, x^{5}\right]$ is not a UFD.
(4) Prove that the polynomial $\sum_{i=0}^{9} t^{i}$ is reducible in $\mathbb{Q}[t]$. Prove that the polynomial $\sum_{i=0}^{10} t^{i}$ is irreducible in $\mathbb{Q}[t]$.
(5) Give an example of a commutative ring R and a non-identity non-zero element $e \in R$ which satisfies $e^{2}=e$. Is the R-module $R /(e)$ projective? Justify your answer.
(6) Classify up to conjugation the 5×5 matrices A with coefficients in the field $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ which satisfy $A^{4}=A$.
(7) Give an example of a finitely generated group G and of a subgroup H of G such that H is not finitely generated.
(8) Prove that the automorphism group of the algebraic closure of a finite field is abelian.
(9) Prove that if R is an integral domain and I is a non-zero proper ideal then the exact sequence of R-modules $0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0$ is not split.
(10) Prove that $\mathbb{C} \otimes_{\mathbb{Z}}(\mathbb{Q} / \mathbb{Z})=0$. Prove that $\mathbb{C} \otimes_{\mathbb{Z}} \mathbb{Q} \neq 0$

