Complex Analysis Qualifying Examination August 1996

Directions:

- 1. You are trying to convince the reader that you know what you are doing. To that end we suggest your presentation be clear, concise and complete.
- 2. Solve any eight problems.
- 3. Start each question on a new sheet of paper. Write only on one side of each sheet of paper. Number the pages.

Terminology:

- 1. A domain is a non-empty open connected set in the complex plane.
- 2. A sequence or series of functions is said to be *locally uniformly convergent* on a domain Ω if it converges uniformly on every compact subset of Ω .

Notation:

- 1. $D(a, r) = \{z \in \mathbb{C}; |z a| < r\} \ (r > 0).$
- 2. $f(z) \in H(\Omega)$ means that f(z) is analytic on the domain Ω .
- 1. Suppose $f(z) = \sum_{n=0}^{\infty} a_n (z-c)^n$ has the property that the series $\sum_{n=0}^{\infty} f^{(n)}(c)$ converges. Show that f(z) is an entire function.
- 2. Show that an entire function that takes real values on the real axis and purely imaginary values on the imaginary axis must be an odd function:

$$f(-z) = -f(z)$$
 for all $z \in \mathbb{C}$.

3. Let f(z) be analytic in the unit disc. Define g(w) = f(z) where w = Tz is a Möbius transformation mapping the unit disc conformally onto itself. Show that

$$(1-|w|^2)\left|\frac{dg}{dw}\right|=(1-|z|^2)\left|\frac{df}{dz}\right|.$$

4. Let $f_1(z)$, $f_2(z)$, \cdots , $f_n(z) \in H(\Omega)$, and

$$\varphi(z) = |f_1(z)|^2 + |f_2(z)|^2 + \cdots + |f_n(z)|^2.$$

(a) Show that $\varphi(z)$ is harmonic on the domain Ω only if all the functions $f_k(z)$ $(k=1, 2, \dots, n)$ reduce to constant functions.

1

- (b) Show that $\varphi(z)$ has no local maximum in Ω unless all the functions $f_k(z)$ $(k=1, 2, \dots, n)$ reduce to constant functions.
- 5. Find all entire functions that satisfies the Lipschitz condition on C. A function f(z) is said to satisfy the Lipschitz condition on C if there exists a positive constant M such that

$$|f(z_1) - f(z_2)| \le M \cdot |z_1 - z_2|$$
 for all $z_1, z_2 \in \mathbb{C}$.

6. Find the Fourier transform of the function $f(x) = e^{-x^2/2}$; i.e., find the function $\hat{f}(t)$ defined for all $t \in \mathbb{R}$ by

$$\hat{f}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \cdot e^{-itx} dx.$$

- 7. Show that $z^5 15z + 1 = 0$ has one root in the disc $|z| < \frac{1}{8}$ and four roots in the annulus $\frac{3}{2} < |z| < 2$.
- 8. If f(z) is analytic in the unit disc and f(0) = 0, show that

$$f(z) + f(z^2) + \cdots + f(z^n) + \cdots$$

converges locally uniformly to an analytic function in the unit disc.

9. Construct an entire function f(z) such that

$$f(n) = n!$$
 $(n = 0, 1, 2, \cdots).$

10. Find the conformal mapping w = f(z) of a convex lens $D(\sqrt{3}, 2) \cap D(-\sqrt{3}, 2)$ onto the unit disc satisfying f(0) = 0, f'(0) > 0.