Complex Variables Master's - Qualifying Examination

August 1995

1. Let $\{a_n\}$ be a sequence of complex numbers. Assume that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ converges for all z satisfying $|z| \leq r$. Prove that if $|a_1| > \sum_{n=2}^{\infty} n|a_n|r^{n-1}$, then f is an injective function on the disc $|z| \leq r$.

- 2. Let $f(z) = \frac{1}{z-1} + \frac{1}{(z-2)^2}$. Expand f(z) in a
 - i) Taylor series in |z| < 1
 - ii) Laurent series in 1 < |z| < 2.

3. A complex-valued function f = U + iV is said to be harmonic on a domain $D \subset \mathbb{C}$ if U and V are harmonic on D. Show that f is holomorphic on D if and only if both f and zf are harmonic on D.

- 4. (a) Show $\sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}$ is meromorphic in the complex plane \mathbb{C}
 - (b) Argue that $\frac{\pi^2}{(\sin \pi z)^2} \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}$ is holomorphic in \mathbb{C}
 - (c) Show that this holomorphic function is 0, i.e. $\frac{\pi^2}{(\sin \pi z)^2} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}$

5. Let $f: U \longrightarrow \mathbb{C}$ be a holomorphic function defined on an open subset U of \mathbb{C} . Let R be a closed rectangle contained in U (assume that the sides of R are parallel to the lines Rez = 0 and Imz = 0). Give a complete proof of the equality

$$\int\limits_{\partial R} f(z)dz = 0$$

6. Let $p_n(z) = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \cdots + \frac{z^n}{n!}$. Prove that for every R > 0 there exists a positive integer n(R) such that all roots of $p_n(z) = 0$ for $n \ge n(R)$ belong to the set $\{z \in \mathbb{C} \mid |z| > R\}$.

7. Assume that a, b, c are real numbers satisfying $ac - b^2 > 0$. Prove using residues

$$\int_{-\infty}^{\infty} \frac{dx}{ax^2 + 2bx + c} = \frac{\pi}{\sqrt{ac - b^2}}.$$

8. Let $\{a_n\}$ and $\{b_n\}$ be sequences of complex numbers. Assume that $\{a_n\}$ has no accumulation point. Prove that there exists a holomorphic function $f: \mathbb{C} \longrightarrow \mathbb{C}$ such that $f(a_n) = b_n$.